ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Turbulence
  • Wiley-Blackwell  (26)
Collection
  • 1
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Electroanalysis 9 (1997), S. 509-522 
    ISSN: 1040-0397
    Keywords: Ultrasound ; Sor oelectrochemistry ; Cavitation ; Turbulence ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The considerable progress made in the development of fundamental and applied aspects of sonoelectrochemistry, the coupling of power ultrasound into an electrochemical experiment, is reviewed with respect mainly to the measurement and analysis of effects observed in conventional sonoelectrochemical experiments in homogeneous environments. Based on the tools and methods now available it is hoped that the application of ultrasound in areas as diverse as electroanalytical and synthetic electrochemistry will be beneficial and new innovative approaches employing the various mechanical and chemical effects of ultrasound will result.
    Additional Material: 24 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 1 (1981), S. 225-235 
    ISSN: 0271-2091
    Keywords: Turbulence ; Fluid Flow ; Mathematical Models ; Reynolds Stresses ; Channels Lateral Motion ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The solution for the stress transport turbulence model equations for the situation where the flow is unidirectional is now commonly applied to flows with weak secondary currents in closed ducts, open channels, and rod bundles in nuclear reactor channels. Here, perturbations to the unidirectional flow solutions are studied by solving the exact equations using an iterative procedure. Now the equations also contain the small lateral velocity gradients formerly neglected. The applicability as well as the limitation of the use of the unidirectional flow turbulence model for the description of channel flow with lateral motion are discussed. Modifications for weak lateral motion are suggested.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 1 (1981), S. 273-290 
    ISSN: 0271-2091
    Keywords: Large Eddy ; Simulation ; Isotropic ; Turbulence ; Filtering ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: HOMTY, a code for Large Eddy Simulation of homogeneous isotropic turbulence is proven by successful simulation of two experiments. The role of each term in the equations of motion and the concept of filtering is examined. It is shown that ‘prefiltering’ is unnecessary, and the resulting additional term in the equations, instead of transferring energy to the subgrid scales, backscatters energy from the resolved large wavenumerbers to the small ones. The kinetic energy decay exponent is shown to depend on the low wavenumber part of the velocity spectrum. Pressure statistics are computed and found to be in agreement with previous computations.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 14 (1992), S. 919-934 
    ISSN: 0271-2091
    Keywords: Secondary clarifier ; Numerical model ; Density currents ; Turbulence ; Circular tank ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A numerical model for predicting the velocity field and suspended solids distribution in a secondary circular clarifier with density difference is evaluated. The density effects are characterized by the inlet densimetric Froude number. This study focuses on the role of the reaction baffle position in the performance of the clarifiers. For a large-radius baffle and low densimetric Froude number an important phenomenon known as the density waterfall occurs in the inlet zone of the clarifiers. This was predicted by the numerical model and confirmed by the physical model tests. This model consists of a series of conservation equations for fluid mass and momentum and sediment concentration. The turbulent stresses are calculated by use of the eddy viscosity concept and the κ-∊. turbulence model. The study showed that the density waterfall results in high entrainment and high recirculation. A comparison of the solids concentration distribution for a tank with a small skirt radius to that with a large skirt radius shows that small skirt radius reduces the density waterfall effect and significantly improves the clarifier performance at low densimetric Froude numbers.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 9 (1989), S. 963-985 
    ISSN: 0271-2091
    Keywords: Second moment ; Turbulence ; Transport equations ; Reynolds stress ; Complex flows ; Industrial applications ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Second-moment turbulence models focus directly on the transport equations for the Reynolds stresses rather than supposing the stress and strain fields to be directly linked via an eddy viscosity. This elaboration enables the effects of complex strains and force fields on the turbulence structure to be better captured. The paper summarizes the principal modelling strategies adopted for the unknown processes in these equations and presents the forms that have been found most useful in engineering calculations. Methods adopted for overcoming significant problems of numerical instability and lack of convergence compared with eddy-viscosity-based schemes are also presented. Applications involving momentum and heat transfer in complex flows are drawn from the advanced technology sectors of the power generation and aircraft industries.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 1 (1981), S. 295-304 
    ISSN: 0271-2091
    Keywords: Numerical Methods ; Turbulence ; Separation ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Flow over a downstream-facing step is predicted using the F.E.M. A two-equation model of turbulence is employed where the transport of turbulence kinetic energy and dissipation rate are depicted using transport-type equations, i.e. the two-equation model of turbulence. The results obtained are compared with other models and experimental results. Generally, the model was found to be under-predictive with regard to the reattachment length when previous empirical data was used in the transport equations.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 12 (1991), S. 369-382 
    ISSN: 0271-2091
    Keywords: Turbulence ; Recirculating flow ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: This investigation deals with the modification of streamline curvature effects in the k-ε turbulence model for the case of recirculating flows. Based upon an idea that the modification of curvature effects in C2 should not be made in regions where the streamline curvature is small, a hybrid k-ε model extended from the modification originally proposed by Srinivasan and Mongia is developed. A satisfactory agreement of model predictions with experimental data reveals that the hybrid k-ε model can perform better simulation of recirculating turbulent flows.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 9 (1989), S. 1121-1143 
    ISSN: 0271-2091
    Keywords: Turbulence ; High-speed flows ; Unstructured grids ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The incorporation of algebraic turbulence models in a solver for the 2D compressible Navier-Stokes equations using triangular grids is described. A practical way to use the Cebeci-Smith model and to modify it in separated regions is proposed. The ability of the model to predict high-speed perfect-gas boundary layers is investigated from a numerical point of view.
    Additional Material: 22 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 11 (1990), S. 39-56 
    ISSN: 0271-2091
    Keywords: Aerodynamics ; Turbulence ; Separation ; CLmax ; Laminar ; Bubble ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The algebraic turbulent model of Baldwin and Lomax was incorporated into the incompressible full Navier-Stokes code FIDAP. This model was extensively tested in the past in finite difference codes. We believe that the incorporation of the model also into the finite element code has resulted in a practical method to compute a variety of separated turbulent 2D flows. Firstly, we use the model to compute the attached flow about an aerofoil. Next, the application of the model to separated flows is presented by computing the flows at high angles of attack up to maximum lift. It is shown that the model is capable of predicting separation, steady stall and CLmax. As a difficult test of the model we compute the laminar separation bubble development directly using the full Navier-Stokes finite element code. As far as we know, this approach has not yet been reported. The importance of using an appropriate upwinding is discussed. When possible, comparison of computed results with experiments is presented and the agreement is good.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 4 (1984), S. 1165-1184 
    ISSN: 0271-2091
    Keywords: Turbulence ; Buoyancy ; Swirl ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A three-parameter model of turbulence applicable to free boundary layers has been developed and applied for the prediction of axisymmetric turbulent swirling flows in uniform and stagnant surroundings under the action of buoyancy forces. The turbulent momentum and heat fluxes appearing in the time-averaged equations for the mean motion have been determined from algebraic expressions, derived by neglecting the convection and diffusion terms in the differential transport equations for these quantities, which relate the turbulent fluxes to the kinetic energy of turbulence, k, the dissipation length scale of turbulence, L, and the temperature covariance, T′2. Differential transport equations have been used to determine these latter quantities. The governing equations have been solved using fully implicit finite difference schemes. The turbulence model is capable of reproducing the gross features of pure jet flows, buoyant flows and swirling flows for weak and moderate swirl.The behaviour of a turbulent buoyant swirling jet has been found to depend solely on exit swirl and Froude numbers. The predicted results indicate that the incorporation of buoyancy can cause significant changes in the behaviour of a swirling jet, particularly when the buoyancy strength is high. The jet exhibits similarity behaviour in the initial region for weak swirl and weak buoyancy strengths only, and the asymptotic case of a swirling jet under the action of buoyancy forces is a pure plume in the far field. The predicted results have been found to be in satisfactory agreement with the available experimental data and in good qualitative agreement with other predicted results.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 6 (1986), S. 241-253 
    ISSN: 0271-2091
    Keywords: Finite-element model ; Turbulence ; Density flow ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A mathematical model of turbulent density-driven flows is presented and is solved numerically. A form of the k-∊ turbulence model is used to characterize the turbulent transport, and both this non-linear model and a sediment transport equation are coupled with the mean-flow fluid motion equations. A partitioned, Newton-Raphson-based solution scheme is used to effect a solution. The model is applied to the study of flow through a circular secondary sedimentation basin.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 9 (1989), S. 987-1009 
    ISSN: 0271-2091
    Keywords: Turbulence ; Swirl ; Conical diffusers ; Multi-sweep ; Navier-Stokes equations ; Reynolds stress mode ; k-∊ model ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A brief overview of classes of turbulent swirling flow in conical diffusers is given, together with a description of appropriate numerical schemes for each class. Numerical results obtained for the class of moderate swirl in a 20° diffuser and for the class of no swirl in an 8° diffuser are compared with experimental results. The results are obtained using a multi-sweep scheme solving the full steady state time-averaged Navier-Stokes equations. Turbulence quantities are approximated using two types of algebraic Reynolds stress model and two types of k-∊ model. One of the algebraic Reynolds stress models includes extra production terms associated with the Christoffel symbols in cylindrical co-ordinates, and one of the k-∊ models includes a swirl-related modification to the ∊ equation. It is demonstrated that the standard k-∊model gives poor prediction of the mean flow, and it is necessary to at least use the modified form or one of the two algebraic Reynolds stress models.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 10 (1990), S. 519-555 
    ISSN: 0271-2091
    Keywords: Simulation ; Large eddy simulation ; Turbulence ; Boundary layer ; Developing flows ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A spectral code has been used to simulate a developing turbulent boundary layer at low Reynolds number Reθ (based on free stream velocity and momentum thickness) between 353 and 576. The starting field was generated by allowing a step change of temperature to diffuse outwards from one wall in a fully developed channel flow. The thermal boundary layer so created was conditionally sampled to convert it into a momentum boundary layer with an irrotational free stream region, a process which is justified by appeal to experiments. This initial field was allowed to develop until the momentum boundary layer thickness δ995 had grown to about 1·5 times its original thickness.The results of the simulation have been compared with a wide range of experimental data. The outcome of this comparison is generally very satisfactory; the main trends of the experiments are well reproduced and our simulation supplements and extends the existing sets of experimental data. The simulation also gives pressure statistics which cannot be obtained experimentally. In particular, it gives the contribution of pressure diffusion to the balance equations for the Reynolds stress and indicates the error produced by omitting this term.
    Additional Material: 24 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 11 (1990), S. 677-695 
    ISSN: 0271-2091
    Keywords: Turbulence ; Incompressible ; Navier-Stokes ; Finite element ; κ-epsilon ; Transient flow ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: In general the κ-ε turbulence model is used for stationary turbulent mean flow. First we review some of the hypotheses for the derivation of the model. Then we study it from the point of view of the numerical analyst (positivity of κ and ε, boundedness, etc.). Finally we analyse an extension called MPP, specially derived for transient mean flow. The rest of the paper is devoted to a robust (stable) numerical implementation of these models and several tests for the flow behind a cylinder.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 12 (1991), S. 585-604 
    ISSN: 0271-2091
    Keywords: Turbulence ; Channel flow ; Karhunen-Loève expansion ; Eigenfunctions ; Orthogonal decomposition ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The results of an analysis of low-Reynolds-number turbulent channel flow based on the Karhunen-Loéve(K-L) expansion are presented. The turbulent flow field is generated by a direct numerical simulation of the Navier-Stokes equations at a Reynolds number Re,= 80 (based on the wall shear velocity and channel half-width). The K-L procedure is then applied to determine the eigenvalues and eigenfunctions for this flow. The random coefficients of the K-L expansion are subsequently found by projecting the numerical flow field onto these eigenfunctions. The resulting expansion captures 90% of the turbulent energy with significantly fewer modes than the original trigonometric expansion. The eigenfunctions, which appear either as rolls or shearing motions, posses viscous boundary layers at the walls and are much richer in harmonics than the original basis functions. Chaotic temporal behaviour is observed in all modes and increases for higher-order eigenfunctions. The structure and dynamical behaviour of the eigenmodes are discussed as well as their use in the representation of the turbulent flow.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 14 (1992), S. 127-146 
    ISSN: 0271-2091
    Keywords: Numerical simulation ; Slug flow ; Turbulence ; Dissipation ; Open surface ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Steps towards the numerical simulation of the flow behind the slug front in horizontal slug flow performed with a streamfunction-vorticity representation of the mean flow and an energy dissipation model for the turbulence are discussed. The flow field consists of two vortices, one saddle point and four stagnation regions. Attention is focused on the following boundary conditions: moving wall jet, moving wall, free jet velocity discontinuity and vertical liquid-gas open surface. A dissipation flux boundary condition is suggested to simulate the interaction of the turbulent eddies with the open surface. A method to assess the necessity to use a transport model equation for the dissipation rather than a geometric specification of a length is suggested. Three different ways to characterize the mixing zone length are proposed.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 15 (1992), S. 127-146 
    ISSN: 0271-2091
    Keywords: Turbulence ; Free surface ; k-∊ model ; Numerical ; Algorithm ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A simple technique is presented for the numerical solution of two-dimensional time-dependent flows, either laminar or turbulent, involving multiple free surfaces of arbitrary configuration. The governing equations are the Reynolds equations for incompressible fluids with Boussinesq closure, the k- and ∊-equations and an additional equation describing the fluid configuration. This technique can potentially describe the propagation, deformation and overturning of pre-breaking waves and the mean flow, surface configuration and turbulence field after breaking. The properties of the method are illustrated by several calculational examples. The main parts of the algorithm are optimized for vector processing in a form suitable for installation in supercomputer facilities.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 15 (1992), S. 747-771 
    ISSN: 0271-2091
    Keywords: Turbulence ; Two-equation model ; Two-layer approach ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A two-layer approach is proposed to compute complex flows including separations. For high- and low-Reynolds-number regions we use a two-equation k-∊ model and a one-equation k-L model respectively. A robust algorithm is proposed for the treatment of the convective part of the turbulence equations. Several complex configurations including separations are computed.
    Additional Material: 17 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 16 (1993), S. 421-443 
    ISSN: 0271-2091
    Keywords: Turbulence ; Swirling recirculating flow ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A hybrid k-ε turbulence model, based on the concept that the modification of anisotropic effects should not be made in the flow regions inherent to small streamline curvatures, has been developed and examined with the swirling recirculating flows, with the swirl levels ranging from 0·6 to 1·23 in abrupt pipe expansion. A fairly satisfactory agreement of model predictions with the experimental data shows that this hybrid k-ε model can perform better simulation of swirling recirculating flows as compared to the standard k-ε model and the modified k-ε model proposed by Abujelala and Lilley.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 18 (1994), S. 605-625 
    ISSN: 0271-2091
    Keywords: Vertex-centred ; Finite volume ; Multigrid ; Navier-Stokes ; Shock detection ; Turbulence ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: This paper introduces a vertex-centred finite volume method for compressible viscous flow incorporating a new shock detection procedure. The discretization is designed to be robust and accurate on the highly stretched and curved meshes necessary for resolving turbulent boundary layers around the leading edge of an aerofoil. Details of the method are described for two-dimensional problems and the natural extension of three-dimensional multiblock meshes is discussed. The shock detection procedure is used to limit the range of the shock-capturing dissipation specifically to regions containing shocks. For transonic turbulent flow this is shown to improve the boundary layer representation significantly.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 18 (1994), S. 887-914 
    ISSN: 0271-2091
    Keywords: Unstructured ; Multigrid ; Turbulence ; Meshes ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The steady state solution of the system of equations consisting of the full Navier-Stokes equations and two turbulence equations has been obtained using a multigrid strategy on unstructured meshes. The flow equations and turbulence equations are solved in a loosely coupled manner. The flow equations are advanced in time using a multistage Runge-Kutta time-stepping scheme with a stability-bound local time step, while the turbulence equations are advanced in a point-implicit scheme with a time step which guarantees stability and positivity. Low-Reynolds-number modifications to the original two-equation model are incorporated in a manner which results in well-behaved equations for arbitrarily small wall distances. A variety of aerodynamic flows are solved, initializing all quantities with uniform freestream values. Rapid and uniform convergence rates for the flow and turbulence equations are observed.
    Additional Material: 25 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 19 (1994), S. 377-393 
    ISSN: 0271-2091
    Keywords: Turbulence ; Numerical simulation ; Wake ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A numerical simulation of a plane turbulent wake at a very low Reynolds number has been performed using finite volume methods. The wake was produced by allowing two turbulent boundary layers, simulated separately in advance, to interact downstream of the trailing edge of a thin flat plate. A number of innovative numerical techniques were required in the simulation, such as the provision of fully turbulent time-dependent inflow data from a separate simulation, advective outflow boundary conditions and the approximate representation of an internal solid surface by a method which is computationally efficient. The resulting simulation successfully reproduced many of the statistical properties of the turbulent near-wake flow at low Reynolds number.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 20 (1995), S. 115-133 
    ISSN: 0271-2091
    Keywords: Shallow water flow ; Turbulence ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A semi-implicit Lagrangian finite difference scheme for 3D shallow water flow has been developed to include an eddy viscosity model for turbulent mixing in the vertical direction. The α-co-ordinate system for the vertical direction has been introduced to give accurate definition of bed and surface boundary conditions. The simple two-layer mixing length model for rough surfaces is used with the standard assumption that the shear stress across the wall region at a given horizontal location is constant. The bed condition is thus defined only by its roughness height (avoiding the need for a friction formula relating to depth-averaged flow, e.g. Chezy, used previously). The method is shown to be efficient and stable with an explicit Lagrangian formulation for convective terms and terms for surface elevation and vertical mixing handled implicitly. The method is applied to current flow around a circular island with gently sloping sides which produce periodic recirculation zones (vortex shedding). Comparisons are made with experimental measurements of velocity using laser Doppler anemometry (time histories at specific points) and surface particle-tracking velocimetry.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 7 (1987), S. 927-952 
    ISSN: 0271-2091
    Keywords: Turbulence ; Rapid Compression Expansion ; Bowl-in-piston ; TDC ; BDC ; Inclined Walls ; PHOENICS ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The paper presents two- and three-dimensional computations of the in-cylinder turbulent flow in a diesel engine. The mathematical formulation is presented first, with emphasis on the modifications made to the standard k-ε model of turbulence, to account for rapid compression/expansion, and on the k-w model also used in the computations. Then, the results of two-and three-dimensional transient calculations are presented and compared with experimental data. It is realized that two-dimensional computations may be of little value to real engines, which would probably require three-dimensional analyses. However, two-dimensional studies are still useful in allowing the testing of new ideas easily and economically. It is concluded that the standard k-ε model may lead to poor predictions when used for internal combustion (IC) engine simulations, and that the modified model leads to more reasonable length-scale distributions, and it improves significantly the overall agreement of velocity predictions with experiment. The effect of the k-ε modification is apparent in both the two- and three-dimensional simulations. It is also demonstrated that the k-w model provides better turbulence predictions than the unmodified k-ε model, for the cases considered, and that a similar modification of the k-w model, to account for rapid compression/expansion, might improve its predictions even further.
    Additional Material: 22 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 13 (1991), S. 999-1028 
    ISSN: 0271-2091
    Keywords: Turbulence ; Channel ; Heat transfer ; Spectral ; Numerical ; Simulation ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Recently, with the advent of supercomputers, there has been considerable interest in the use of direct numerical simulation to obtain information about turbulent shear flow at low Reynolds number. This paper presents a pseudospectral technique to solve the full three-dimensional time-dependent Navier-Stokes and advection-diffusion equations without the use of subgrid-scale modelling. The technique has not been previously used for fully developed turbulent channel flow simulation and is based on methods applied in other contexts. The emphasis of this paper is to provide a reasonably detailed account of how the simulation is done rather than to present new calculations of turbulence. The details of an algorithm for turbulent channel flow simulation and the grid and time step sizes needed to integrate through transient behaviour to steady state turbulence have not been published before and are presented here.Results from a Cray-2 simulation of fully developed turbulent flow in a channel with heat transfer are presented along with a critical comparison between experiment and computation. The first- and second-order moments agree well with experimental measurements; the agreement is poor for higher-order moments such as the skewness and flatness near the walls of the channel. Detailed information given about the effects of spatial grid resolution on a computed results is important for estimating the size of the computation required to study various aspects of a turbulent flow.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 16 (1993), S. 1051-1078 
    ISSN: 0271-2091
    Keywords: Numerical simulation ; Turbulence ; Heat transfer ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Interest in the use of supercomputers for the direct numerical calculation of turbulence prompts the development of efficient numerical techniques so that calculation at higher Reynolds numbers might be made. This paper presents an efficient pseudo-spectral technique, similar to but different from others that have recently appeared, for the calculation of momentum and heat transfer to a constant-property, turbulent fluid in a two-dimensional channel with walls at different, uniform temperature. The code uses no empiricism, although periodic boundary conditions are used for fluctuating quantities in the streamwise and spanwise directions.Calculations were made for a Prandtl number of 0·72 and Reynolds number based on friction velocity and channel half-height of 180 or 2800 based on channel half-height and average velocity. Calculations of mean velocity profile, turbulence intensities, skewness, flatness, Reynolds stress and eddy diffusivity of heat near a wall compare favourably with experimental results. Representative contour plots of the temperature field near the wall and of the spanwise and streamwise two-point velocity correlations are given.Deficiencies are that the calculation requires many hours on a fast computer with a large high-speed memory and that the grid size in each direction for appropriate resolution is approximately proportional to the square of the Reynolds number and to the Prandtl number raised to some power greater than one.
    Additional Material: 19 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...