ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AERODYNAMICS  (12,790)
  • Aircraft Stability and Control
  • FLUID MECHANICS AND HEAT TRANSFER
Collection
Keywords
Years
  • 1
    Publication Date: 2020-01-23
    Description: This presentation is a refinement of an earlier presentation describing the methods of generating models used for designing control laws for use in vehicles with significant structural effects.
    Keywords: Aircraft Stability and Control
    Type: AFRC-E-DAA-TN76537 , AIAA SciTech Forum 2020; Jan 06, 2020 - Jan 10, 2020; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-01-22
    Description: The lightweight structures and unconventional configurations being considered for the next generation of aircraft mean that any effort to predict or control the flight dynamics is impacted by the structural dynamics. One of the most severe forms of coupling between aeroelasticity and flight dynamics is an instability called body freedom flutter. The existing tools often assume a relatively weak effect of structural dynamics on the flight dynamics, and are therefore incapable of modeling strong interactions like body freedom flutter. A method of combining different sources of data traditionally used for aeroelasticity and flight dynamics is described by reconciling many of the differences between these models. By building upon past modeling efforts, a level of familiarity in the approach is achieved. Generally the differences from the traditional approaches are subtle but significant. The traditional frequency domain flutter model in a modal coordinate system is converted to a form consistent with a time domain flight dynamics model. The time domain rational function approximation about a non-inertial coordinate system and the unique constraints for the conversion between the inertial and non-inertial coordinate systems are discussed. A consistent transformation of the states of aeroelastic models to flight dynamics models is derived, which enables the integration of data from higher fidelity computational fluid dynamics models or wind-tunnel testing. The present method of integrating multidisciplinary data was used to create models that compare well with X-56A flight-test data, including conditions past the flutter speed.
    Keywords: Aircraft Stability and Control
    Type: AFRC-E-DAA-TN75452 , AIAA SciTech Forum 2020; Jan 06, 2020 - Jan 10, 2020; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-20
    Description: These slides describe a method and technology of modeling flexible aircraft for active control of structural dynamics. Objective: Generate models useful for the design and evaluation of control laws for active structural control and flutter suppression that are able to accurately predict body freedom flutter.
    Keywords: Aircraft Stability and Control
    Type: AFRC-E-DAA-TN66921 , Aerospace Control and Guidance Systems Committee (ACGSC) Meeting; Mar 27, 2019 - Mar 29, 2019; Santa Fe, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-20
    Description: A multi-objective optimal control technique is modified to accommodate changing cost function weights and is used to control a flexible wing aircraft model. Variation of the weights is used to adjust the relative importance of each objective according to either a prescribed function of time or of the state. Several techniques for obtaining a practical approximation to the optimal control solution are presented, and stability of a specific weight structure with the optimal controller is demonstrated. Functionality of the multi-objective control design with weight variation is demonstrated in simulation of a flexible wing transport aircraft and is shown to improve performance over the fixed weight version both at a constant flight condition and across changing flight conditions.
    Keywords: Aircraft Stability and Control
    Type: ARC-E-DAA-TN64647 , AIAA SciTech Forum 2019; Jan 07, 2019 - Jan 11, 2019; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-20
    Description: A new 6-DoF aeroservoelastic (ASE) Common Research Model (CRM) provided by The Boeing Company with aspect ratio 13.5 and 17 control surfaces per wing is utilized to demonstrate combined tracking and optimal multi-objective control. The multi-objective controller is derived on the closed loop tracking controller, and utilizes state and gust estimates provided by an extended state observer. Various methods of model reduction useful for control and estimation are presented. A computationally efficient MATLAB/Simulink simulation is presented which includes actuator dynamics, rate and deflection saturation limits, and gust disturbance inputs. The platform is used to demonstrate excellent 6-DoF tracking control performance coupled with the multi-objective controller, which is shown to effectively reduce structural mode movement, wing root bending moment, and drag. State and gust estimation is also shown to perform well, even when derived and/or implemented with significantly fewer states than the original full-sized model.
    Keywords: Aircraft Stability and Control
    Type: ARC-E-DAA-TN271828 , AIAA Science and Technology Forum and Exposition; Jan 07, 2019 - Jan 11, 2019; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-20
    Description: Slides for an invited presentation (as part of a series) at Santa Clara University, invited by prof. Mohammad Ayoubi. The slides are an overview and summary of past and current research projects in the field of envelope protection, upset prevention and stall recovery guidance, with the aim to avoid loss of control accidents and improve safety in air transportation. The overall aim of this presentation series is to inspire students and to show them possible opportunities that they can pursue for their later careers paths.
    Keywords: Aircraft Stability and Control
    Type: ARC-E-DAA-TN52363 , Santa Clara University Invited Lecture Series; Santa Clara, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-09-13
    Description: An extension of model reference adaptive control is presented that accommodates use of a time-varying reference model. Specifically, the reference model is taken to be a time-varying convex combination of two linear, time-invariant models. The design is intended to act as a way to smoothly transition between two different reference models without resorting to a scheduled switch. It also provides the ability to use an interpolated reference model when the plant is operating between design points. The time variation of the combination must satisfy some requirements to ensure stability but is otherwise user choice. Subject to these requirements, bounded tracking error behavior is demonstrated via Lyapunov stability analysis for the single-input, single-output, output feedback case. Tracking error convergence is asymptotic when time variation ceases. The proposed design is demonstrated in simulation of a numerical model.
    Keywords: Aircraft Stability and Control
    Type: ARC-E-DAA-TN66631 , American Control Conference; Jul 10, 2019 - Jul 12, 2019; Philadelphia, PA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-10-30
    Description: No abstract available
    Keywords: Aircraft Stability and Control
    Type: AFRC-E-DAA-TN74004
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: This paper verifies a motion cueing strategy for improved pilot stall recovery training in commercial transport simulators. Eight airline transport pilots flew a high-altitude stall recovery task in the NASA B747 level-D-certified full flight simulator under three different motion configurations: no motion, baseline motion, and enhanced motion. For each motion condition, pilots performed the task with both baseline aircraft dynamics and aircraft dynamics enhanced with lateral-directional characteristics of the airplane at angle of attack approaching stall. Motion configuration significantly affected: 1) pilot opinions on the helpfulness of motion in performing the task, 2) the maximum roll angle in the stall maneuver, 3) the minimum load factor in the recovery, 4) the number of secondary stick shakers in the stall recovery, and 5) the maximum airspeed in the recovery. The two different aircraft dynamics significantly affected: 1) pilot opinions on the noticeability of the banking roll off near the stall and 2) the maximum roll angle in the stall maneuver. These results indicate that the relatively minor enhancements to the motion logic of heritage commercial transport simulators presented here can significantly improve pilot performance in simulated stall recoveries, and potentially improve stall recovery training.
    Keywords: Aircraft Stability and Control
    Type: ARC-E-DAA-TN65276 , AIAA SciTech Forum 2019; Jan 07, 2019 - Jan 11, 2019; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: An overview of the flight control work in the Intelligent Systems Division at NASA Ames is presented. The highlight focuses on efforts surrounding performance-adaptive aeroelastic wing shaping for aircraft with flexible wings. Topics covered include aeroservoelastic modeling capabilities, online drag-optimizing control designs, gust and maneuver load alleviation techniques, and related wind tunnel demonstrations.
    Keywords: Aircraft Stability and Control
    Type: ARC-E-DAA-TN67091 , Aerospace Control and Guidance Systems Committee Meeting; Mar 27, 2019 - Mar 29, 2019; Santa Fe, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Aircraft Stability and Control
    Type: JSC-E-DAA-TN69878-2 , AIAA AVIATION Forum and Exposition; Jun 17, 2019 - Jun 21, 2019; Dallas, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Aircraft Stability and Control
    Type: JSC-E-DAA-TN69878-1 , AIAA AVIATION Forum and Exposition; Jun 17, 2019 - Jun 21, 2019; Dallas, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-20
    Description: The ability to meet a controlled time of arrival during a continuous descent operation will enable environmentally friendly and fuel efficient descent operations while simultaneously maintaining airport throughput. Previous work showed that guidance strategies based on a frequent recalculation of the optimal trajectory during the descent result in excellent environmental impact mitigation figures while meeting operational constraints in the presence of modelling errors. However, the time lag of recalculating the trajectory using traditional optimisation algorithms could lead to performance degradation and stability issues. This paper proposes an alternative strategy, which allows for fast updates of the optimal trajectory based on parametric sensitivities. Promising results show that the performance of this method is comparable to that of instantaneously recalculating the optimal descent trajectory at each time sample.
    Keywords: Aircraft Stability and Control
    Type: NF1676L-30424 , AIAA/IEEE Digital Avionics Systems Conference (DASC); Sep 23, 2018 - Sep 27, 2018; London, England; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-07-20
    Description: A deconvolution method is presented for estimating input data from measured output data and a model of the dynamic process involved. The method uses an optimal Wiener filter for separating the measured data into signal and noise components, and a high-accuracy Fourier transform for inverting the model dynamics in the frequency domain. The method is an extension of optimal Fourier smoothing, and uses a technique to enhance the contrast between the signal and noise spectra in designing the Wiener filter. The deconvolution method was applied to simulation and flight test data for the purposes of removing unwanted distortions introduced by signal-conditioning filters and sensor dynamics, and for reconstructing turbulence inputs from measured sensor data. Results indicated hat the method performs well given good signal-to-noise levels and accurate models of the dynamic process.
    Keywords: Aircraft Stability and Control
    Type: NF1676L-28783 , AIAA Aviation and Aeronautics Forum and Exposition; Jun 25, 2018 - Jun 29, 2018; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-20
    Description: A method for estimating aeroelastic stability and control derivatives for flexible aircraft is developed and demonstrated using flight test data for the X-56A subscale demonstrator. The method uses the equation-error approach with frequency-domain data, and can be applied post-flight or in real time during flight. The non-dimensional aeroelastic forces and moments and the explanatory variables (including generalized displacement, rate, and acceleration states for the vibration modes) are estimated using a finite element model and onboard sensor measurements in both a least squares and Kalman filtering framework. The data are then transformed into the frequency domain for parameter estimation using equation error. This method can result in a more efficient analysis than with other iterative methods, and can leverage existing statistical tools for model structure determination, data collinearity detection, combining multiple maneuvers or prior information, and others to improve model quality.
    Keywords: Aircraft Stability and Control
    Type: NF1676L-28533 , AIAA Aviation and Aeronautics Forum (Aviation 2018); Jun 25, 2018 - Jun 29, 2018; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-07-20
    Description: Active flutter suppression has been demonstrated in simulation by many researchers, generally using methods based on linear aerodynamics and often with simplistic geometries. In this paper, active flutter suppression is demonstrated in a simulation using a Navier-Stokes aerodynamics code, FUN3D (Fully Unstructured Navier-Stokes Three-Dimensional), and a realistic transport aircraft configuration. This is accomplished using simple observer-feedback controllers derived from linear aeroelastic models, including reduced order models built via FUN3D data. The development of these reduced order models is described here. It is shown that controllers derived from reduced order models of the nonlinear aerodynamics outperform controllers based on linear aerodynamics.
    Keywords: Aircraft Stability and Control
    Type: NF1676L-28523 , AIAA Aviation and Aeronautics Forum (Aviation 2018); Jun 25, 2018 - Jun 29, 2018; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-07-13
    Description: In recent studies, it has been observed that loss of control in flight is the most frequent primary cause of accidents. A significant share of accidents in this category can be remedied by upset prevention if possible, and by upset recovery if necessary, in this order of priorities. One of the most important upsets to be recovered from is stall. Recent accidents have shown that a correct stall recovery maneuver remains a big challenge in civil aviation, partly due to a lack of pilot training. A possible strategy to support the flight crew in this demanding context is calculating a recovery guidance signal, and showing this signal in an intuitive way on one of the cockpit displays, for example by means of the flight director. Different methods for calculating the recovery signal, one based on fast model predictive control and another using an energy based approach, have been evaluated in four relevant operational scenarios by experienced commercial as well as test pilots in the Vertical Motion Simulator at NASA Ames Research Center. Evaluation results show that this approach could be able to assist the pilots in executing a correct stall recovery maneuver.
    Keywords: Aircraft Stability and Control
    Type: ARC-E-DAA-TN50867 , SciTech Forum; Jan 08, 2018 - Jan 12, 2018; Kissimmee, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-07-13
    Description: This paper describes a recent development of an integrated fully coupled aeroservoelastic flight dynamic model of the NASA Generic Transport Model (GTM). The integrated model couples nonlinear flight dynamics to a nonlinear aeroelastic model of the GTM. The nonlinearity includes the coupling of the rigid-body aircraft states in the partial derivatives of the aeroelastic angle of attack. Aeroservoelastic modeling of the control surfaces which are modeled by the Variable Camber Continuous Trailing Edge Flap is also conducted. The R.T. Jones' method is implemented to approximate unsteady aerodynamics. Simulations of the GTM are conducted with simulated continuous and discrete gust loads..
    Keywords: Aircraft Stability and Control
    Type: ARC-E-DAA-TN50754 , AIAA SciTech Forum; Jan 08, 2018 - Jan 12, 2018; Kissimmee, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-07-13
    Description: Stall characteristics of a wing whose design was based on Prandtls minimum induced drag analysis is presented. Flow field is resolved using RANS CFD (Computational Fluid Dynamics) solver OVERFLOW-2. Both in freestream and in ground effect are analyzed. In addition, effect of low-Mach preconditioner on the stall characteristic is presented. Results show that simulations that lack preconditioner predicts higher stall angle as well as much more benign behavior near the stall angle. Stall analysis in freestream show that flow begins to separate at the inboard region. The flow at the tip remains attached until approximately 19.0 degrees angle of attack.
    Keywords: Aircraft Stability and Control
    Type: AFRC-E-DAA-TN48257 , AIAA Applied Aerodynamics Conference; Jun 25, 2018 - Jun 29, 2018; Atlanta, GA; United States|AIAA Aviation and Aeronautics Forum (Aviation 2018); Jun 25, 2018 - Jun 29, 2018; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-13
    Description: These slides are the companion to the paper on the ACT experiment flown using a G-III autopilot and ADS-B datalink.
    Keywords: Aircraft Stability and Control
    Type: AFRC-E-DAA-TN58037 , AIAA Aviation Forum; Jun 25, 2018 - Jun 29, 2018; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: This presentation discusses the NASA Armstrong PTERA-SAW flight simulation. The uses of this simulation are to study the aerodynamic effects of moving outer wing panels in flight, develop a flight control system, flight safety analysis, mission planning, flight envelope expansion, and post-flight data analysis.
    Keywords: Aircraft Stability and Control
    Type: AFRC-E-DAA-TN57916 , AIAA Aviation 2018; Jun 25, 2018 - Jun 29, 2018; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-08-28
    Description: An extremum-seeking control system for formation flight that uses blended performance parameters in a conglomerate performance function that better approximates drag reduction than performance functions formed from individual measurements. Generally, a variety of different measurements are taken and fed to a control system, the measurements are weighted, and are then subjected to a peak-seeking control algorithm. As measurements are continually taken, the aircraft will be guided to a relative position which optimizes the drag reduction of the formation. Two embodiments are discussed. Two approaches are shown for determining relative weightings: "a priori" by which they are qualitatively determined (by minimizing the error between the conglomerate function and the drag reduction function), and by periodically updating the weightings as the formation evolves.
    Keywords: Aircraft Stability and Control
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-10-19
    Description: Project Link! is a NASA-led effort to study the feasibility of multi-aircraft aerial docking systems. In these systems, a group of vehicles physically link to each other during flight to form a larger ensemble vehicle with increased aerodynamic performance and mission utility. This paper presents a dynamic model and control architecture for a system of fixed-wing vehicles with this capability. The dynamic model consists of the 6 degree-of-freedom fixedwing aircraft equations of motion, a spring-damper-magnet system to represent the linkage force between constituent vehicles, and the NASA-Burnham-Hallock wingtip vortex model to represent the close-proximity aerodynamic interactions between constituents before the linking occurs. The control architecture consists of a guidance algorithm to autonomously drive the constituents towards their linking partners and an inner-loop angular rate controller. A simulation was constructed from the model, and the flight dynamic modes of the linked system were compared to the individual vehicles. The main contributions of this work are twofold. First is the introduction of close-proximity aerodynamic effects to create a realistic simulation framework for this problem. Second is the application of a sophisticated leaderfollower guidance algorithm to achieve in-air wingtip docking. Simulation results for both before and after linking are presented.
    Keywords: Aircraft Stability and Control
    Type: NF1676L-28646 , Journal of Guidance, Control, and Dynamics (ISSN 0731-5090) (e-ISSN 1533-3884); 41; 11; 2327-2337
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-07-12
    Description: A summary of output measurement equations for onboard sensors used in flight testing of flexible aircraft is presented. These equations include the effects of structural flexibility and are considerably more complex than the standard equations for rigid-body aircraft. The output equations discussed include accelerations from linear accelerometers, strains, angular rates, angular accelerations, Euler angles, true airspeed, and air flow angles. The output equations are derived in full form and then simplified in some cases. Linearized output equations, suitable for state-space or transfer function models, are also developed. Example flight test data from the X-56A subscale aeroelastic demonstrator is discussed, for reference.
    Keywords: Aircraft Stability and Control
    Type: NASA/TM-2018-220102 , L-20956 , NF1676L-31027
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-07-13
    Description: From April to May 2017, the National Aeronautics and Space Administration Armstrong Flight Research Center completed a series of flights with a trail C-20A airplane surfing in the wake of a Gulfstream III airplane using a commercially available datalink as the primary communication between the two aircraft. The purpose of this test was to characterize the aerodynamic benefits received by the trail airplane flying in the upwash portion of the wake generated from the lead airplane. Lateral and vertical relative position to the wake were automatically controlled through an experimental programmable autopilot on the C-20A airplane. Long-track, the separation distance between the two aircraft, was maintained by test pilots managing throttle position using customized cockpit displays. These displays provided the pilots with throttle cues for maintaining long-track position and situational awareness of the wake vortex relative to the position of the trail airplane. Flight testing demonstrated the ability of the pilots to use these displays to maintain a safe long-track distance, but found there to be trades between tracking performance and the frequency of throttle motion. The wake awareness display provided the pilots with adequate situational awareness of the wake vortex during the flight experiment. This paper presents a summary of the design, development, and flight evaluation of the pilot displays and long-track control.
    Keywords: Aircraft Stability and Control
    Type: AFRC-E-DAA-TN54320 , AIAA Aviation and Aeronautics Forum and Exposition; Jun 25, 2018 - Jun 29, 2018; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-06-11
    Description: Three different types of maneuvers were designed to separately quantify the pitch rate and angle-of-attack rate contributions to the nondimensional aerodynamic pitching moment coefficient. These maneuvers combined pilot inputs and automatic multisine excitations, and they were demonstrated with the subscale T-2 and Bat-4 airplanes using the NASA Airborne Subscale Transport Aircraft Research flight-test facility. Stability and control derivatives (in particular, Cmq and Cm) were accurately estimated from the flight-test data. These maneuvers can be performed with many types of aircraft, and the results can be used to improve physical insight into the flight dynamics, facilitate more accurate comparisons with wind-tunnel experiments or numerical investigations, and increase simulation prediction fidelity.
    Keywords: Aircraft Stability and Control
    Type: NF1676L-26357 , Journal of Aircraft (ISSN 0021-8669) (e-ISSN 1533-3868); 54; 6; 2367-2377
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-07-12
    Description: A test in the Langley 12-Foot Low-Speed Tunnel was conducted as a risk mitigation effort to quickly obtain some low-speed stability and control data on a "double-bubble" or D8 transport configuration. The test also tested some configuration design trades. A 5-percent scale model was tested with stabilizer, elevator, rudder and aileron control deflections. This report summarizes the test results.
    Keywords: Aircraft Stability and Control
    Type: NASA/TM-2017-219797 , L-20897 , NF1676L-29029
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-07-20
    Description: Kalman filter based spacecraft attitude estimation has been used in many space missions and has been widely discussed in literature. While some models in spacecraft attitude estimation include spacecraft dynamics, most do not. To our best knowledge, there is no analysis to determine which model is a better choice. In this paper, we discuss the reasons why spacecraft dynamics should be considered in the Kalman filter based spacecraft attitude estimation problem. We also propose a reduced quaternion spacecraft dynamics model which admits additive noise. Geometry of the reduced quaternion model and the additive noise are discussed. This formulation makes computation easier than the one with full quaternion. Simulations are conducted to justify our claims.
    Keywords: Aircraft Stability and Control
    Type: NF1676L-24892 , Advances in Aircraft and Spacecraft Science (ISSN 2287-528X) (e-ISSN 2287-5271); 4; 3; 335-351
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-07-20
    Description: In this project, work has been done in the field of conceptual design of experimental tiltrotors. The main tools that have been used are NDARC (NASA Design and Analysis of Rotorcraft) and SIMPLI-FLYD. NDARC is a conceptual design tool for rotorcraft, and it is used to find trim points under various flight conditions. SIMPLI-FLYD is an integrated collection of software tools that enables a flight dynamics and control assessment of the rotorcraft vehicle design generated from NDARC. Two different tiltrotors have been investigated. Initially, work was done with the Bell XV- 15 tiltrotor. NDARCs ability to correctly model the tiltwing transition between airplane mode and hover mode was looked into. In addition, data from old flight tests were compared to the NDARC output, to see how accurately performance could be predicted. After the XV-15 analysis, an NDRARC model of a novel tiltwing concept from Elytron Aircraft was written and analyzed together with SIMPLI-FLYD. Elytron 2S is an experimental tiltwing aircraft, consisting of a joined-wing design with a small central wing for the proprotor. An alternative approach to hover control is used, where the typical rotor hub and swash plate are substituted for linear actuators controlling pitch, yaw and roll. The objective with the analysis of Elytron is to obtain a more complete understanding of the maneuverability and possible performance of this alternative aircraft configuration.
    Keywords: Aircraft Stability and Control
    Type: ARC-E-DAA-TN39203 , NASA/CR-2017-219456
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-07-13
    Description: This paper presents a new adaptive control approach that involves a performance optimization objective. The control synthesis involves the design of a performance optimizing adaptive controller from a subset of control inputs. The resulting effect of the performance optimizing adaptive controller is to modify the initial reference model into a time-varying reference model which satisfies the performance optimization requirement obtained from an optimal control problem. The time-varying reference model modification is accomplished by the real-time solutions of the time-varying Riccati and Sylvester equations coupled with the least-squares parameter estimation of the sensitivities of the performance metric. The effectiveness of the proposed method is demonstrated by an application of maneuver load alleviation control for a flexible aircraft.
    Keywords: Aircraft Stability and Control
    Type: ARC-E-DAA-TN42886 , Eighteenth Yale Workshop on Adaptive and Learning Systems; Jun 21, 2017 - Jun 23, 2017; New Haven, CT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-07-13
    Description: The paper presents an on-board estimation, navigation and control architecture for multi-rotor drones flying in urban environment. It consists of adaptive algorithms to estimate vehicle's aerodynamic drag coefficients with respect to still air and the urban wind components along the flight trajectory, with guaranteed fast and reliable convergence to the true values; navigation algorithms to generate feasible trajectories between given way-points that take into account the estimated wind; and of control algorithms to track the generated trajectories as long as the vehicle retains sufficient number of functioning rotors capable of compensating for the estimated wind. All components of this on-board system are computationally effective and are intended for a real time implementation. The algorithms were tested in simulations.
    Keywords: Aircraft Stability and Control
    Type: ARC-E-DAA-TN38102 , AIAA SciTech Forum; Jan 09, 2017 - Jan 13, 2017; Grapevine, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-07-13
    Description: While many widely accepted methods and techniques exist for validation and verification of traditional controllers, at this time no solutions have been accepted for Fuzzy Logic Controllers (FLCs). Due to the highly nonlinear nature of such systems, and the fact that developing a valid FLC does not require a mathematical model of the system, it is quite difficult to use conventional techniques to prove controller stability. Since safety-critical systems must be tested and verified to work as expected for all possible circumstances, the fact that FLC controllers cannot be tested to achieve such requirements poses limitations on the applications for such technology. Therefore, alternative methods for verification and validation of FLCs needs to be explored. In this study, a novel approach using formal verification methods to ensure the stability of a FLC is proposed. Main research challenges include specification of requirements for a complex system, conversion of a traditional FLC to a piecewise polynomial representation, and using a formal verification tool in a nonlinear solution space. Using the proposed architecture, the Fuzzy Logic Controller was found to always generate negative feedback, but inconclusive for Lyapunov stability.
    Keywords: Aircraft Stability and Control
    Type: ARC-E-DAA-TN38074 , SciTech 2017; Jan 09, 2017 - Jan 13, 2017; Grapevine, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-07-13
    Description: Unlike basic Model Reference Adaptive Control (MRAC)l, Optimal Control Modification (OCM) has been shown to be a promising MRAC modification with robustness and analytical properties not present in other adaptive control methods. This paper presents an analysis of the OCM method, and how the asymptotic property of OCM is useful for analyzing and tuning the controller. We begin with a Lyapunov stability proof of an OCM controller having two adaptive gain terms, then the less conservative and easily analyzed OCM asymptotic property is presented. Two numerical examples are used to show how this property can accurately predict steady state stability and quantitative robustness in the presence of time delay, and relative to linear plant perturbations, and nominal Loop Transfer Recovery (LTR) tuning. The asymptotic property of the OCM controller is then used as an aid in tuning the controller applied to a large scale aeroservoelastic longitudinal aircraft model for flutter suppression. Control with OCM adaptive augmentation is shown to improve performance over that of the nominal non-adaptive controller when significant disparities exist between the controller/observer model and the true plant model.
    Keywords: Aircraft Stability and Control
    Type: ARC-E-DAA-TN50278 , AIAA SciTech Forum; Jan 08, 2018 - Jan 12, 2018; Kissimmee, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-13
    Description: This presentation is given at a NASA DLR (German Aerospace Center) meeting at NASA ARC on March 14, 2017. The presentation provides an overview of the Advanced Control and Evolvable Systems (ACES) group at NASA ARC and the research areas in UAS autonomy, stall recovery guidance, and flexible aircraft flight control.
    Keywords: Aircraft Stability and Control
    Type: ARC-E-DAA-TN39958 , NASA/DLR Collaboration Meeting; Mar 14, 2017; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-07-13
    Description: This paper discusses the implementation and simulated performance of the FNPEG (Fully Numerical Predictor-corrector Entry Guidance) algorithm into GNC FSW (Guidance, Navigation, and Control Flight Software) for use in an autonomous re-entry vehicle. A few modifications to FNPEG are discussed that result in computational savings -- a change to the state propagator, and a modification to cross-range lateral logic. Finally, some Monte Carlo results are presented using a representative vehicle in both a high-fidelity 6-DOF (degree-of-freedom) sim as well as in a 3-DOF sim for independent validation.
    Keywords: Aircraft Stability and Control
    Type: JSC-CN-38080 , AIAA SciTech Forum 2017; Jan 09, 2017 - Jan 13, 2017; Grapevine, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-07-13
    Description: Link! is a multi-center NASA e ort to study the feasibility of multi-aircraft aerial docking systems. In these systems, a group of vehicles physically link to each other during flight to form a larger ensemble vehicle with increased aerodynamic performance and mission utility. This paper presents a potential field guidance algorithm for a group of multi-rotor vehicles to link to each other during flight. The linking is done in pairs. Each vehicle first selects a mate. Then the potential field is constructed with three rules: move towards the mate, avoid collisions with non-mates, and stay close to the rest of the group. Once a pair links, they are then considered to be a single vehicle. After each pair is linked, the process repeats until there is only one vehicle left. The paper contains simulation results for a system of 16 vehicles.
    Keywords: Aircraft Stability and Control
    Type: NF1676L-27073 , AIAA Aviation and Aeronautics Forum and Exposition (AIAA Aviation 2017); Jun 05, 2017 - Jun 09, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-07-13
    Description: The NASA Unmanned Aircraft System (UAS) Traffic Management (UTM) project is conducting research to enable civilian low-altitude airspace and UAS operations. A goal of this project is to develop probabilistic methods to quantify risk during failures and off nominal flight conditions. An important part of this effort is the reliable prediction of feasible trajectories during off-nominal events such as control failure, atmospheric upsets, or navigation anomalies that can cause large deviations from the intended flight path or extreme vehicle upsets beyond the normal flight envelope. Few examples of high-fidelity modeling and prediction of off-nominal behavior for small UAS (sUAS) vehicles exist, and modeling requirements for accurately predicting flight dynamics for out-of-envelope or failure conditions are essentially undefined. In addition, the broad range of sUAS aircraft configurations already being fielded presents a significant modeling challenge, as these vehicles are often very different from one another and are likely to possess dramatically different flight dynamics and resultant trajectories and may require different modeling approaches to capture off-nominal behavior. NASA has undertaken an extensive research effort to define sUAS flight dynamics modeling requirements and develop preliminary high fidelity six degree-of-freedom (6-DOF) simulations capable of more closely predicting off-nominal flight dynamics and trajectories. This research has included a literature review of existing sUAS modeling and simulation work as well as development of experimental testing methods to measure and model key components of propulsion, airframe and control characteristics. The ultimate objective of these efforts is to develop tools to support UTM risk analyses and for the real-time prediction of off-nominal trajectories for use in the UTM Risk Assessment Framework (URAF). This paper focuses on modeling and simulation efforts for a generic quad-rotor configuration typical of many commercial vehicles in use today. An overview of relevant off-nominal multi-rotor behaviors will be presented to define modeling goals and to identify the prediction capability lacking in simplified models of multi-rotor performance. A description of recent NASA wind tunnel testing of multi-rotor propulsion and airframe components will be presented illustrating important experimental and data acquisition methods, and a description of preliminary propulsion and airframe models will be presented. Lastly, examples of predicted off-nominal flight dynamics and trajectories from the simulation will be presented.
    Keywords: Aircraft Stability and Control
    Type: NF1676L-25779 , 2017 AIAA Aviation and Aeronautics Forum; Jun 05, 2017 - Jun 09, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-07-13
    Description: Aircraft dynamics characteristics can only be identified from flight data when the aircraft dynamics are excited sufficiently. A preliminary study was conducted into what types and levels of manual piloted control excitation would be required for accurate Real-Time Parameter IDentification (RTPID) results by commercial airline pilots. This includes assessing the practicality for the pilot to provide this excitation when cued, and to further understand if pilot inputs during various phases of flight provide sufficient excitation naturally. An operationally representative task was evaluated by 5 commercial airline pilots using the NASA Ice Contamination Effects Flight Training Device (ICEFTD). Results showed that it is practical to use manual pilot inputs only as a means of achieving good RTPID in all phases of flight and in flight turbulence conditions. All pilots were effective in satisfying excitation requirements when cued. Much of the time, cueing was not even necessary, as just performing the required task provided enough excitation for accurate RTPID estimation. Pilot opinion surveys reported that the additional control inputs required when prompted by the excitation cueing were easy to make, quickly mastered, and required minimal training.
    Keywords: Aircraft Stability and Control
    Type: NASA/CR-2017-219600
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Aircraft Stability and Control
    Type: M17-5798 , NESC GNC Technical Discipline Team Face-to-Face Meeting; Jan 23, 2017 - Jan 27, 2017; Mountain View, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-07-13
    Description: Three different types of maneuvers were designed to separately quantify pitch rate and angle of attack rate contributions to the nondimensional aerodynamic pitching moment coefficient. These maneuvers combined pilot inputs and automatic multisine excitations, and were own with the subscale T-2 and Bat-4 airplanes using the NASA AirSTAR flight test facility. Stability and control derivatives, in particular C(sub mq) and C(sub m alpha(.)) were accurately estimated from the flight test data. These maneuvers can be performed with many types of aircraft, and the results can be used to increase simulation prediction fidelity and facilitate more accurate comparisons with wind tunnel experiments or numerical investigations.
    Keywords: Aircraft Stability and Control
    Type: NF1676L-24686 , 2017 AIAA SciTech; Jan 09, 2017 - Jan 13, 2017; Dallas, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-07-13
    Description: While many widely accepted methods and techniques exist for validation and verification of traditional controllers, at this time no solutions have been accepted for Fuzzy Logic Controllers (FLCs). Due to the highly nonlinear nature of such systems, and the fact that developing a valid FLC does not require a mathematical model of the system, it is quite difficult to use conventional techniques to prove controller stability. Since safety-critical systems must be tested and verified to work as expected for all possible circumstances, the fact that FLC controllers cannot be tested to achieve such requirements poses limitations on the applications for such technology. Therefore, alternative methods for verification and validation of FLCs needs to be explored. In this study, a novel approach using formal verification methods to ensure the stability of a FLC is proposed. Main research challenges include specification of requirements for a complex system, conversion of a traditional FLC to a piecewise polynomial representation, and using a formal verification tool in a nonlinear solution space. Using the proposed architecture, the Fuzzy Logic Controller was found to always generate negative feedback, but inconclusive for Lyapunov stability.
    Keywords: Aircraft Stability and Control
    Type: ARC-E-DAA-TN32797 , SciTech 2017; Jan 09, 2017 - Jan 13, 2017; Grapevine, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-26
    Description: An aircraft control structure for drag management includes a nozzle structure configured to exhaust a swirling fluid stream. A plurality of swirl vanes are positioned within the nozzle structure, and an actuation subsystem is configured to cause the plurality of swirl vanes to move from a deployed state to a non-deployed state. In the non-deployed state, the plurality of swirl vanes are substantially flush with the inner surface of the nozzle structure. In the deployed state, the plurality of swirl vanes produce the swirling fluid stream.
    Keywords: Aircraft Stability and Control
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-07-13
    Description: As aircraft wings become much more flexible due to the use of light-weight composites material, adverse aerodynamics at off-design performance can result from changes in wing shapes due to aeroelastic deflections. Increased drag, hence increased fuel burn, is a potential consequence. Without means for aeroelastic compensation, the benefit of weight reduction from the use of light-weight material could be offset by less optimal aerodynamic performance at off-design flight conditions. Performance Adaptive Aeroelastic Wing (PAAW) technology can potentially address these technical challenges for future flexible wing transports. PAAW technology leverages multi-disciplinary solutions to maximize the aerodynamic performance payoff of future adaptive wing design, while addressing simultaneously operational constraints that can prevent the optimal aerodynamic performance from being realized. These operational constraints include reduced flutter margins, increased airframe responses to gust and maneuver loads, pilot handling qualities, and ride qualities. All of these constraints while seeking the optimal aerodynamic performance present themselves as a multi-objective flight control problem. The paper presents a multi-objective flight control approach based on a drag-cognizant optimal control method. A concept of virtual control, which was previously introduced, is implemented to address the pair-wise flap motion constraints imposed by the elastomer material. This method is shown to be able to satisfy the constraints. Real-time drag minimization control is considered to be an important consideration for PAAW technology. Drag minimization control has many technical challenges such as sensing and control. An initial outline of a real-time drag minimization control has already been developed and will be further investigated in the future. A simulation study of a multi-objective flight control for a flight path angle command with aeroelastic mode suppression and drag minimization demonstrates the effectiveness of the proposed solution. In-flight structural loads are also an important consideration. As wing flexibility increases, maneuver load and gust load responses can be significant and therefore can pose safety and flight control concerns. In this paper, we will extend the multi-objective flight control framework to include load alleviation control. The study will focus initially on maneuver load minimization control, and then subsequently will address gust load alleviation control in future work.
    Keywords: Aircraft Stability and Control
    Type: ARC-E-DAA-TN38210 , AIAA SciTech Forum; Jan 09, 2017 - Jan 13, 2017; Grapevine, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-07-13
    Description: Aeroelastic stability and control derivatives for the X-56A Multi-Utility Technology Testbed (MUTT), in the stiff-wing configuration, were estimated from flight test data using the output-error method. Practical aspects of the analysis are discussed. The orthogonal phase-optimized multisine inputs provided excellent data information for aeroelastic modeling. Consistent parameter estimates were determined using output error in both the frequency and time domains. The frequency domain analysis converged faster and was less sensitive to starting values for the model parameters, which was useful for determining the aeroelastic model structure and obtaining starting values for the time domain analysis. Including a modal description of the structure from a finite element model reduced the complexity of the estimation problem and improved the modeling results. Effects of reducing the model order on the short period stability and control derivatives were investigated.
    Keywords: Aircraft Stability and Control
    Type: NF1676L-24692 , AIAA SciTech 2017; Jan 09, 2017 - Jan 13, 2017; Dallas, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-13
    Description: A method for estimating dynamic model parameters from flight data with unknown time skews is described and demonstrated. The method combines data reconstruction, nonlinear optimization, and equation-error parameter estimation in the frequency domain to accurately estimate both dynamic model parameters and the relative time skews in the data. Data from a nonlinear F-16 aircraft simulation with realistic noise, instrumentation errors, and arbitrary time skews were used to demonstrate the approach. The approach was further evaluated using flight data from a subscale jet transport aircraft, where the measured data were known to have relative time skews. Comparison of modeling results obtained from time-skewed and time-synchronized data showed that the method accurately estimates both dynamic model parameters and relative time skew parameters from flight data with unknown time skews.
    Keywords: Aircraft Stability and Control
    Type: NF1676L-21730 , 2016 AIAA SciTech Forum and Exposition; Jan 04, 2016 - Jan 08, 2016; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: NASA is in the process of qualifying the mid-size Super Pressure Balloon (SPB) to provide constant density altitude flight for science investigations at polar and mid-latitudes. The status of the development of the 18.8 million cubic foot SPB capable of carrying one-tonne of science to 110,000 feet, will be given. In addition, the operating considerations such as launch sites, flight safety considerations, and recovery will be discussed.
    Keywords: Aircraft Stability and Control
    Type: GSFC-E-DAA-TN32079 , 2016 Scientific Ballooning Technologies Workshop; May 09, 2016 - May 11, 2016; Minneapolis, MN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-07-13
    Description: The NASA Airborne Subscale Transport Aircraft Research Unmanned Aerial System project's capabilities were expanded by updating the system design and concept of operations. The new remotely piloted airplane system design was flight tested to assess integrity and operational readiness of the design to perform flight research. The purpose of the system design is to improve aviation safety by providing a capability to validate, in high-risk conditions, technologies to prevent airplane loss of control. Two principal design requirements were to provide a high degree of reliability and that the new design provide a significant increase in test volume (relative to operations using the previous design). The motivation for increased test volume is to improve test efficiency and allow new test capabilities that were not possible with the previous design and concept of operations. Three successful test flights were conducted from runway 4-22 at NASA Goddard Space Flight Center's Wallops Flight Facility.
    Keywords: Aircraft Stability and Control
    Type: NF1676L-23006 , 2016 AIAA SciTech Conference; Jan 04, 2016 - Jan 08, 2016; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-07-13
    Description: Distributed engine control architecture presents a significant increase in complexity over traditional implementations when viewed from the perspective of system simulation and hardware design and test. Even if the overall function of the control scheme remains the same, the hardware implementation can have a significant effect on the overall system performance due to differences in the creation and flow of data between control elements. A Hardware-in-the-Loop (HIL) simulation system is under development at NASA Glenn Research Center that enables the exploration of these hardware dependent issues. The system is based on, but not limited to, the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k). This paper describes the step-by-step conversion from the self-contained baseline model to the hardware in the loop model, and the validation of each step. As the control model hardware fidelity was improved during HIL system development, benchmarking simulations were performed to verify that engine system performance characteristics remained the same. The results demonstrate the goal of the effort; the new HIL configurations have similar functionality and performance compared to the baseline C-MAPSS40k system.
    Keywords: Aircraft Stability and Control
    Type: GRC-E-DAA-TN28906 , AIAA SciTech 2016; Jan 04, 2016 - Jan 08, 2016; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-13
    Description: This paper considers an approach for modelling transport aircraft trajectories that can facilitate their rapid evaluation and modification, either en route or in terminal control areas, with the goal of efficiently making use of airspace and runways by a large population of vehicles without pairwise violation of separation criteria.
    Keywords: Aircraft Stability and Control
    Type: NF1676L-24516 , AIAA Aviation Technology, Integration, and Operations Conference; Jun 13, 2016 - Jun 17, 2016; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-13
    Description: A real-time method was demonstrated for determining accurate uncertainty levels of stability and control derivatives estimated using recursive least squares and time-domain data. The method uses a recursive formulation of the residual autocorrelation to account for colored residuals, which are routinely encountered in aircraft parameter estimation and change the predicted uncertainties. Simulation data and flight test data for a subscale jet transport aircraft were used to demonstrate the approach. Results showed that the corrected uncertainties matched the observed scatter in the parameter estimates, and did so more accurately than conventional uncertainty estimates that assume white residuals. Only small differences were observed between batch estimates and recursive estimates at the end of the maneuver. It was also demonstrated that the autocorrelation could be reduced to a small number of lags to minimize computation and memory storage requirements without significantly degrading the accuracy of predicted uncertainty levels.
    Keywords: Aircraft Stability and Control
    Type: NF1676L-21676 , AIAA 2016 SciTech Forum and Exposition; Jan 04, 2016 - Jan 08, 2016; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-07-13
    Description: Flight testing and modeling techniques were developed to accurately identify global nonlinear aerodynamic models for aircraft in real time. The techniques were developed and demonstrated during flight testing of a remotely-piloted subscale propeller-driven fixed-wing aircraft using flight test maneuvers designed to simulate a Learn-To-Fly scenario. Prediction testing was used to evaluate the quality of the global models identified in real time. The real-time global nonlinear aerodynamic modeling algorithm will be integrated and further tested with learning adaptive control and guidance for NASA Learn-To-Fly concept flight demonstrations.
    Keywords: Aircraft Stability and Control
    Type: NF1676L-21688 , 2016 AIAA SciTech Conference; Jan 04, 2016 - Jan 08, 2016; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-07-13
    Description: First steps have been taken to qualify a family of parafoil systems capable of increasing the survivability and reusability of high-altitude balloon payloads. The research is motivated by the common risk facing balloon payloads where expensive flight hardware can often land in inaccessible areas that make them difficult or impossible to recover. The Autonomously Navigated Experimental Lander (ANGEL) flight test introduced a commercial Guided Parachute Aerial Delivery System (GPADS) to a previously untested environment at 108,000ft MSL to determine its high-altitude survivability and capabilities. Following release, ANGEL descended under a drogue until approximately 25,000ft, at which point the drogue was jettisoned and the main parachute was deployed, commencing navigation. Multiple data acquisition platforms were used to characterize the return-to-point technology performance and help determine its suitability for returning future scientific payloads ranging from 180 to 10,000lbs to safer and more convenient landing locations. This report describes the test vehicle design, and summarizes the captured sensor data. Various post-flight analyses are used to quantify the system's performance, gondola load data, and serve as a reference point for subsequent missions.
    Keywords: Aircraft Stability and Control
    Type: GRC-E-DAA-TN28393 , AIAA SciTech 2016; Jan 04, 2016 - Jan 08, 2016; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-07-13
    Description: The paper presents an algorithm for control and safe landing of impaired multi-rotor drones when one or more motors fail simultaneously or in any sequence. It includes three main components: an identification block, a reconfigurable control block, and a decisions making block. The identification block monitors each motor load characteristics and the current drawn, based on which the failures are detected. The control block generates the required total thrust and three axis torques for the altitude, horizontal position and/or orientation control of the drone based on the time scale separation and nonlinear dynamic inversion. The horizontal displacement is controlled by modulating the roll and pitch angles. The decision making algorithm maps the total thrust and three torques into the individual motor thrusts based on the information provided by the identification block. The drone continues the mission execution as long as the number of functioning motors provide controllability of it. Otherwise, the controller is switched to the safe mode, which gives up the yaw control, commands a safe landing spot and descent rate while maintaining the horizontal attitude.
    Keywords: Aircraft Stability and Control
    Type: ARC-E-DAA-TN24294 , AIAA Science and Technology Forum and Exposition (SciTech 2016); Jan 04, 2016 - Jan 08, 2016; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-07-13
    Description: The study described in this paper had two objectives. The first objective was to investigate if a different weighting of heave motion components decomposed at the center of gravity, allowing for a higher fidelity of individual components, would result in pilot manual pitch control behavior and performance closer to that observed with full aircraft motion. The second objective was to investigate if decomposing the heave components at the aircraft's instantaneous center of rotation rather than at the center of gravity could result in additional improvements in heave motion fidelity. Twenty-one general aviation pilots performed a pitch attitude control task in an experiment conducted on the Vertical Motion Simulator at NASA Ames under different hexapod motion conditions. The large motion capability of the Vertical Motion Simulator also allowed for a full aircraft motion condition, which served as a baseline. The controlled dynamics were of a transport category aircraft trimmed close to the stall point. When the ratio of center of gravity pitch heave to center of gravity heave increased in the hexapod motion conditions, pilot manual control behavior and performance became increasingly more similar to what is observed with full aircraft motion. Pilot visual and motion gains significantly increased, while the visual lead time constant decreased. The pilot visual and motion time delays remained approximately constant and decreased, respectively. The neuromuscular damping and frequency both decreased, with their values more similar to what is observed with real aircraft motion when there was an equal weighting of the heave of the center of gravity and heave due to rotations about the center of gravity. In terms of open- loop performance, the disturbance and target crossover frequency increased and decreased, respectively, and their corresponding phase margins remained constant and increased, respectively. The decomposition point of the heave components only had limited effects on pilot manual control behavior and performance.
    Keywords: Aircraft Stability and Control
    Type: ARC-E-DAA-TN32614 , AIAA Aviation 2016 Conference; Jun 13, 2016 - Jun 17, 2016; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-12
    Description: Calculated numerical values for some aerodynamic terms and stability Derivatives for several different wings in unseparated inviscid incompressible flow were made using a discrete vortex method involving a limited number of horseshoe vortices. Both longitudinal and lateral-directional derivatives were calculated for steady conditions as well as for sinusoidal oscillatory motions. Variables included the number of vortices used and the rotation axis/moment center chordwise location. Frequencies considered were limited to the range of interest to vehicle dynamic stability (kb 〈.24 ). Comparisons of some calculated numerical results with experimental wind-tunnel measurements were in reasonable agreement in the low angle-of-attack range considering the differences existing between the mathematical representation and experimental wind-tunnel models tested. Of particular interest was the presence of induced drag for the oscillatory condition.
    Keywords: Aircraft Stability and Control
    Type: NASA/TM-2016-219349 , L-20759 , NF1676L-25593
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-13
    Description: A new formulation of the filter-error method for estimating aerodynamic parameters in nonlinear aircraft dynamic models during turbulence was developed and demonstrated. The approach uses an estimate of the measurement noise covariance to identify the model parameters, their uncertainties, and the process noise covariance, in a relaxation method analogous to the output-error method. Prior information on the model parameters and uncertainties can be supplied, and a post-estimation correction to the uncertainty was included to account for colored residuals not considered in the theory. No tuning parameters, needing adjustment by the analyst, are used in the estimation. The method was demonstrated in simulation using the NASA Generic Transport Model, then applied to the subscale T-2 jet-engine transport aircraft flight. Modeling results in different levels of turbulence were compared with results from time-domain output error and frequency- domain equation error methods to demonstrate the effectiveness of the approach.
    Keywords: Aircraft Stability and Control
    Type: NF1676L-20186 , AIAA Atmospheric Flight Mechanics Conference; Jun 22, 2015 - Jun 26, 2015; Dallas,TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-07-13
    Description: The implementation and evaluation of an efficient method for estimating safe aircraft maneuvering envelopes are discussed. A Bayesian approach is used to produce a deterministic algorithm for estimating aerodynamic system parameters from existing noisy sensor measurements, which are then used to estimate the trim envelope through efficient high- fidelity model-based computations of attainable equilibrium sets. The safe maneuverability limitations are extended beyond the trim envelope through a robust reachability analysis derived from an optimal control formulation. The trim and maneuvering envelope limits are then conveyed to pilots through three axes on the primary flight display. To evaluate the new display features, commercial airline crews flew multiple challenging approach and landing scenarios in the full motion Advanced Concepts Flight Simulator at NASA Ames Research Center, as part of a larger research initiative to investigate the impact on the energy state awareness of the crew. Results show that the additional display features have the potential to significantly improve situational awareness of the flight crew.
    Keywords: Aircraft Stability and Control
    Type: ARC-E-DAA-TN19341 , AIAA Infotech 2015; Jan 05, 2015 - Jan 09, 2015; Kissimmee, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Aircraft Stability and Control
    Type: AFRC-E-DAA-TN25157 , South Korean Delegration; Jul 16, 2015; Edwards AFB California; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-07-12
    Description: This report introduces a modeling and simulation tool for aeroservoelastic analysis of rectangular wings with trailing-edge control surfaces. The inputs to the code are planform design parameters such as wing span, aspect ratio, and number of control surfaces. Using this information, the generalized forces are computed using the doublet-lattice method. Using Roger's approximation, a rational function approximation is computed. The output, computed in a few seconds, is a state space aeroservoelastic model which can be used for analysis and control design. The tool is fully parameterized with default information so there is little required interaction with the model developer. All parameters can be easily modified if desired. The focus of this report is on tool presentation, verification, and validation. These processes are carried out in stages throughout the report. The rational function approximation is verified against computed generalized forces for a plate model. A model composed of finite element plates is compared to a modal analysis from commercial software and an independently conducted experimental ground vibration test analysis. Aeroservoelastic analysis is the ultimate goal of this tool, therefore, the flutter speed and frequency for a clamped plate are computed using damping-versus-velocity and frequency-versus-velocity analysis. The computational results are compared to a previously published computational analysis and wind-tunnel results for the same structure. A case study of a generic wing model with a single control surface is presented. Verification of the state space model is presented in comparison to damping-versus-velocity and frequency-versus-velocity analysis, including the analysis of the model in response to a 1-cos gust.
    Keywords: Aircraft Stability and Control
    Type: NASA/TM-2015-218875 , DFRC-E-DAA-TN25358
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-08-13
    Description: The X-56A Multi-Utility Technology Testbed is an experimental aircraft designed to study active control of flexible structures. The vehicle is easily reconfigured to allow for testing of different configurations. The vehicle is being used to study new sensor, actuator, modeling and controls technologies. These new technologies will allow for lighter vehicles and new configurations that exceed the efficiency currently achievable. A description of the vehicle and the current research efforts that it enables are presented.
    Keywords: Aircraft Stability and Control
    Type: AFRC-E-DAA-TN27228 , 2015 IFAR Young Researcher Conference; Oct 04, 2015 - Oct 10, 2015; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-08-28
    Description: A method and system are provided to weaken shock wave strength at leading edge surfaces of a vehicle in atmospheric flight. One or more flight-related attribute sensed along a vehicle's outer mold line are used to control the injection of a non-heated, non-plasma-producing gas into a local external flowfield of the vehicle from at least one leading-edge surface location along the vehicle's outer mold line. Pressure and/or mass flow rate of the gas so-injected is adjusted in order to cause a Rankine-Hugoniot Jump Condition along the vehicle's outer mold line to be violated.
    Keywords: Aircraft Stability and Control
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-07-13
    Description: A 2015 NASA Aeronautics Mission "Seedling" Proposal is described for a Severe-Environment UAV (SE-UAV) that can perform in-situ measurements in hazardous atmospheric conditions like lightning, volcanic ash and radiation. Specifically, this paper describes the design of a proof-of-concept vehicle and measurement system that can survive lightning attachment during flight operations into thunderstorms. Elements from three NASA centers draw together for the SE-UAV concept. 1) The NASA KSC Genesis UAV was developed in collaboration with the DARPA Nimbus program to measure electric field and X-rays present within thunderstorms. 2) A novel NASA LaRC fiber-optic sensor uses Faraday-effect polarization rotation to measure total lightning electric current on an air vehicle fuselage. 3) NASA AFRC's state-of-the-art Fiber Optics and Systems Integration Laboratory is envisioned to transition the Faraday system to a compact, light-weight, all-fiber design. The SE-UAV will provide in-flight lightning electric-current return stroke and recoil leader data, and serve as a platform for development of emerging sensors and new missions into hazardous environments. NASA's Aeronautics and Science Missions are interested in a capability to perform in-situ volcanic plume measurements and long-endurance UAV operations in various weather conditions. (Figure 1 shows an artist concept of a SE-UAV flying near a volcano.) This paper concludes with an overview of the NASA Aeronautics Strategic Vision, Programs, and how a SE-UAV is envisioned to impact them. The SE-UAV concept leverages high-value legacy research products into a new capability for NASA to fly a pathfinder UAV into hazardous conditions, and is presented in the SPIE DSS venue to explore teaming, collaboration and advocacy opportunities outside NASA.
    Keywords: Aircraft Stability and Control
    Type: SPIE Paper 9468-28 , NF1676L-21134 , SPIE DSS 2015 - Defense and Security Meeting; Apr 20, 2015 - Apr 24, 2015; Baltimore, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-07-13
    Description: This paper describes a transfer-of-training study performed in the NASA Ames Vertica lMotion Simulator. The purpose of the study was to investigate the effect of false tilt cues on training and transfer of training of manual roll control skills. Of specific interest were the skills needed to control unstable roll dynamics of a mid-size transport aircraft close to the stall point. Nineteen general aviation pilots trained on a roll control task with one of three motion conditions: no motion, roll motion only, or reduced coordinated roll motion. All pilots transferred to full coordinated roll motion in the transfer session. A novel multimodal pilot model identification technique was successfully applied to characterize how pilots' use of visual and motion cues changed over the course of training and after transfer. Pilots who trained with uncoordinated roll motion had significantly higher performance during training and after transfer, even though they experienced the false tilt cues. Furthermore, pilot control behavior significantly changed during the two sessions, as indicated by increasing visual and motion gains, and decreasing lead time constants. Pilots training without motion showed higher learning rates after transfer to the full coordinated roll motion case.
    Keywords: Aircraft Stability and Control
    Type: AIAA Paper 2015-0655 , ARC-E-DAA-TN20112 , AIAA SciTech 2015; Jan 05, 2015 - Jan 09, 2015; Kissimmee, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-13
    Description: Safety of unmanned aerial systems (UAS) is paramount, but the large number of dynamically changing controller parameters makes it hard to determine if the system is currently stable, and the time before loss of control if not. We propose a hierarchical statistical model using Treed Gaussian Processes to predict (i) whether a flight will be stable (success) or become unstable (failure), (ii) the time-to-failure if unstable, and (iii) time series outputs for flight variables. We first classify the current flight input into success or failure types, and then use separate models for each class to predict the time-to-failure and time series outputs. As different inputs may cause failures at different times, we have to model variable length output curves. We use a basis representation for curves and learn the mappings from input to basis coefficients. We demonstrate the effectiveness of our prediction methods on a NASA neuro-adaptive flight control system.
    Keywords: Aircraft Stability and Control
    Type: ARC-E-DAA-TN23968 , Society for Industrial and Applied Mathematics (SIAM) Conference on Control and Its Applications; Jul 08, 2015 - Jul 10, 2015; Paris; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-12
    Description: This report documents a case study on the application of Reliability Engineering techniques to achieve an optimal balance between performance and robustness by tuning the functional parameters of a complex non-linear control system. For complex systems with intricate and non-linear patterns of interaction between system components, analytical derivation of a mathematical model of system performance and robustness in terms of functional parameters may not be feasible or cost-effective. The demonstrated approach is simple, structured, effective, repeatable, and cost and time efficient. This general approach is suitable for a wide range of systems.
    Keywords: Aircraft Stability and Control
    Type: NASA/TM-2015-218795 , L-20574 , NF1676L-21781
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-05-25
    Description: The Efficient Descent Advisor (EDA) controller automation tool generates trajectory-based speed, path, and altitude-profile advisories to facilitate efficient, continuous descents into congested terminal airspace. While prior field trials have assessed the trajectory-prediction accuracy for large jet (i.e., Boeing and Airbus) types, smaller (i.e., regional and business) jet types present unique challenges involving different descent procedures and Flight Management System (FMS) capabilities. A small-jet field trial was conducted at Denver in the fall of 2010 with the objective of measuring trajectory prediction accuracy and quantifying the primary sources of error. This paper uses data collected onboard a Bombardier Global 5000 test aircraft to quantify the size and sources of trajectory prediction error. Error sources were quantified for the 44 runs by incrementally replacing predicted data with data collected onboard the aircraft and measuring the effect on time error. Results for en-route descents, from prior to top of descent to the meter fix 60-120 nmi downstream, indicate that the aircraft arrived an average 15 seconds earlier than predicted, with a standard deviation of 10 seconds. Target Mach and CAS deceleration were found to be the two largest error sources. If CAS deceleration error was reduced using a typical, more predictable level flight deceleration then the arrival time prediction error in 2010 would be on par with a 2009 flight trial of Airbus and Boeing revenue flights. Four of the error sources, tracker jumps, CAS deceleration, target Mach, and path distance, lend themselves to significant reductions with modest to no changes to ATC automation andor procedures. Wind error and its impact on arrival time error was significantly reduced in 2010 compared to a 1994 flight test using NASAs Boeing 737 test aircraft.
    Keywords: Aircraft Stability and Control
    Type: NASA/TM-2014-218341 , ARC-E-DAA-TN15102
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-07-13
    Description: This paper introduces a modeling and simulation tool for aeroservoelastic analysis of rectangular wings with trailing edge control surfaces. The inputs to the code are planform design parameters such as wing span, aspect ratio and number of control surfaces. A doublet lattice approach is taken to compute generalized forces. A rational function approximation is computed. The output, computed in a few seconds, is a state space aeroservoelastic model which can be used for analysis and control design. The tool is fully parameterized with default information so there is little required interaction with the model developer. Although, all parameters can be easily modified if desired.The focus of this paper is on tool presentation, verification and validation. This process is carried out in stages throughout the paper. The rational function approximation is verified against computed generalized forces for a plate model. A model composed of finite element plates is compared to a modal analysis from commercial software and an independently conducted experimental ground vibration test analysis. Aeroservoelastic analysis is the ultimate goal of this tool. Therefore the flutter speed and frequency for a clamped plate are computed using V-g and V-f analysis. The computational results are compared to a previously published computational analysis and wind tunnel results for the same structure. Finally a case study of a generic wing model with a single control surface is presented. Verification of the state space model is presented in comparison to V-g and V-f analysis. This also includes the analysis of the model in response to a 1-cos gust.
    Keywords: Aircraft Stability and Control
    Type: AFRC-E-DAA-TN17312 , AIAA SciTech 2015- Modeling and Simulation Technologies Conference; Jan 05, 2015 - Jan 09, 2015; Kissimmee, Fl; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-20
    Description: This paper presents a normalization based modified reference model adaptive control method for multi-input multi-output (MIMO) uncertain systems in the presence of bounded external disturbances. It has been shown that desired tracking performance can be achieved for the system's output and input signals with the proper choice of design parameters. The resulting adaptive control signal satisfies a second order linear time invariant (LTI) system, which is the effect of the normalization term in the adaptive laws. This LTI system provides the guideline for the design parameter selection. The theoretical findings are confirmed via a simulation example.
    Keywords: Aircraft Stability and Control
    Type: ARC-E-DAA-TN17809 , IEEE Conference on Decision and Control (CDC); Dec 15, 2014 - Dec 17, 2014; Los Angeles, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-13
    Description: In June 2013, NASA and the U.S. Army jointly conducted a simulation experiment in the NASA-Ames Vertical Motion Simulator that examined and quantified the effects of limited-authority control system augmentation on handling qualities and task performance in both good and degraded visual environments (DVEs). The vehicle model used for the experiment was the OH-58D with similar size, weight and performance, and the same 4-blade rotor system as the Bell 407 civilian helicopter that is commonly used for medical evacuation and emergency medical services. The control systems investigated as part of this study included the baseline aircraft Rate Command system, a short-term Attitude Command/Attitude Hold system that uses lagged-rate feedback to provide a short-term attitude response, Modernized Control Laws that provide an Attitude Command/Attitude Hold control response type, and Modernized Control Laws with an additional Position Hold function. Evaluation tasks included the ADS-33 Hover, Sidestep, Acceleration/Deceleration, and Pirouette Mission Task Elements, as well as a new proposed Emergency Medical Services task that includes an approach and landing at a minimally prepared remote landing site. Degraded visual environments were simulated with night vision goggles and an unaided night scene. A total of nine experimental test pilots participated in the four-week simulation experiment. Data recorded during the evaluation included Cooper-Harper handling qualities ratings, Bedford Workload scale ratings, and task performance. The Usable Cue Environment (UCE) was measured for this simulation experiment, and found to be UCE equals 1 in good visual environments and UCE equals 2 in degraded visual environments with night vision goggles. Results showed that handling qualities ratings were improved with a control system providing short-term attitude response over a rate command system, although the improvements were not sufficient to produce Level 1 handling qualities in degraded visual environments. Results for an Attitude Command/Attitude Hold control system showed that borderline Level 1 handling qualities could be achieved in degraded visual environments, and the 10 percent authority stability augmentation system was adequate to obtain these handling qualities ratings.
    Keywords: Aircraft Stability and Control
    Type: ARC-E-DAA-TN13978 , AHS Log No. 1052 , AHS (American Helicopter Society) Annual Forum and Technology Display (Forum 70); May 20, 2014 - May 22, 2014; Montreal, QC; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-12
    Description: Flight research has shown the effectiveness of adaptive flight controls for improving aircraft safety and performance in the presence of uncertainties. The National Aeronautics and Space Administration's (NASA)'s Integrated Resilient Aircraft Control (IRAC) project designed and conducted a series of flight experiments to study the impact of variations in adaptive controller design complexity on performance and handling qualities. A novel complexity metric was devised to compare the degrees of simplicity achieved in three variations of a model reference adaptive controller (MRAC) for NASA's F-18 (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) Full-Scale Advanced Systems Testbed (Gen-2A) aircraft. The complexity measures of these controllers are also compared to that of an earlier MRAC design for NASA's Intelligent Flight Control System (IFCS) project and flown on a highly modified F-15 aircraft (McDonnell Douglas, now The Boeing Company, Chicago, Illinois). Pilot comments during the IRAC research flights pointed to the importance of workload on handling qualities ratings for failure and damage scenarios. Modifications to existing pilot aggressiveness and duty cycle metrics are presented and applied to the IRAC controllers. Finally, while adaptive controllers may alleviate the effects of failures or damage on an aircraft's handling qualities, they also have the potential to introduce annoying changes to the flight dynamics or to the operation of aircraft systems. A nuisance rating scale is presented for the categorization of nuisance side-effects of adaptive controllers.
    Keywords: Aircraft Stability and Control
    Type: DFRC-E-DAA-TN10945 , NASA/TM-2014-216640
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-13
    Description: A generic model of the aerodynamic coefficients was developed using wind tunnel databases for eight different aircraft and multivariate orthogonal functions. For each database and each coefficient, models were determined using polynomials expanded about the state and control variables, and an othgonalization procedure. A predicted squared-error criterion was used to automatically select the model terms. Modeling terms picked in at least half of the analyses, which totalled 45 terms, were retained to form the generic nonlinear aerodynamic (GNA) model. Least squares was then used to estimate the model parameters and associated uncertainty that best fit the GNA model to each database. Nonlinear flight simulations were used to demonstrate that the GNA model produces accurate trim solutions, local behavior (modal frequencies and damping ratios), and global dynamic behavior (91% accurate state histories and 80% accurate aerodynamic coefficient histories) under large-amplitude excitation. This compact aerodynamics model can be used to decrease on-board memory storage requirements, quickly change conceptual aircraft models, provide smooth analytical functions for control and optimization applications, and facilitate real-time parametric system identification.
    Keywords: Aircraft Stability and Control
    Type: AIAA Paper 2014-0542 , NF1676L-16662 , AIAA Atmospheric Flight Mechanics Conference; Jan 13, 2014 - Jan 17, 2014; National Harbor, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-13
    Description: The paper presents a certainty equivalence output feedback backstepping adaptive control design method for the systems of any relative degree with unmatched uncertainties without over-parametrization. It uses a fast prediction model to estimate the unknown parameters, which is independent of the control design. It is shown that the system's input and output tracking errors can be systematically decreased by the proper choice of the design parameters. The approach is applied to aerospace control problems and tested in numerical simulations.
    Keywords: Aircraft Stability and Control
    Type: ARC-E-DAA-TN12362 , SciTech 2014; Jan 13, 2014 - Jan 17, 2014; National Harbor, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-13
    Description: The X-56A aircraft is a remotely-piloted aircraft with flutter modes intentionally designed into the flight envelope. The X-56A program must demonstrate flight control while suppressing all unstable modes. A previous X-56A model study demonstrated a distributed-sensing-based active shape and active flutter suppression controller. The controller relies on an estimator which is sensitive to bias. This estimator is improved herein, and a real-time robust estimator is derived and demonstrated on 1530 fiber optic sensors. It is shown in simulation that the estimator can simultaneously reject 230 worst-case fiber optic sensor failures automatically. These sensor failures include locations with high leverage (or importance). To reduce the impact of leverage outliers, concentration based on a Mahalanobis trim criterion is introduced. A redescending M-estimator with Tukey bisquare weights is used to improve location and dispersion estimates within each concentration step in the presence of asymmetry (or leverage). A dynamic simulation is used to compare the concentrated robust estimator to a state-of-the-art real-time robust multivariate estimator. The estimators support a previously-derived mu-optimal shape controller. It is found that during the failure scenario, the concentrated modal estimator keeps the system stable.
    Keywords: Aircraft Stability and Control
    Type: DFRC-E-DAA-TN14268 , AIAA Atmospheric Flight Mechanics Conference; Jun 16, 2014 - Jun 20, 2014; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-13
    Description: The Morpheus Lander is a vertical takeoff and landing test bed vehicle developed to demonstrate the system performance of the Guidance, Navigation and Control (GN&C) system capability for the integrated autonomous landing and hazard avoidance system hardware and software. The Morpheus flight control system design must be robust to various mission profiles. This paper presents a design methodology for employing numerical optimization to develop the Morpheus flight control system. The design objectives include attitude tracking accuracy and robust stability with respect to rigid body dynamics and propellant slosh. Under the assumption that the Morpheus time-varying dynamics and control system can be frozen over a short period of time, the flight controllers are designed to stabilize all selected frozen-time control systems in the presence of parametric uncertainty. Both control gains in the inner attitude control loop and guidance gains in the outer position control loop are designed to maximize the vehicle performance while ensuring robustness. The flight control system designs provided herein have been demonstrated to provide stable control systems in both Draper Ares Stability Analysis Tool (ASAT) and the NASA/JSC Trick-based Morpheus time domain simulation.
    Keywords: Aircraft Stability and Control
    Type: JSC-CN-31053 , AIAA/AAS Astrodynamics Specialist Conference; Aug 04, 2014 - Aug 07, 2014; San Diego, CA; United States|AIAA Space 2014; Aug 04, 2014 - Aug 07, 2014; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-13
    Description: As part of the NASA Vehicle Systems Safety Technologies (VSST), Assuring Safe and Effective Aircraft Control Under Hazardous Conditions (Technical Challenge #3), an effort is underway within Boeing Research and Technology (BR&T) to address Advanced Modeling and Uncertainty Quantification for Flight Dynamics (VSST1-7). The scope of the effort is to develop and evaluate advanced multidisciplinary flight dynamics modeling techniques, including integrated uncertainties, to facilitate higher fidelity response characterization of current and future aircraft configurations approaching and during loss-of-control conditions. This approach is to incorporate multiple flight dynamics modeling methods for aerodynamics, structures, and propulsion, including experimental, computational, and analytical. Also to be included are techniques for data integration and uncertainty characterization and quantification. This research shall introduce new and updated multidisciplinary modeling and simulation technologies designed to improve the ability to characterize airplane response in off-nominal flight conditions. The research shall also introduce new techniques for uncertainty modeling that will provide a unified database model comprised of multiple sources, as well as an uncertainty bounds database for each data source such that a full vehicle uncertainty analysis is possible even when approaching or beyond Loss of Control boundaries. Methodologies developed as part of this research shall be instrumental in predicting and mitigating loss of control precursors and events directly linked to causal and contributing factors, such as stall, failures, damage, or icing. The tasks will include utilizing the BR&T Water Tunnel to collect static and dynamic data to be compared to the GTM extended WT database, characterizing flight dynamics in off-nominal conditions, developing tools for structural load estimation under dynamic conditions, devising methods for integrating various modeling elements into a real-time simulation capability, generating techniques for uncertainty modeling that draw data from multiple modeling sources, and providing a unified database model that includes nominal plus increments for each flight condition. This paper presents status of testing in the BR&T water tunnel and analysis of the resulting data and efforts to characterize these data using alternative modeling methods. Program challenges and issues are also presented.
    Keywords: Aircraft Stability and Control
    Type: AIAA Paper 2014-0035 , NF1676L-17980 , Science and Technology Forum and Exposition (SciTech2014); Jan 13, 2014 - Jan 17, 2014; National Harbor, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-13
    Description: Flying near the edge of the safe operating envelope is an inherently unsafe proposition. Edge of the envelope here implies that small changes or disturbances in system state or system dynamics can take the system out of the safe envelope in a short time and could result in loss-of-control events. This study evaluated approaches to predicting loss-of-control safety margins as the aircraft gets closer to the edge of the safe operating envelope. The goal of the approach is to provide the pilot aural, visual, and tactile cues focused on maintaining the pilot's control action within predicted loss-of-control boundaries. Our predictive architecture combines quantitative loss-of-control boundaries, an adaptive prediction method to estimate in real-time Markov model parameters and associated stability margins, and a real-time data-based predictive control margins estimation algorithm. The combined architecture is applied to a nonlinear transport class aircraft. Evaluations of various feedback cues using both test and commercial pilots in the NASA Ames Vertical Motion-base Simulator (VMS) were conducted in the summer of 2013. The paper presents results of this evaluation focused on effectiveness of these approaches and the cues in preventing the pilots from entering a loss-of-control event.
    Keywords: Aircraft Stability and Control
    Type: ARC-E-DAA-TN12490 , SciTech 2014; Jan 13, 2014 - Jan 17, 2014; National Harbor, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-13
    Description: Numerical simulations of fluid flow and collection efficiency for a Science Engineering Associates (SEA) multi-element probe are presented. Simulation of the flow field was produced using the Glenn-HT Navier-Stokes solver. Three dimensional unsteady results were produced and then time averaged for the collection efficiency results. Three grid densities were investigated to enable an assessment of grid dependence. Collection efficiencies were generated for three spherical particle sizes, 100, 20, and 5 micron in diameter, using the codes LEWICE3D and LEWICE2D. The free stream Mach number was 0.27, representing a velocity of approximately 86 ms. It was observed that a reduction in velocity of about 15-20 occurred as the flow entered the shroud of the probe.Collection efficiency results indicate a reduction in collection efficiency as particle size is reduced. The reduction with particle size is expected, however, the results tended to be lower than previous results generated for isolated two-dimensional elements. The deviation from the two-dimensional results is more pronounced for the smaller particles and is likely due to the effect of the protective shroud.
    Keywords: Aircraft Stability and Control
    Type: GRC-E-DAA-TN15808 , AIAA Aviation 2014; Jun 16, 2014 - Jun 20, 2014; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-13
    Description: Control of complex Vertical Take-Off and Landing (VTOL) aircraft traversing from hovering to wing born flight mode and back poses notoriously difficult modeling, simulation, control, and flight-testing challenges. This paper provides an overview of the techniques and advances required to develop the GL-10 tilt-wing, tilt-tail, long endurance, VTOL aircraft control system. The GL-10 prototype's unusual and complex configuration requires application of state-of-the-art techniques and some significant advances in wind tunnel infrastructure automation, efficient Design Of Experiments (DOE) tunnel test techniques, modeling, multi-body equations of motion, multi-body actuator models, simulation, control algorithm design, and flight test avionics, testing, and analysis. The following compendium surveys key disciplines required to develop an effective control system for this challenging vehicle in this on-going effort.
    Keywords: Aircraft Stability and Control
    Type: AIAA Paper 2014-2999 , NF1676L-17842 , AIAA Aviation Technology, Integration and Operations (ATIO) Conference; Jun 16, 2014 - Jun 20, 2014; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-08-26
    Description: This is the story of a unique research airplane-unique because the airplane and the programs that supported it did things that have never been done before or since. The major purpose of this book is to tell the story of NASA's role in the X-31 program. In order to do this, though, it is necessary to put NASA's participation in perspective with the other phases of the program, namely the genesis of the concept, the design and fabrication of the aircraft, the initial flight testing done without NASA participation, the flight testing done with NASA participation, and the subsequent Navy X-31 Vectoring ESTOL (extreme short takeoff and landings) Control Operation Research (VECTOR) program.
    Keywords: Aircraft Stability and Control
    Type: NASA/SP-2014-613 , HQ-STI-13-153
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-19
    Description: The AMELIA Cruise-Efficient Short Take-off and Landing (CESTOL) configuration concept was developed to meet future requirements of reduced field length, noise, and fuel burn by researchers at Cal Poly, San Luis Obispo and Georgia Tech Research Institute under sponsorship by the NASA Fundamental Aeronautics Program (FAP), Subsonic Fixed Wing Project. The novel configuration includes leading- and trailing-edge circulation control wing (CCW), over-wing podded turbine propulsion simulation (TPS). Extensive aerodynamic measurements of forces, surfaces pressures, and wing surface skin friction measurements were recently measured over a wide range of test conditions in the Arnold Engineering Development Center(AEDC) National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Ft Wind Tunnel. Acoustic measurements of the model were also acquired for each configuration with 7 fixed microphones on a line under the left wing, and with a 48-element, 40-inch diameter phased microphone array under the right wing. This presentation will discuss acoustic characteristics of the CCW system for a variety of tunnel speeds (0 to 120 kts), model configurations (leading edge(LE) and/or trailing-edge(TE) slot blowing, and orientations (incidence and yaw) based on acoustic measurements acquired concurrently with the aerodynamic measurements. The flow coefficient, Cmu= mVSLOT/qSW varied from 0 to 0.88 at 40 kts, and from 0 to 0.15 at 120 kts. Here m is the slot mass flow rate, VSLOT is the slot exit velocity, q is dynamic pressure, and SW is wing surface area. Directivities at selected 1/3 octave bands will be compared with comparable measurements of a 2-D wing at GTRI, as will as microphone array near-field measurements of the right wing at maximum flow rate. The presentation will include discussion of acoustic sensor calibrations as well as characterization of the wind tunnel background noise environment.
    Keywords: Aircraft Stability and Control
    Type: ARC-E-DAA-TN5354 , 51st AIAA Aerospace Sciences Meeting; Jan 07, 2013 - Jan 10, 2013; Grapevine, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-13
    Description: This paper describes the maturation of a control allocation technique designed to assist pilots in the recovery from pilot induced oscillations (PIOs). The Control Allocation technique to recover from Pilot Induced Oscillations (CAPIO) is designed to enable next generation high efficiency aircraft designs. Energy efficient next generation aircraft require feedback control strategies that will enable lowering the actuator rate limit requirements for optimal airframe design. One of the common issues flying with actuator rate limits is PIOs caused by the phase lag between the pilot inputs and control surface response. CAPIO utilizes real-time optimization for control allocation to eliminate phase lag in the system caused by control surface rate limiting. System impacts of the control allocator were assessed through a piloted simulation evaluation of a non-linear aircraft simulation in the NASA Ames Vertical Motion Simulator. Results indicate that CAPIO helps reduce oscillatory behavior, including the severity and duration of PIOs, introduced by control surface rate limiting.
    Keywords: Aircraft Stability and Control
    Type: ARC-E-DAA-TN10070 , AIAA Guidance, Navigation, and Control Conference; Aug 19, 2013 - Aug 22, 2013; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-13
    Description: A robust control law design methodology is presented to stabilize the X-56A model and command its wing shape. The X-56A was purposely designed to experience flutter modes in its flight envelope. The methodology introduces three phases: the controller design phase, the modal filter design phase, and the reference signal design phase. A mu-optimal controller is designed and made robust to speed and parameter variations. A conversion technique is presented for generating sensor strain modes from sensor deformation mode shapes. The sensor modes are utilized for modal filtering and simulating fiber optic sensors for feedback to the controller. To generate appropriate virtual deformation reference signals, rigid-body corrections are introduced to the deformation mode shapes. After successful completion of the phases, virtual deformation control is demonstrated. The wing is deformed and it is shown that angle-of-attack changes occur which could potentially be used to an advantage. The X-56A program must demonstrate active flutter suppression. It is shown that the virtual deformation controller can achieve active flutter suppression on the X-56A simulation model.
    Keywords: Aircraft Stability and Control
    Type: DFRC-E-DAA-TN10283 , AIAA Atmospheric Flight Mechanics Conference; Aug 19, 2013 - Aug 22, 2013; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-13
    Description: The Orion Multi-Purpose Crew Vehicle (MPCV) will perform a flight test known as Exploration Flight Test-1 (EFT-1) currently scheduled for 2014. One of the primary functions of this test is to exercise all of the important Guidance, Navigation, Control (GN&C), and Propulsion systems, along with the flight software for future flights. The Descent and Landing segment of the flight is governed by the requirements levied on the GN&C system by the Landing and Recovery System (LRS). The LRS is a complex system of parachutes and flight control modes that ensure that the Orion MPCV safely lands at its designated target in the Pacific Ocean. The Descent and Landing segment begins with the jettisoning of the Forward Bay Cover and concludes with sensing touchdown. This paper discusses the requirements, design, testing, analysis and performance of the current EFT-1 Descent and Landing Triggers flight software.
    Keywords: Aircraft Stability and Control
    Type: JSC-CN-27920 , 36th Annual AAS Guidance and Control Conference; Feb 01, 2013 - Feb 06, 2013; Breckenridge, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-13
    Description: A method for transfer function identification, including both model structure determination and parameter estimation, was developed and demonstrated. The approach uses orthogonal modeling functions generated from frequency domain data obtained by Fourier transformation of time series data. The method was applied to simulation data to identify continuous-time transfer function models and unsteady aerodynamic models. Model fit error, estimated model parameters, and the associated uncertainties were used to show the effectiveness of the method for identifying accurate transfer function models from noisy data.
    Keywords: Aircraft Stability and Control
    Type: NF1676L-15987 , Atmospheric Flight Mechanics Conference; Aug 19, 2013 - Aug 22, 2013; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-13
    Description: Flight test and modeling techniques were developed for efficiently identifying global aerodynamic models that can be used to accurately simulate stall, upset, and recovery on large transport airplanes. The techniques were developed and validated in a high-fidelity fixed-base flight simulator using a wind-tunnel aerodynamic database, realistic sensor characteristics, and a realistic flight deck representative of a large transport aircraft. Results demonstrated that aerodynamic models for stall, upset, and recovery can be identified rapidly and accurately using relatively simple piloted flight test maneuvers. Stall maneuver predictions and comparisons of identified aerodynamic models with data from the underlying simulation aerodynamic database were used to validate the techniques.
    Keywords: Aircraft Stability and Control
    Type: NF1676L-15959 , Atmospheric Flight Mechanics Conference; Aug 19, 2013 - Aug 22, 2013; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-13
    Description: Active Flow Control (AFC) experiments performed at the Caltech Lucas Adaptive Wall Wind Tunnel on a 12%-thick, generic vertical tail model indicated that sweeping jets emanating from the trailing edge (TE) of the vertical stabilizer significantly increased the side force coefficient for a wide range of rudder deflection angles and yaw angles at free-stream velocities approaching takeoff rotation speed. The results indicated that 2% blowing momentum coefficient (C(sub mu) increased the side force in excess of 50% at the maximum conventional rudder deflection angle in the absence of yaw. Even C(sub mu) = 0.5% increased the side force in excess of 20% under these conditions. This effort was sponsored by the NASA Environmentally Responsible Aviation (ERA) project and the successful demonstration of this flow-control application could have far reaching implications. It could lead to effective applications of AFC technologies on key aircraft control surfaces and lift enhancing devices (flaps) that would aid in reduction of fuel consumption through a decrease in size and weight of wings and control surfaces or a reduction of the noise footprint due to steeper climb and descent.
    Keywords: Aircraft Stability and Control
    Type: AIAA Paper 2013-0411 , NF1676L-15910 , 51st AIAA Aerospace Sciences Meeting; Jan 07, 2013 - Jan 10, 2013; Grapevine, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-12
    Description: Integrated structural control of extremely lightweight vehicles will open a new paradigm and allow for performance increases. The X-56A Multi-Utility Technology Testbed (MUTT) vehicle will be used to evaluate and advance the state-of-the-art in modeling and control of this new class of aerospace vehicle.
    Keywords: Aircraft Stability and Control
    Type: DFRC-E-DAA-TN7649
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-12
    Description: Numerical simulations to assess the effectiveness of Generalized Predictive Control (GPC) for active control of dynamic systems having rigid-body modes are presented. GPC is a linear, time-invariant, multi-input/multi-output predictive control method that uses an ARX model to characterize the system and to design the controller. Although the method can accommodate both embedded (implicit) and explicit feedforward paths for incorporation of disturbance effects, only the case of embedded feedforward in which the disturbances are assumed to be unknown is considered here. Results from numerical simulations using mathematical models of both a free-free three-degree-of-freedom mass-spring-dashpot system and the XV-15 tiltrotor research aircraft are presented. In regulation mode operation, which calls for zero system response in the presence of disturbances, the simulations showed reductions of nearly 100%. In tracking mode operations, where the system is commanded to follow a specified path, the GPC controllers produced the desired responses, even in the presence of disturbances.
    Keywords: Aircraft Stability and Control
    Type: NASA/TM-2013-217976 , NF1676L-15781 , L-20211
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-13
    Description: Integration of the Control Allocation technique to recover from Pilot Induced Oscillations (CAPIO) System into the control system of a Short Takeoff and Landing Mobility Concept Vehicle simulation presents a challenge because the CAPIO formulation requires that constrained optimization problems be solved at the controller operating frequency. We present a solution that utilizes a modified version of the well-known L-BFGS-B solver. Despite the iterative nature of the solver, the method is seen to converge in real time with sufficient reliability to support three weeks of piloted runs at the NASA Ames Vertical Motion Simulator (VMS) facility. The results of the optimization are seen to be excellent in the vast majority of real-time frames. Deficiencies in the quality of the results in some frames are shown to be improvable with simple termination criteria adjustments, though more real-time optimization iterations would be required.
    Keywords: Aircraft Stability and Control
    Type: ARC-E-DAA-TN10068 , AIAA Guidance, Navigation, and Control Conference; Aug 19, 2013 - Aug 22, 2013; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-07-13
    Description: Air traffic management simulations conducted in the Airspace Operations Laboratory at NASA Ames Research Center have addressed the integration of trajectory-based arrival-management automation, controller tools, and Flight-Deck Interval Management avionics to enable Continuous Descent Operations (CDOs) during periods of sustained high traffic demand. The simulations are devoted to maturing the integrated system for field demonstration, and refining the controller tools, clearance phraseology, and procedures specified in the associated concept of operations. The results indicate a variety of factors impact the concept's safety and viability from a controller's perspective, including en-route preconditioning of arrival flows, useable clearance phraseology, and the characteristics of airspace, routes, and traffic-management methods in use at a particular site. Clear understanding of automation behavior and required shifts in roles and responsibilities is important for controller acceptance and realizing potential benefits. This paper discusses the simulations, drawing parallels with results from related European efforts. The most recent study found en-route controllers can effectively precondition arrival flows, which significantly improved route conformance during CDOs. Controllers found the tools acceptable, in line with previous studies.
    Keywords: Aircraft Stability and Control
    Type: ARC-E-DAA-TN7723 , USA/Europe Air Traffic Management R&D Seminar (ATC2013); Jun 10, 2013; Chicago, IL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-13
    Description: The NASA Langley Research Center Cockpit Motion Facility (CMF) was used to conduct a piloted simulation assessment of the impact of flexible structures on flying qualities. The CMF was used because of its relatively high bandwidth, six degree-of-freedom motion capability. Previous studies assessed and attempted to mitigate the effects of multiple dynamic aeroservoelastic modes (DASE). Those results indicated problems existed, but the specific cause and effect was difficult to ascertain. The goal of this study was to identify specific DASE frequencies, damping ratios, and gains that cause degradation in handling qualities. A generic aircraft simulation was developed and designed to have Cooper-Harper Level 1 handling qualities when flown without DASE models. A test matrix of thirty-six DASE modes was implemented. The modes had frequencies ranging from 1 to 3.5 Hz and were applied to each axis independently. Each mode consisted of a single axis, frequency, damping, and gain, and was evaluated individually by six subject pilots with test pilot backgrounds. Analysis completed to date suggests that a number of the DASE models evaluated degrade the handling qualities of this class of aircraft to an uncontrollable condition.
    Keywords: Aircraft Stability and Control
    Type: NF1676L-16024 , AIAA Atmospheric Flight Mechanics Conference; Aug 19, 2013 - Aug 22, 2013; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-13
    Description: Frequency response estimation results are presented using piloted inputs and a real-time estimation method recently developed for multisine inputs. A nonlinear simulation of the F-16 and a Piper Saratoga research aircraft were subjected to different piloted test inputs while the short period stabilator/elevator to pitch rate frequency response was estimated. Results show that the method can produce accurate results using wide-band piloted inputs instead of multisines. A new metric is introduced for evaluating which data points to include in the analysis and recommendations are provided for applying this method with piloted inputs.
    Keywords: Aircraft Stability and Control
    Type: NF1676L-15957 , AIAA Atmospheric Flight Mechanics Conference; Aug 19, 2013 - Aug 22, 2013; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Aircraft Stability and Control
    Type: JPL Division 326 Weekly Seminar; Aug 15, 2015; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-13
    Description: Maximizing turbine up-time and reducing maintenance costs are key technology drivers for wind turbine operators. Components within wind turbines are subject to considerable stresses due to unpredictable environmental conditions resulting from rapidly changing local dynamics. In that context, systems health management has the aim to assess the state-of-health of components within a wind turbine, to estimate remaining life, and to aid in autonomous decision-making to minimize damage to the turbine. Advanced contingency control is one way to enable autonomous decision-making by providing the mechanism to enable safe and efficient turbine operation. The work reported herein explores the integration of condition monitoring of wind turbines with contingency control to balance the trade-offs between maintaining system health and energy capture. The contingency control involves de-rating the generator operating point to achieve reduced loads on the wind turbine. Results are demonstrated using a high fidelity simulator of a utility-scale wind turbine.
    Keywords: Aircraft Stability and Control
    Type: ARC-E-DAA-TN11294 , International Conference on Future Technologies for Wind Energy; Oct 07, 2013 - Oct 09, 2013; Laramie, WY; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-13
    Description: Air traffic demand is predicted to increase over the next 20 years, creating a need for new technologies and procedures to support this growth in a safe and efficient manner. The National Aeronautics and Space Administration's (NASA) Air Traffic Management Technology Demonstration - 1 (ATD-1) will operationally demonstrate the feasibility of efficient arrival operations combining ground-based and airborne NASA technologies. The integration of these technologies will increase throughput, reduce delay, conserve fuel, and minimize environmental impacts. The ground-based tools include Traffic Management Advisor with Terminal Metering for precise time-based scheduling and Controller Managed Spacing decision support tools for better managing aircraft delay with speed control. The core airborne technology in ATD-1 is Flight deck-based Interval Management (FIM). FIM tools provide pilots with speed commands calculated using information from Automatic Dependent Surveillance - Broadcast. The precise merging and spacing enabled by FIM avionics and flight crew procedures will reduce excess spacing buffers and result in higher terminal throughput. This paper describes a human-in-the-loop experiment designed to assess the acceptability and feasibility of the ATD-1 procedures used in a voice communications environment. This experiment utilized the ATD-1 integrated system of ground-based and airborne technologies. Pilot participants flew a high-fidelity fixed base simulator equipped with an airborne spacing algorithm and a FIM crew interface. Experiment scenarios involved multiple air traffic flows into the Dallas-Fort Worth Terminal Radar Control airspace. Results indicate that the proposed procedures were feasible for use by flight crews in a voice communications environment. The delivery accuracy at the achieve-by point was within +/- five seconds and the delivery precision was less than five seconds. Furthermore, FIM speed commands occurred at a rate of less than one per minute, and pilots found the frequency of the speed commands to be acceptable at all times throughout the experiment scenarios.
    Keywords: Aircraft Stability and Control
    Type: NF1676L-16028 , AIAA Modeling and Simulation Technologies Conference; Aug 19, 2013 - Aug 22, 2013; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Aircraft Stability and Control
    Type: International Planetary Probe Workshop (IPPW-10); Jun 15, 2013 - Jun 16, 2013; San Jose, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-13
    Description: A method is presented for the optimization of the lift distribution across the wing of an aircraft in formation flight. The usual elliptical distribution is no longer optimal for the trailing wing in the formation due to the asymmetric nature of the encountered flow field. Control surfaces along the trailing edge of the wing can be configured to obtain a non-elliptical profile that is more optimal in terms of minimum drag. Due to the difficult-to-predict nature of formation flight aerodynamics, a Newton-Raphson peak-seeking controller is used to identify in real time the best aileron and flap deployment scheme for minimum total drag. Simulation results show that the peak-seeking controller correctly identifies an optimal trim configuration that provides additional drag savings above those achieved with conventional anti-symmetric aileron trim.
    Keywords: Aircraft Stability and Control
    Type: DFRC-E-DAA-TN5687 , Guidance Navigation and Control Conference; Aug 13, 2012 - Aug 16, 2012; Minneapolis, MN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-13
    Description: Flight deck based Interval Management (FIM) applications using ADS-B are being developed to improve both the safety and capacity of the National Airspace System (NAS). FIM is expected to improve the safety and efficiency of the NAS by giving pilots the technology and procedures to precisely achieve an interval behind the preceding aircraft by a specific point. Concurrently but independently, Optimized Profile Descents (OPD) are being developed to help reduce fuel consumption and noise, however, the range of speeds available when flying an OPD results in a decrease in the delivery precision of aircraft to the runway. This requires the addition of a spacing buffer between aircraft, reducing system throughput. FIM addresses this problem by providing pilots with speed guidance to achieve a precise interval behind another aircraft, even while flying optimized descents. The Interval Management with Spacing to Parallel Dependent Runways (IMSPiDR) human-in-the-loop experiment employed 24 commercial pilots to explore the use of FIM equipment to conduct spacing operations behind two aircraft arriving to parallel runways, while flying an OPD during high-density operations. This paper describes the impact of variations in pilot operations; in particular configuring the aircraft, their compliance with FIM operating procedures, and their response to changes of the FIM speed. An example of the displayed FIM speeds used incorrectly by a pilot is also discussed. Finally, this paper examines the relationship between achieving airline operational goals for individual aircraft and the need for ATC to deliver aircraft to the runway with greater precision. The results show that aircraft can fly an OPD and conduct FIM operations to dependent parallel runways, enabling operational goals to be achieved efficiently while maintaining system throughput.
    Keywords: Aircraft Stability and Control
    Type: NF1676L-14261 , 12th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference; Sep 17, 2012 - Sep 19, 2012; Indianapolis, IN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-13
    Description: A method for accurately identifying aircraft dynamic models in turbulence was developed and demonstrated. The method uses orthogonal optimized multisine excitation inputs and an analytic method for enhancing signal-to-noise ratio for dynamic modeling in turbulence. A turbulence metric was developed to accurately characterize the turbulence level using flight measurements. The modeling technique was demonstrated in simulation, then applied to a subscale twin-engine jet transport aircraft in flight. Comparisons of modeling results obtained in turbulent air to results obtained in smooth air were used to demonstrate the effectiveness of the approach.
    Keywords: Aircraft Stability and Control
    Type: NF1676L-14085 , 2012 AIAA Guidance, Navigation, and Control Conference; Aug 13, 2012 - Aug 16, 2012; Minneapolis, MN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-13
    Description: Subscale flight-testing provides a means to validate both dynamic models and mitigation technologies in the high-risk flight conditions associated with aircraft loss of control. The Airborne Subscale Transport Aircraft Research (AirSTAR) facility was designed to be a flexible and efficient research facility to address this type of flight-testing. Over the last several years (2009-2011) it has been used to perform 58 research flights with an unmanned, remotely-piloted, dynamically-scaled airplane. This paper will present an overview of the facility and its architecture and summarize the experimental data collected. All flights to date have been conducted within visual range of a safety observer. Current plans for the facility include expanding the test volume to altitudes and distances well beyond visual range. The architecture and instrumentation changes associated with this upgrade will also be presented.
    Keywords: Aircraft Stability and Control
    Type: AIAA Paper 2012-5029 , Paper No. 1345315 , NF1676L-14059 , 2012 AIAA Guidance, Navigation, and Control Conference; Aug 13, 2012 - Aug 16, 2012; Minneapolis, MN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...