ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Man/System Technology and Life Support  (1,596)
  • Deutschland
  • Chemical Engineering
  • 2005-2009  (1,615)
  • 101
    Publication Date: 2019-07-12
    Description: The DSN Data Visualization Suite is a set of computer programs and reusable Application Programming Interfaces (APIs) that assist in the visualization and analysis of Deep Space Network (DSN) spacecraft-tracking data, which can include predicted and actual values of downlink frequencies, uplink frequencies, and antenna-pointing angles in various formats that can include tables of values and polynomial coefficients. The data can also include lists of antenna-pointing events, lists of antenna- limit events, and schedules of tracking activities. To date, analysis and correlation of these intricately related data before and after tracking have been difficult and time-consuming. The DSN Data Visualization Suite enables operators to quickly diagnose tracking-data problems before, during, and after tracking. The Suite provides interpolation on demand and plotting of DSN tracking data, correlation of all data on a given temporal point, and display of data with color coding configurable by users. The suite thereby enables rapid analysis of the data prior to transmission of the data to DSN control centers. At the control centers, the same suite enables operators to validate the data before committing the data to DSN subsystems. This software is also Web-enabled to afford its capabilities to international space agencies.
    Keywords: Man/System Technology and Life Support
    Type: NPO-45758 , NASA Tech Briefs, March 2009; 7
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 102
    Publication Date: 2019-07-12
    Description: A continuous-flow system utilizes microwave heating to sterilize water and to thermally inactivate endotoxins produced in the sterilization process. The system is designed for use in converting potable water to medical-grade water. Systems like this one could be used for efficient, small-scale production of medical- grade water in laboratories, clinics, and hospitals. This system could be adapted to use in selective sterilization of connections in ultra-pure-water-producing equipment and other equipment into which intrusion by microorganisms cannot be tolerated. Lightweight, port - able systems based on the design of this system could be rapidly deployed to remote locations (e.g., military field hospitals) or in response to emergencies in which the normal infrastructure for providing medical-grade water is disrupted. Larger systems based on the design of this system could be useful for industrial production of medical-grade water. The basic microwave-heating principle of this system is the same as that of a microwave oven: An item to be heated, made of a lossy dielectric material (in this case, flowing water) is irradiated with microwaves in a multimode microwave cavity. The heating is rapid and efficient because it results from absorption of microwave power throughout the volume of the lossy dielectric material. In this system, a copper tube having a length of 49.5 cm and a diameter of 2.25 cm serves as both the microwave cavity and the sterilization chamber. Microwave power is fed via a coaxial cable to an antenna mounted inside the tube at mid-length (see figure). Efficient power transfer occurs due to the shift in wavelength associated with the high permittivity of water combined with the strong coupling of 2.45-GHz microwaves with rotational-vibrational transitions of the dipolar water molecule.
    Keywords: Man/System Technology and Life Support
    Type: LEW-18159-1 , NASA Tech Briefs, March 2009; 25-26
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 103
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: A computer program processes the digitized outputs of a set of downward-looking video cameras aboard an aircraft flying over the ocean. The purpose served by this software is to facilitate the detection of large drift nets that have been lost, abandoned, or jettisoned. The development of this software and of the associated imaging hardware is part of a larger effort to develop means of detecting and removing large drift nets before they cause further environmental damage to the ocean and to shores on which they sometimes impinge. The software is capable of near-realtime processing of as many as three video feeds at a rate of 30 frames per second. After a user sets the parameters of an adjustable algorithm, the software analyzes each video stream, detects any anomaly, issues a command to point a high-resolution camera toward the location of the anomaly, and, once the camera has been so aimed, issues a command to trigger the camera shutter. The resulting high-resolution image is digitized, and the resulting data are automatically uploaded to the operator s computer for analysis.
    Keywords: Man/System Technology and Life Support
    Type: SSC-00300-1 , NASA Tech Briefs, March 2009; 13-14
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 104
    Publication Date: 2019-07-12
    Description: A Pointing Covariance Analysis Tool (PCAT) has been developed for evaluating the expected performance of the pointing control system for NASA s Space Interferometry Mission (SIM). The SIM pointing control system is very complex, consisting of multiple feedback and feedforward loops, and operating with multiple latencies and data rates. The SIM pointing problem is particularly challenging due to the effects of thermomechanical drifts in concert with the long camera exposures needed to image dim stars. Other pointing error sources include sensor noises, mechanical vibrations, and errors in the feedforward signals. PCAT models the effects of finite camera exposures and all other error sources using linear system elements. This allows the pointing analysis to be performed using linear covariance analysis. PCAT propagates the error covariance using a Lyapunov equation associated with time-varying discrete and continuous-time system matrices. Unlike Monte Carlo analysis, which could involve thousands of computational runs for a single assessment, the PCAT analysis performs the same assessment in a single run. This capability facilitates the analysis of parametric studies, design trades, and "what-if" scenarios for quickly evaluating and optimizing the control system architecture and design.
    Keywords: Man/System Technology and Life Support
    Type: NPO-45308 , NASA Tech Briefs, March 2009; 38
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 105
    Publication Date: 2019-07-12
    Description: A method of discriminating between spore-forming and non-spore-forming bacteria is based on a combination of simultaneous sporulation-specific and non-sporulation-specific quantitative polymerase chain reactions (Q-PCRs). The method was invented partly in response to the observation that for the purposes of preventing or reducing biological contamination affecting many human endeavors, ultimately, only the spore-forming portions of bacterial populations are the ones that are problematic (or, at least, more problematic than are the non-spore-forming portions). In some environments, spore-forming bacteria constitute small fractions of the total bacterial populations. The use of sporulation-specific primers in Q-PCR affords the ability to assess the spore-forming fraction of a bacterial population present in an environment of interest. This assessment can provide a more thorough and accurate understanding of the bacterial contamination in the environment, thereby making it possible to focus contamination- testing, contamination-prevention, sterilization, and decontamination resources more economically and efficiently. The method includes the use of sporulation-specific primers in the form of designed, optimized deoxyribonucleic acid (DNA) oligonucleotides specific for the bacterial spoIVA gene (see table). [In "spoIVA," "IV" signifies Roman numeral four and the entire quoted name refers to gene A for the fourth stage of sporulation.] These primers are mixed into a PCR cocktail with a given sample of bacterial cells. A control PCR cocktail into which are mixed universal 16S rRNA primers is also prepared. ["16S rRNA" denotes a ribosomal ribonucleic acid (rRNA) sequence that is common to all organisms.] Following several cycles of heating and cooling according to the PCR protocol to amplify amounts of DNA molecules, the amplification products can be analyzed to determine the types of bacterial cells present within the samples. If the amplification product is strong, relative to the product of a control PCR sequence, then it is concluded that the bacterial population in the sample consists predominantly of spore-forming cells. If the amplification product is weak or nonexistent, then it is concluded that the bacterial population in the sample consists predominantly or entirely of non-spore-forming cells.
    Keywords: Man/System Technology and Life Support
    Type: NPO-44296 , NASA Tech Briefs, March 2009; 26-27
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 106
    Publication Date: 2019-07-12
    Description: A computer program for the detection of present and prediction of future discrete states of a complex, real-time engineering system utilizes a combination of symbolic processing and numerical model-based reasoning. One of the biggest weaknesses of a purely symbolic approach is that it enables prediction of only future discrete states while missing all unmodeled states or leading to incorrect identification of an unmodeled state as a modeled one. A purely numerical approach is based on a combination of statistical methods and mathematical models of the applicable physics and necessitates development of a complete model to the level of fidelity required for prediction. In addition, a purely numerical approach does not afford the ability to qualify its results without some form of symbolic processing. The present software implements numerical algorithms to detect unmodeled events and symbolic algorithms to predict expected behavior, correlate the expected behavior with the unmodeled events, and interpret the results in order to predict future discrete states. The approach embodied in this software differs from that of the BEAM methodology (aspects of which have been discussed in several prior NASA Tech Briefs articles), which provides for prediction of future measurements in the continuous-data domain.
    Keywords: Man/System Technology and Life Support
    Type: NPO-45172 , NASA Tech Briefs, March 2009; 13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 107
    Publication Date: 2019-07-12
    Description: An automated procedure has been developed to derive relevant factors, which can increase the ability to produce objective, repeatable methods for determining aerodynamic surface roughness. Aerodynamic surface roughness is used for many applications, like atmospheric dispersive models and wind-damage models. For this technique, existing lidar data was used that was originally collected for terrain analysis, and demonstrated that surface roughness values can be automatically derived, and then subsequently utilized in disaster-management and homeland security models. The developed lidar-processing algorithm effectively distinguishes buildings from trees and characterizes their size, density, orientation, and spacing (see figure); all of these variables are parameters that are required to calculate the estimated surface roughness for a specified area. By using this algorithm, aerodynamic surface roughness values in urban areas can then be extracted automatically. The user can also adjust the algorithm for local conditions and lidar characteristics, like summer/winter vegetation and dense/sparse lidar point spacing. Additionally, the user can also survey variations in surface roughness that occurs due to wind direction; for example, during a hurricane, when wind direction can change dramatically, this variable can be extremely significant. In its current state, the algorithm calculates an estimated surface roughness for a square kilometer area; techniques using the lidar data to calculate the surface roughness for a point, whereby only roughness elements that are upstream from the point of interest are used and the wind direction is a vital concern, are being investigated. This technological advancement will improve the reliability and accuracy of models that use and incorporate surface roughness.
    Keywords: Man/System Technology and Life Support
    Type: SSC-00296-1 , NASA Tech Briefs, March 2009; 6 - 7
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 108
    Publication Date: 2019-07-12
    Description: Two methods of increasing the effectiveness of three-dimensional (3D) wavelet-based compression of hyperspectral images have been developed. (As used here, images signifies both images and digital data representing images.) The methods are oriented toward reducing or eliminating detrimental effects of a phenomenon, referred to as spectral ringing, that is described below. In 3D wavelet-based compression, an image is represented by a multiresolution wavelet decomposition consisting of several subbands obtained by applying wavelet transforms in the two spatial dimensions corresponding to the two spatial coordinate axes of the image plane, and by applying wavelet transforms in the spectral dimension. Spectral ringing is named after the more familiar spatial ringing (spurious spatial oscillations) that can be seen parallel to and near edges in ordinary images reconstructed from compressed data. These ringing phenomena are attributable to effects of quantization. In hyperspectral data, the individual spectral bands play the role of edges, causing spurious oscillations to occur in the spectral dimension. In the absence of such corrective measures as the present two methods, spectral ringing can manifest itself as systematic biases in some reconstructed spectral bands and can reduce the effectiveness of compression of spatially-low-pass subbands. One of the two methods is denoted mean subtraction. The basic idea of this method is to subtract mean values from spatial planes of spatially low-pass subbands prior to encoding, because (a) such spatial planes often have mean values that are far from zero and (b) zero-mean data are better suited for compression by methods that are effective for subbands of two-dimensional (2D) images. In this method, after the 3D wavelet decomposition is performed, mean values are computed for and subtracted from each spatial plane of each spatially-low-pass subband. The resulting data are converted to sign-magnitude form and compressed in a manner similar to that of a baseline hyperspectral- image-compression method. The mean values are encoded in the compressed bit stream and added back to the data at the appropriate decompression step. The overhead incurred by encoding the mean values only a few bits per spectral band is negligible with respect to the huge size of a typical hyperspectral data set. The other method is denoted modified decomposition. This method is so named because it involves a modified version of a commonly used multiresolution wavelet decomposition, known in the art as the 3D Mallat decomposition, in which (a) the first of multiple stages of a 3D wavelet transform is applied to the entire dataset and (b) subsequent stages are applied only to the horizontally-, vertically-, and spectrally-low-pass subband from the preceding stage. In the modified decomposition, in stages after the first, not only is the spatially-low-pass, spectrally-low-pass subband further decomposed, but also spatially-low-pass, spectrally-high-pass subbands are further decomposed spatially. Either method can be used alone to improve the quality of a reconstructed image (see figure). Alternatively, the two methods can be combined by first performing modified decomposition, then subtracting the mean values from spatial planes of spatially-low-pass subbands.
    Keywords: Man/System Technology and Life Support
    Type: NPO-41381 , NASA Tech Briefs, March 2009; 33 - 34
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 109
    Publication Date: 2019-07-12
    Description: It has been proposed to modify the basic structure of an nBn infrared photodetector so that a plain electron-donor- type (n-type) semiconductor contact layer would be replaced by a graded n-type III V alloy semiconductor layer (i.e., ternary or quarternary) with appropriate doping gradient. The abbreviation nBn refers to one aspect of the unmodified basic device structure: There is an electron-barrier ("B" ) layer between two n-type ("n" ) layers, as shown in the upper part of the figure. One of the n-type layers is the aforementioned photon-absorption layer; the other n-type layer, denoted the contact layer, collects the photocurrent. The basic unmodified device structure utilizes minority-charge-carrier conduction, such that, for reasons too complex to explain within the space available for this article, the dark current at a given temperature can be orders of magnitude lower (and, consequently, signal-to-noise ratios can be greater) than in infrared detectors of other types. Thus, to obtain a given level of performance, less cooling (and, consequently, less cooling equipment and less cooling power) is needed. [In principle, one could obtain the same advantages by means of a structure that would be called pBp because it would include a barrier layer between two electron-acceptor- type (p-type) layers.] The proposed modifications could make it practical to utilize nBn photodetectors in conjunction with readily available, compact thermoelectric coolers in diverse infrared- imaging applications that could include planetary exploration, industrial quality control, monitoring pollution, firefighting, law enforcement, and medical diagnosis.
    Keywords: Man/System Technology and Life Support
    Type: NPO-45550 , NASA Tech Briefs, March 2009; 29-30
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 110
    Publication Date: 2019-08-13
    Description: This viewgraph presentation reviews the standards for space flight hardware based on human capabilities and limitations. The contents include: 1) Scope; 2) Applicable documents; 3) General; 4) Human Physical Characteristics and Capabilities; 5) Human Performance and Cognition; 6) Natural and Induced Environments; 7) Habitability Functions; 8) Architecture; 9) Hardware and Equipment; 10) Crew Interfaces; 11) Spacesuits; 12) Operatons: Reserved; 13) Ground Maintenance and Assembly: Reserved; 14) Appendix A-Reference Documents; 15) Appendix N-Acronyms and 16) Appendix C-Definition. Volume 2 is supported by the Human Integration Design Handbook (HIDH)s.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-18589 , NASA Advisory Council Meeting; Jul 14, 2009 - Jul 15, 2009; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 111
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-27
    Description: Topics covered include: Valve-"Health"-Monitoring System; Microstrip Antenna for Remote Sensing of Soil Moisture and Sea Surface Salinity; Biomedical Wireless Ambulatory Crew Monitor; Wireless Avionics Packet to Support Fault Tolerance for Flight Applications; Aerobot Autonomy Architecture; Submillimeter Confocal Imaging Active Module; Traveling-Wave Maser for 32 GHz; System Synchronizes Recordings from Separated Video Cameras; Piecewise-Planar Parabolic Reflectarray Antenna; Reducing Interference in ATC Voice Communication; EOS MLS Level 1B Data Processing, Version 2.2; Auto-Generated Semantic Processing Services; Geospatial Authentication; Maneuver Automation Software; Event Driven Messaging with Role-Based Subscriptions; Estimating Relative Positions of Outer-Space Structures; Fabricating PFPE Membranes for Capillary Electrophoresis; Linear Actuator Has Long Stroke and High Resolution; Installing a Test Tap on a Metal Battery Case; Fabricating PFPE Membranes for Microfluidic Valves and Pumps; Room-Temperature-Cured Copolymers for Lithium Battery Gel Electrolytes; Catalysts for Efficient Production of Carbon Nanotubes; Amorphous Silk Fibroin Membranes for Separation of CO2; "Zero-Mass" Noninvasive Pressure Transducers; Radial-Electric-Field Piezoelectric Diaphragm Pumps; Ejector-Enhanced, Pulsed, Pressure-Gain Combustor; Suppressing Ghost Diffraction in E-Beam-Written Gratings; Target-Tracking Camera for a Metrology System; Polarimetric Imaging using Two Photoelastic Modulators; Miniature Wide-Angle Lens for Small-Pixel Electronic Camera; Modal Filters for Infrared Interferometry; Mo(3)Sb(7-x)Te(x) for Thermoelectric Power Generation; Two-Dimensional Quantum Model of a Nanotransistor; Scanning Miniature Microscopes without Lenses; Manipulating Neutral Atoms in Chip-Based Magnetic Traps; Expansion Compression Contacts for Thermoelectric Legs; Processing Electromyographic Signals to Recognize Words; Physical Principle for Generation of Randomness; DSN Beowulf Cluster-Based VLBI Correlator; Hybrid NN/SVM Computational System for Optimizing Designs; Criteria for Modeling in LES of Multicomponent Fuel Flow; Computerized Machine for Cutting Space Shuttle Thermal Tiles; Orbiting Depot and Reusable Lander for Lunar Transportation; FPGA-Based Networked Phasemeter for a Heterodyne Interferometer; Aquarius Digital Processing Unit; Three-Dimensional Optical Coherence Tomography; Benchtop Antigen Detection Technique using Nanofiltration and Fluorescent Dyes; Isolation of Precursor Cells from Waste Solid Fat Tissue; Identification of Bacteria and Determination of Biological Indicators; Further Development of Scaffolds for Regeneration of Nerves; Chemically Assisted Photocatalytic Oxidation System; Use of Atomic Oxygen for Increased Water Contact Angles of Various Polymers for Biomedical Applications; Crashworthy Seats Would Afford Superior Protection; Open-Access, Low-Magnetic-Field MRI System for Lung Research; Microfluidic Mixing Technology for a Universal Health Sensor; Microfluidic Extraction of Biomarkers using Water as Solvent; Microwell Arrays for Studying Many Individual Cells; Droplet-Based Production of Liposomes; and Identifying and Inactivating Bacterial Spores
    Keywords: Man/System Technology and Life Support
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 112
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-28
    Description: Topics include: A Deep Space Network Portable Radio Science Receiver; Detecting Phase Boundaries in Hard-Sphere Suspensions; Low-Complexity Lossless and Near-Lossless Data Compression Technique for Multispectral Imagery; Very-Long-Distance Remote Hearing and Vibrometry; Using GPS to Detect Imminent Tsunamis; Stream Flow Prediction by Remote Sensing and Genetic Programming; Pilotless Frame Synchronization Using LDPC Code Constraints; Radiometer on a Chip; Measuring Luminescence Lifetime With Help of a DSP; Modulation Based on Probability Density Functions; Ku Telemetry Modulator for Suborbital Vehicles; Photonic Links for High-Performance Arraying of Antennas; Reconfigurable, Bi-Directional Flexfet Level Shifter for Low-Power, Rad-Hard Integration; Hardware-Efficient Monitoring of I/O Signals; Video System for Viewing From a Remote or Windowless Cockpit; Spacesuit Data Display and Management System; IEEE 1394 Hub With Fault Containment; Compact, Miniature MMIC Receiver Modules for an MMIC Array Spectrograph; Waveguide Transition for Submillimeter-Wave MMICs; Magnetic-Field-Tunable Superconducting Rectifier; Bonded Invar Clip Removal Using Foil Heaters; Fabricating Radial Groove Gratings Using Projection Photolithography; Gratings Fabricated on Flat Surfaces and Reproduced on Non-Flat Substrates; Method for Measuring the Volume-Scattering Function of Water; Method of Heating a Foam-Based Catalyst Bed; Small Deflection Energy Analyzer for Energy and Angular Distributions; Polymeric Bladder for Storing Liquid Oxygen; Pyrotechnic Simulator/Stray-Voltage Detector; Inventions Utilizing Microfluidics and Colloidal Particles; RuO2 Thermometer for Ultra-Low Temperatures; Ultra-Compact, High-Resolution LADAR System for 3D Imaging; Dual-Channel Multi-Purpose Telescope; Objective Lens Optimized for Wavefront Delivery, Pupil Imaging, and Pupil Ghosting; CMOS Camera Array With Onboard Memory; Quickly Approximating the Distance Between Two Objects; Processing Images of Craters for Spacecraft Navigation; Adaptive Morphological Feature-Based Object Classifier for a Color Imaging System; Rover Slip Validation and Prediction Algorithm; Safety and Quality Training Simulator; Supply-Chain Optimization Template; Algorithm for Computing Particle/Surface Interactions; Cryogenic Pupil Alignment Test Architecture for Aberrated Pupil Images; and Thermal Transport Model for Heat Sink Design.
    Keywords: Man/System Technology and Life Support
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 113
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-28
    Description: Topics covered include: Improved Instrument for Detecting Water and Ice in Soil; Real-Time Detection of Dust Devils from Pressure Readings; Determining Surface Roughness in Urban Areas Using Lidar Data; DSN Data Visualization Suite; Hamming and Accumulator Codes Concatenated with MPSK or QAM; Wide-Angle-Scanning Reflectarray Antennas Actuated by MEMS; Biasable Subharmonic Membrane Mixer for 520 to 600 GHz; Hardware Implementation of Serially Concatenated PPM Decoder; Symbolic Processing Combined with Model-Based Reasoning; Presentation Extensions of the SOAP; Spreadsheets for Analyzing and Optimizing Space Missions; Processing Ocean Images to Detect Large Drift Nets; Alternative Packaging for Back-Illuminated Imagers; Diamond Machining of an Off-Axis Biconic Aspherical Mirror; Laser Ablation Increases PEM/Catalyst Interfacial Area; Damage Detection and Self-Repair in Inflatable/Deployable Structures; Polyimide/Glass Composite High-Temperature Insulation; Nanocomposite Strain Gauges Having Small TCRs; Quick-Connect Windowed Non-Stick Penetrator Tips for Rapid Sampling; Modeling Unsteady Cavitation and Dynamic Loads in Turbopumps; Continuous-Flow System Produces Medical-Grade Water; Discrimination of Spore-Forming Bacilli Using spoIVA; nBn Infrared Detector Containing Graded Absorption Layer; Atomic References for Measuring Small Accelerations; Ultra-Broad-Band Optical Parametric Amplifier or Oscillator; Particle-Image Velocimeter Having Large Depth of Field; Enhancing SERS by Means of Supramolecular Charge Transfer; Improving 3D Wavelet-Based Compression of Hyperspectral Images; Improved Signal Chains for Readout of CMOS Imagers; SOI CMOS Imager with Suppression of Cross-Talk; Error-Rate Bounds for Coded PPM on a Poisson Channel; Biomorphic Multi-Agent Architecture for Persistent Computing; and Using Covariance Analysis to Assess Pointing Performance.
    Keywords: Man/System Technology and Life Support
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 114
    Publication Date: 2019-08-28
    Description: As the United States plans to return astronauts to the moon and eventually to Mars, designing the most effective, efficient, and robust space suit life support system that will operate successfully in these dusty environments is vital. There is some knowledge of the contaminants and level of infiltration expected from the Lunar and Mars dust, however risk mitigation strategies and filtration designs to prevent contamination within the space suit life support system are still undefined. A trade study was initiated to identify and address these concerns, and to develop new requirements for the Constellation Space Suit Element (CSSE) Portable Life Support System (PLSS). This trade study investigates historical methods of particulate contamination control in space suits and vehicles, and evaluated the possibility of using commercial technologies for this application. In addition, the trade study examined potential filtration designs. This paper summarizes the results of this trade study.
    Keywords: Man/System Technology and Life Support
    Type: 09ICES-0140 , JSC-17997 , International Conference on Environmental Systems; Jul 12, 2009 - Jul 16, 2009; Savannah, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 115
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-13
    Description: Early Warning Inc. of Troy, New York, licensed powerful biosensor technology from Ames Research Center. Incorporating carbon nanotubes tipped with single strands of nucleic acid from waterborne pathogens, the sensor can detect even minute amounts of targeted, disease causing bacteria, viruses, and parasites. Early Warning features the NASA biosensor in its water analyzer, which can provide advance alert of potential biological hazards in water used for agriculture, food and beverages, showers, and at beaches and lakes -- within hours instead of the days required by conventional laboratory methods.
    Keywords: Man/System Technology and Life Support
    Type: Spinoff 2009; 66-67; NASA/NP-2009-09-607-HQ
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 116
    Publication Date: 2019-07-13
    Description: The goal of the Information Presentation Directed Research Project (DRP) is to address design questions related to the presentation of information to the crew. The major areas of work, or subtasks, within this DRP are: 1) Displays, 2) Controls, 3) Electronic Procedures and Fault Management, and 4) Human Performance Modeling. This DRP is a collaborative effort between researchers at Johnson Space Center and Ames Research Center.
    Keywords: Man/System Technology and Life Support
    Type: Human Research Program Investigators Workshop; Feb 02, 2009 - Feb 04, 2009; Texas; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 117
    Publication Date: 2019-07-13
    Description: The Usability project addresses the need for research in the area of metrics and methodologies used in hardware and software usability testing in order to define quantifiable and verifiable usability requirements. A usability test is a human-in-the-loop evaluation where a participant works through a realistic set of representative tasks using the hardware/software under investigation. The purpose of this research is to define metrics and methodologies for measuring and verifying usability in the aerospace domain in accordance with FY09 focus on errors, consistency, and mobility/maneuverability. Usability metrics must be predictive of success with the interfaces, must be easy to obtain and/or calculate, and must meet the intent of current Human Systems Integration Requirements (HSIR). Methodologies must work within the constraints of the aerospace domain, be cost and time efficient, and be able to be applied without extensive specialized training.
    Keywords: Man/System Technology and Life Support
    Type: JSC-17723 , Human Reseach Program Investigators Workshop; Feb 02, 2009 - Feb 04, 2009; Texas; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 118
    Publication Date: 2019-07-13
    Description: This viewgraph presentation describes the effects of long duration manned spaceflight on heart structure and function. Clinical consequences for orthostatic tolerance, cardiac arrhythmias, and countermeasures to prevent clinical problems are also discussed.
    Keywords: Man/System Technology and Life Support
    Type: JSC-17837 , Increment 19/20 Science Symposium; Mar 04, 2009 - Mar 05, 2009; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 119
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: This viewgraph presentation reviews the work that the author has been involved with in her undergraduate and graduate education and the ADVANCE Program. One project was the Lunar Entry and Approach Platform For Research On Ground (LEAPFROG). This vehicle was to be a completely autonomous vehicle, and was developed in successive academic years with increases in the perofmamnce and capability of the simulated lander. Another research project for the PhD was on long-term lunar radiation degradation of materials to be used for construction of lunar habitats. This research has concentrated on developing and testing light-weight composite materials with high strength characteristics, and the ability of these composite materials to withstand the lunar radiation environment.
    Keywords: Man/System Technology and Life Support
    Type: JSC-17641 , ADVANCE Program; Feb 05, 2009; Pomona, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 120
    Publication Date: 2019-07-13
    Description: Future long duration manned space flights beyond low earth orbit will require the food system to remain safe, acceptable, and nutritious while efficiently balancing appropriate vehicle resources such as mass, volume, power, water, and crewtime. Often, this presents a challenge since maintaining the quality of the food system can result in a higher mass and volume. The Orion vehicle is significantly smaller than the Shuttle vehicle and the International Space Station and the mass and volume available for food is limited. Therefore, the food team has been challenged to reduce the mass of the packaged food from 1.82 kg per person per day to 1.14 kg per person per day. Past work has concentrated on how to reduce the mass of the packaging which contributes to about 15% of the total mass of the packaged food system. Designers have also focused on integrating and optimizing the Orion galley equipment as a system to reduce mass. To date, there has not been a significant effort to determine how to reduce the food itself. The objective of this project is to determine how the mass and volume of the packaged food can be reduced while maintaining caloric and hydration requirements. The following tasks are the key elements to this project: (1) Conduct further analysis of the ISS Standard Menu to determine moisture, protein, carbohydrate, and fat levels. (2) Conduct trade studies to determine how to bring the mass of the food system down. Trade studies may include removing the water of the total food system and/or increasing the fat content. (3) Determine the preferred method for delivery of the new food (e.g. bars, or beverages) and the degree of replacement. (4) Determine whether there are commercially available products that meet the requirements. By the end of this study, an estimate of the mass and volume savings will be provided to the Constellation Program. In addition, if new technologies need to be developed to achieve the mass savings, the technologies, timeline, and budget will be identified at the end of the project.
    Keywords: Man/System Technology and Life Support
    Type: JSC-17653 , HRP Investigators'' Workshop; Feb 02, 2009 - Feb 04, 2009; League City, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 121
    Publication Date: 2019-07-13
    Description: A phase change material (PCM) heat sink using super cooled ice as a nontoxic, nonflammable PCM is being developed. The latent heat of fusion for water is approximately 70% larger than most paraffin waxes, which can provide significant mass savings. Further mass reduction is accomplished by super cooling the ice significantly below its freezing temperature for additional sensible heat storage. Expansion and contraction of the water as it freezes and melts is accommodated with the use of flexible bag and foam materials. A demonstrator unit has been designed, built, and tested to demonstrate proof of concept. Both testing and modeling results are presented along with recommendations for further development of this technology.
    Keywords: Man/System Technology and Life Support
    Type: 09ICES-0283 , JSC-CN-17381 , JSC-CN-18028 , 39th International Conference on Environmental Systems; Jul 12, 2009 - Jul 16, 2009; Savannah, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 122
    Publication Date: 2019-07-13
    Description: This paper presents the findings of the trade study to evaluate carbon dioxide (CO2) sensing technologies for the Constellation (Cx) space suit life support system for surface exploration. The trade study found that nondispersive infrared absorption (NDIR) is the most appropriate high Technology Readiness Level (TRL) technology for the CO2 sensor for the Cx space suit. The maturity of the technology is high, as it is the basis for the CO2 sensor in the Extravehicular Mobility Unit (EMU). The study further determined that while there is a range of commercial sensors available, the Cx CO2 sensor should be a new design. Specifically, there are light sources (e.g., infrared light emitting diodes) and detectors (e.g., cooled detectors) that are not in typical commercial sensors due to cost. These advanced technology components offer significant advantages in performance (weight, volume, power, accuracy) to be implemented in the new sensor. The exact sensor design (light source, transmitting optics, path length, receiving optics and detector) will be specific for the Cx space suit and will be determined by the performance requirements of the Cx space suit. The paper further identifies specifications for some of the critical performance parameters as well as discussing the engineering aspects of implementing the sensor into the Portable Life Support System (PLSS). The paper then presents testing results from three CO2 sensors with respect to issues important to Extravehicular Activity (EVA) applications; stability, humidity dependence and low pressure compatibility. The three sensors include two NDIR sensors, one commercial and one custom-developed by NASA (for a different purpose), and one commercial electrochemical sensor. The results show that both NDIR sensors have excellent stability, no dependence on ambient humidity (when the ambient temperature is above the dew point) and operate in low pressure conditions and after being exposed to a full vacuum. The commercial electrochemical sensor was not suitable for the Cx space suit for surface exploration. Finally, the paper identifies a number of techniques currently under development that offer significant advantages for EVA applications. These include miniaturized, room temperature, solid electrolyte systems and advanced optical detectors.
    Keywords: Man/System Technology and Life Support
    Type: 09ICES-0282 , JSC-CN-17803 , JSC-DN-17238 , International Conference on Environmental Systems; Jul 12, 2009 - Jul 16, 2009; Savannah, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 123
    Publication Date: 2019-07-13
    Description: The National Aeronautics and Space Administration (NASA) Constellation Program is responsible for planning and implementing those programs necessary to send human explorers back to the moon, onward to Mars and other destinations in the solar system, and to support missions to the International Space Station. The Constellation Program has the technical management responsibility for all Constellation Projects, including both human rated and non-human rated vehicles such as the Crew Exploration Vehicle, EVA Systems, the Lunar Lander, Lunar Surface Systems, and the Ares I and Ares V rockets. With NASA s new Vision for Space Exploration to send humans beyond Earth orbit, it is critical to consider the human as a system that demands early and continuous user involvement, inclusion in trade offs and analyses, and an iterative "prototype/test/ redesign" process. Personnel at the NASA Johnson Space Center are involved in the Constellation Program at both the Program and Project levels as human system integrators. They ensure that the human is considered as a system, equal to hardware and software vehicle systems. Systems to deliver and support extended human habitation on the moon are extremely complex and unique, presenting new opportunities to employ Human Systems Integration, or HSI practices in the Constellation Program. The purpose of the paper is to show examples of where human systems integration work is successfully employed in the Constellation Program and related Projects, such as in the areas of habitation and early requirements and design concepts.
    Keywords: Man/System Technology and Life Support
    Type: Human Systems Integration Symposium @ISIS) 2009; Mar 17, 2009 - Mar 19, 2009; Maryland; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 124
    Publication Date: 2019-07-13
    Description: This paper describes the effort by the Texas Engineering Experiment Station (TEES) and Honeywell for NASA to design, fabricate, and test a preflight prototype pump for use in the Extravehicular activity (EVA) portable life support subsystem (PLSS). Major design decisions were driven by the need to reduce the pump s mass, power, and volume compared to the existing PLSS pump. In addition, the pump will accommodate a much wider range of abnormal conditions than the existing pump, including vapor/gas bubbles and increased pressure drop when employed to cool two suits simultaneously. A positive displacement, external gear type pump was selected because it offers the most compact and highest efficiency solution over the required range of flow rates and pressure drops. An additional benefit of selecting a gear pump design is that it is self priming and capable of ingesting noncondensable gas without becoming "air locked." The chosen pump design consists of a 28 V DC, brushless, sealless, permanent magnet motor driven, external gear pump that utilizes a Honeywell development that eliminates the need for magnetic coupling. Although the planned flight unit will use a sensorless motor with custom designed controller, the preflight prototype to be provided for this project incorporates Hall effect sensors, allowing an interface with a readily available commercial motor controller. This design approach reduced the cost of this project and gives NASA more flexibility in future PLSS laboratory testing. The pump design was based on existing Honeywell designs, but incorporated features specifically for the PLSS application, including all of the key features of the flight pump. Testing at TEES will simulate the vacuum environment in which the flight pump will operate. Testing will verify that the pump meets design requirements for range of flow rates, pressure rise, power consumption, working fluid temperature, operating time, and restart capability. Pump testing is currently scheduled for March, 2009, after which the pump will be delivered to NASA for further testing.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-17392 , JSC-CN-17907 , 39th International Conference on Environmental Systems; Jul 12, 2009 - Jul 16, 2009; Savannah, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 125
    Publication Date: 2019-07-13
    Description: NASA Johnson Space Center (JSC) requested NASA JSC White Sands Test Facility to assist in determining the effects of impaired anodization on aluminum parts in advanced crew escape suits (ACES). Initial investigation indicated poor anodization could lead to an increased risk of particle impact ignition, and a lack of data was prevalent for particle impact of bare (unanodized) aluminum; therefore, particle impact tests were performed. A total of 179 subsonic and 60 supersonic tests were performed with no ignition of the aluminum targets. Based on the resulting test data, WSTF found no increased particle impact hazard was present in the ACES equipment.
    Keywords: Man/System Technology and Life Support
    Type: 12th International Symposium on Flammabililty and Sensitivity of Materials in Oxygen-Enriched Atmospheres; Oct 07, 2009 - Oct 09, 2009; Berlin; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 126
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: International Conference on Environmental Systems; Jul 12, 2009 - Jul 16, 2009; Savannah, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 127
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: The concept for a dual test item has been developed for use in simulating live initiators/detonators during ground testing to verify the proper operation of the safing and firing circuitry for ground and flight systems ordnance as well as continuous monitoring for any stray voltages. Previous ordnance simulators have consisted of fuses, flash bulbs, inert devices with bridge wires, and actual live ordnance items mounted in test chambers. Stray voltage detectors have included devices connected to the firing circuits for continuous monitoring and a final no-voltage test just prior to ordnance connection. The purpose of this combined ordnance simulation and stray-voltage detection is to provide an improved and comprehensive method to ensure the ordnance circuitry is verified safe and operational.
    Keywords: Man/System Technology and Life Support
    Type: KSC-13282 , NASA Tech Briefs, December 2009; 20
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 128
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: A physical-based simulation has been developed for the Mars Exploration Rover (MER) mission that applies a slope-induced wheel-slippage to the rover location estimator. Using the digital elevation map from the stereo images, the computational method resolves the quasi-dynamic equations of motion that incorporate the actual wheel-terrain speed to estimate the gross velocity of the vehicle. Based on the empirical slippage measured by the Visual Odometry software of the rover, this algorithm computes two factors for the slip model by minimizing the distance of the predicted and actual vehicle location, and then uses the model to predict the next drives. This technique, which has been deployed to operate the MER rovers in the extended mission periods, can accurately predict the rover position and attitude, mitigating the risk and uncertainties in the path planning on high-slope areas.
    Keywords: Man/System Technology and Life Support
    Type: NPO-45240 , NASA Tech Briefs, December 2009; 24
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 129
    Publication Date: 2019-07-12
    Description: Utilizing a Compact Color Microscope Imaging System (CCMIS), a unique algorithm has been developed that combines human intelligence along with machine vision techniques to produce an autonomous microscope tool for biomedical, industrial, and space applications. This technique is based on an adaptive, morphological, feature-based mapping function comprising 24 mutually inclusive feature metrics that are used to determine the metrics for complex cell/objects derived from color image analysis. Some of the features include: Area (total numbers of non-background pixels inside and including the perimeter), Bounding Box (smallest rectangle that bounds and object), centerX (x-coordinate of intensity-weighted, center-of-mass of an entire object or multi-object blob), centerY (y-coordinate of intensity-weighted, center-of-mass, of an entire object or multi-object blob), Circumference (a measure of circumference that takes into account whether neighboring pixels are diagonal, which is a longer distance than horizontally or vertically joined pixels), . Elongation (measure of particle elongation given as a number between 0 and 1. If equal to 1, the particle bounding box is square. As the elongation decreases from 1, the particle becomes more elongated), . Ext_vector (extremal vector), . Major Axis (the length of a major axis of a smallest ellipse encompassing an object), . Minor Axis (the length of a minor axis of a smallest ellipse encompassing an object), . Partial (indicates if the particle extends beyond the field of view), . Perimeter Points (points that make up a particle perimeter), . Roundness [(4(pi) x area)/perimeter(squared)) the result is a measure of object roundness, or compactness, given as a value between 0 and 1. The greater the ratio, the rounder the object.], . Thin in center (determines if an object becomes thin in the center, (figure-eight-shaped), . Theta (orientation of the major axis), . Smoothness and color metrics for each component (red, green, blue) the minimum, maximum, average, and standard deviation within the particle are tracked. These metrics can be used for autonomous analysis of color images from a microscope, video camera, or digital, still image. It can also automatically identify tumor morphology of stained images and has been used to detect stained cell phenomena (see figure).
    Keywords: Man/System Technology and Life Support
    Type: LEW-18291-1 , NASA Tech Briefs, December 2009; 23-24
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 130
    Publication Date: 2019-07-12
    Description: A document describes cryogenic test architecture for the James Webb Space Telescope (JWST) integrated science instrument module (ISIM). The ISIM element primarily consists of a mechanical metering structure, three science instruments, and a fine guidance sensor. One of the critical optomechanical alignments is the co-registration of the optical telescope element (OTE) exit pupil with the entrance pupils of the ISIM instruments. The test architecture has been developed to verify that the ISIM element will be properly aligned with the nominal OTE exit pupil when the two elements come together. The architecture measures three of the most critical pupil degrees-of-freedom during optical testing of the ISIM element. The pupil measurement scheme makes use of specularly reflective pupil alignment references located inside the JWST instruments, ground support equipment that contains a pupil imaging module, an OTE simulator, and pupil viewing channels in two of the JWST flight instruments. Pupil alignment references (PARs) are introduced into the instrument, and their reflections are checked using the instrument's mirrors. After the pupil imaging module (PIM) captures a reflected PAR image, the image will be analyzed to determine the relative alignment offset. The instrument pupil alignment preferences are specularly reflective mirrors with non-reflective fiducials, which makes the test architecture feasible. The instrument channels have fairly large fields of view, allowing PAR tip/tilt tolerances on the order of 0.5deg.
    Keywords: Man/System Technology and Life Support
    Type: GSC-15650-1 , NASA Tech Briefs, December 2009; 27
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 131
    Publication Date: 2019-07-12
    Description: The development of the Small Deflection Energy Analyzer (SDEA) charged-particle spectrometer for energy and angle distributions responds to a longstanding need to measure the wind velocity vector in Earth s thermosphere, and to obtain the ion-drift vector in the ionosphere. The air and ions above 120 km are endowed with bulk velocities and temperatures just like air near the ground, but with separate spatial and temporal variations. It is important to understand these not only for study of the physics and chemistry of the Sun-Earth connection, but also for spacecraft orbit predictions, and communications through the ionosphere. The SDEA consists of a pair of parallel conducting plates separated by a small distance, with an entrance slit on one end, and an exit slit on the other. A voltage applied to these plates develops an electric field between the plates, and this field deflects ions passing through it. If an ion has too little energy, it will strike one of the plates. If it has too much, it will strike the back wall. An ion with the amount of energy being searched for will have its trajectory bent just enough to exit the back slit. The SDEA units are compact, rectangular, and operate with low voltages. The units can be built up into small arrays. These arrays could be used either to widen the field of view or to sharpen an existing one. This approach can also be used to obtain angular distributions in two planes simultaneously, thus cutting down the ion source power requirements in half. This geometry has enabled a new mass-spectrometer concept that can provide miniaturized mass spectrometers for use in industrial plants, air-pollution monitoring, and noxious-gas detection.
    Keywords: Man/System Technology and Life Support
    Type: GSC-15610-1 , NASA Tech Briefs, December 2009; 19-20
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 132
    Publication Date: 2019-07-12
    Description: A document discusses a component of a laser metrology system designed to measure displacements along the line of sight with precision on the order of a tenth the diameter of an atom. This component, the phasemeter, measures the relative phase of two electrical signals and transfers that information to a computer. Because the metrology system measures the differences between two optical paths, the phasemeter has two inputs, called measure and reference. The reference signal is nominally a perfect square wave with a 50- percent duty cycle (though only rising edges are used). As the metrology system detects motion, the difference between the reference and measure signal phases is proportional to the displacement of the motion. The phasemeter, therefore, counts the elapsed time between rising edges in the two signals, and converts the time into an estimate of phase delay. The hardware consists of a circuit board that plugs into a COTS (commercial, off-the- shelf) Spartan-III FPGA (field-programmable gate array) evaluation board. It has two BNC inputs, (reference and measure), a CMOS logic chip to buffer the inputs, and an Ethernet jack for transmitting reduced-data to a PC. Two extra BNC connectors can be attached for future expandability, such as external synchronization. Each phasemeter handles one metrology channel. A bank of six phasemeters (and two zero-crossing detector cards) with an Ethernet switch can monitor the rigid body motion of an object. This device is smaller and cheaper than existing zero-crossing phasemeters. Also, because it uses Ethernet for communication with a computer, instead of a VME bridge, it is much easier to use. The phasemeter is a key part of the Precision Deployable Apertures and Structures strategic R&D effort to design large, deployable, segmented space telescopes.
    Keywords: Man/System Technology and Life Support
    Type: NPO-45504 , NASA Tech Briefs, May 2009; 41-42
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 133
    Publication Date: 2019-07-12
    Description: An open-access magnetic resonance imaging (MRI) system is being developed for use in research on orientational/gravitational effects on lung physiology and function. The open-access geometry enables study of human subjects in diverse orientations. This system operates at a magnetic flux density, considerably smaller than the flux densities of typical other MRI systems, that can be generated by resistive electromagnet coils (instead of the more-expensive superconducting coils of the other systems). The human subject inhales air containing He-3 or Xe-129 atoms, the nuclear spins of which have been polarized by use of a laser beam to obtain a magnetic resonance that enables high-resolution gas space imaging at the low applied magnetic field. The system includes a bi-planar, constant-current, four-coil electromagnet assembly and associated electronic circuitry to apply a static magnetic field of 6.5 mT throughout the lung volume; planar coils and associated circuitry to apply a pulsed magnetic-field-gradient for each spatial dimension; a single, detachable radio-frequency coil and associated circuitry for inducing and detecting MRI signals; a table for supporting a horizontal subject; and electromagnetic shielding surrounding the electromagnet coils.
    Keywords: Man/System Technology and Life Support
    Type: MSC-24182-1/3-1 , NASA Tech Briefs, May 2009; 49
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 134
    Publication Date: 2019-07-12
    Description: A computer program estimates the relative position and orientation of two structures from measurements, made by use of electronic cameras and laser range finders on one structure, of distances and angular positions of fiducial objects on the other structure. The program was written specifically for use in determining errors in the alignment of large structures deployed in outer space from a space shuttle. The program is based partly on equations for transformations among the various coordinate systems involved in the measurements and on equations that account for errors in the transformation operators. It computes a least-squares estimate of the relative position and orientation. Sequential least-squares estimates, acquired at a measurement rate of 4 Hz, are averaged by passing them through a fourth-order Butterworth filter. The program is executed in a computer aboard the space shuttle, and its position and orientation estimates are displayed to astronauts on a graphical user interface.
    Keywords: Man/System Technology and Life Support
    Type: NPO-45071 , NASA Tech Briefs, May 2009; 16
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 135
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: The figure depicts a traveling-wave ruby maser that has been designed (though not yet implemented in hardware) to serve as a low-noise amplifier for reception of weak radio signals in the frequency band of 31.8 to 32.3 GHz. The design offers significant improvements over previous designs of 32-GHz traveling-wave masers. In addition, relative to prior designs of 32-GHz amplifiers based on high-electron-mobility transistors, this design affords higher immunity to radio-frequency interference and lower equivalent input noise temperature. In addition to the basic frequency-band and low-noise requirements, the initial design problem included a requirement for capability of operation in a closed-cycle helium refrigerator at a temperature .4 K and a requirement that the design be mechanically simplified, relative to prior designs, in order to minimize the cost of fabrication and assembly. Previous attempts to build 32- GHz traveling-wave masers involved the use of metallic slow-wave structures comprising coupled transverse electromagnetic (TEM)-mode resonators that were subject to very tight tolerances and, hence, were expensive to fabricate and assemble. Impedance matching for coupling signals into and out of these earlier masers was very difficult. A key feature of the design is a slow-wave structure, the metallic portions of which would be mechanically relatively simple in that, unlike in prior slow-wave structures, there would be no internal metal steps, irises, or posts. The metallic portions of the slow-wave structure would consist only of two rectangular metal waveguide arms. The arms would contain sections filled with the active material (ruby) alternating with evanescent-wave sections. This structure would be transparent in both the signal-frequency band (the aforementioned range of 31.8 to 32.3 GHz) and the pump-frequency band (65.75 to 66.75 GHz), and would impose large slowing factors in both frequency bands. Resonant ferrite isolators would be placed in the evanescent-wave sections to provide reverse loss needed to suppress reverse propagation of power at the signal frequency. This design is expected to afford a large gain-bandwidth product at the signal frequency and efficient coupling of the pump power into the paramagnetic spin resonances of the ruby sections. The more efficiently the pump power could be thus coupled, the more efficiently it could be utilized and the heat load on the refrigerator correspondingly reduced.
    Keywords: Man/System Technology and Life Support
    Type: NPO-41273 , NASA Tech Briefs, May 2009; 10-11
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 136
    Publication Date: 2019-07-12
    Description: The term submillimeter confocal imaging active module (SCIAM) denotes a proposed airborne coherent imaging radar system that would be suitable for use in reconnaissance, surveillance, and navigation. The development of the SCIAM would include utilization and extension of recent achievements in monolithic microwave integrated circuits capable of operating at frequencies up to and beyond a nominal radio frequency of 340 GHz. Because the SCIAM would be primarily down-looking (in contradistinction to primarily side-looking), it could be useful for imaging shorter objects located between taller ones (for example, objects on streets between buildings). The SCIAM would utilize a confocal geometry to obtain high cross-track resolution, and would be amenable to synthetic-aperture processing of its output to obtain high along-track resolution. The SCIAM (see figure) would include multiple (two in the initial version) antenna apertures, separated from each other by a cross-track baseline of suitable length (e.g., 1.6 m). These apertures would both transmit the illuminating radar pulses and receive the returns. A common reference oscillator would generate a signal at a controllable frequency of (340 GHz + (Delta)f)/N, where (Delta)f is an instantaneous swept frequency difference and N is an integer. The output of this oscillator would be fed to a frequency- multiplier-and-power-amplifier module to obtain a signal, at 340 GHz + (Delta)f, that would serve as both the carrier signal for generating the transmitted pulses and a local-oscillator (LO) signal for a receiver associated with each antenna aperture. Because duplexers in the form of circulators or transmit/receive (T/R) switches would be lossy and extremely difficult to implement, the antenna apertures would be designed according to a spatial-diplexing scheme, in which signals would be coupled in and out via separate, adjacent transmitting and receiving feed horns. This scheme would cause the transmitted and received beams to be aimed in slightly different directions, and, hence, to not overlap fully on the targets on the ground. However, a preliminary analysis has shown that the loss of overlap would be small enough that the resulting loss in signal-to-noise ratio (SNR) would be much less than the SNR loss associated with the use of a 340-GHz T/R switch.
    Keywords: Man/System Technology and Life Support
    Type: NPO-42924 , NASA Tech Briefs, May 2009; 9-10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 137
    Publication Date: 2019-07-12
    Description: A process has been developed for fabricating perfluoropolyether (PFPE) membranes that contain microscopic holes of precise sizes at precise locations. The membranes are to be incorporated into laboratory-on-a-chip microfluidic devices to be used in performing capillary electrophoresis. The present process is a modified version of part of the process, described in the immediately preceding article, that includes a step in which a liquid PFPE layer is cured into solid (membrane) form by use of ultraviolet light. In the present process, one exploits the fact that by masking some locations to prevent exposure to ultraviolet light, one can prevent curing of the PFPE in those locations. The uncured PFPE can be washed away from those locations in the subsequent release and cleaning steps. Thus, holes are formed in the membrane in those locations. The most straightforward way to implement the modification is to use, during the ultraviolet-curing step, an ultraviolet photomask similar to the photomasks used in fabricating microelectronic devices. In lieu of such a photomask, one could use a mask made of any patternable ultraviolet-absorbing material (for example, an ink or a photoresist).
    Keywords: Man/System Technology and Life Support
    Type: NPO-45782 , NASA Tech Briefs, May 2009; 17
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 138
    Publication Date: 2019-07-12
    Description: A document discusses the adaptation of a patented biomass-digesting process, denoted sequential batch anaerobic composting (SEBAC), to recycling of wastes aboard a spacecraft. In SEBAC, high-solids-content biomass wastes are converted into methane, carbon dioxide, and compost.
    Keywords: Man/System Technology and Life Support
    Type: MSC-23815-1 , NASA Tech Briefs, April 2009; 21
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 139
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: The JPL Electronic Nose (ENose) is a full-time, continuously operating event monitor designed to detect air contamination from spills and leaks in the crew habitat in the International Space Station. It fills the long-standing gap between onboard alarms and complex analytical instruments. ENose provides rapid, early identification and quantification of atmospheric changes caused by chemical species to which it has been trained. ENose can also be used to monitor cleanup processes after a leak or a spill.
    Keywords: Man/System Technology and Life Support
    Type: JSC-17962-15
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 140
    Publication Date: 2019-07-12
    Description: Inflatable/deployable structures are under consideration for applications as varied as expansion modules for the International Space Station to destinations for space tourism to habitats for the lunar surface. Monitoring and maintaining the integrity of the physical structure is critical, particularly since these structures rely on non-traditional engineering materials such as fabrics, foams, and elastomeric polymers to provide the primary protection for the human crew. The closely related prior concept of monitoring structural integrity by use of built-in or permanently attached sensors has been applied to structures made of such standard engineering materials as metals, alloys, and rigid composites. To effect monitoring of flexible structures comprised mainly of soft goods, however, it will be necessary to solve a different set of problems - especially those of integrating power and data-transfer cabling that can withstand, and not unduly interfere with, stowage and subsequent deployment of the structures. By incorporating capabilities for self-repair along with capabilities for structural health monitoring, successful implementation of these technologies would be a significant step toward semi-autonomous structures, which need little human intervention to maintain. This would not only increase the safety of these structures, but also reduce the inspection and maintenance costs associated with more conventional structures.
    Keywords: Man/System Technology and Life Support
    Type: NPO-44519 , NASA Tech Briefs, March 2009; 19
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 141
    Publication Date: 2019-07-12
    Description: The figure shows a biasable subharmonic mixer designed to operate in the frequency range from 520 to 600 GHz. This mixer is a prototype of low-power mixers needed for development of wideband, high-resolution spectrometers for measuring spectra of molecules in the atmospheres of Earth, other planets, and comets in the frequency range of 400 to 700 GHz. Three considerations dictated the main features of the design: It is highly desirable to operate the spectrometers at or slightly below room temperature. This consideration is addressed by choosing Schottky diodes as the frequency-mixing circuit elements because of all mixer diodes, Schottky diodes are the best candidates for affording sufficient sensitivity at or slightly below room-temperature range. The short wavelengths in the intended operating-frequency range translate to stringent requirements for precision of fabrication and assembly of the circuits; these requirements are even more stringent for wide-bandwidth circuits. This consideration is addressed in two ways: (1) As much as possible of the mixer circuitry is fabricated in the form of a monolithic integrated circuit on a GaAs membrane, employing a modified version of a process used previously to fabricate a non-subharmonic mixer for a frequency of 2.5 THz and frequency multipliers for frequencies up to 2 THz. (2) The remainder of the circuitry is precision machined into a waveguide block that holds the GaAs integrated circuit.
    Keywords: Man/System Technology and Life Support
    Type: NPO-43594 , NASA Tech Briefs, March 2009; 10-11
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 142
    Publication Date: 2019-07-12
    Description: A nanoporous membrane is used for the pervaporation process in which potable water is maintained, at atmospheric pressure, on the feed side of the membrane. The water enters the non-pervaporation (NPV) membrane device where it is separated into two streams -- retentate water and permeated water. The permeated pure water is removed by applying low vapor pressure on the permeate side to create water vapor before condensation. This permeated water vapor is subsequently condensed by coming in contact with the cool surface of a heat exchanger with heat being recovered through transfer to the feed water stream.
    Keywords: Man/System Technology and Life Support
    Type: MSC-24264-1/6-1 , NASA Tech Briefs, September 2009; 21
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 143
    Publication Date: 2019-07-12
    Description: A report presents a study addressing the question of which large-eddy simulation (LES) equations are appropriate for modeling the flow of evaporating drops of a multicomponent liquid in a gas (e.g., a spray of kerosene or diesel fuel in air). The LES equations are obtained from the direct numerical simulation (DNS) equations in which the solution is computed at all flow length scales, by applying a spatial low-pass filter. Thus, in LES the small scales are removed and replaced by terms that cannot be computed from the LES solution and instead must be modeled to retain the effect of the small scales into the equations. The mathematical form of these models is a subject of contemporary research. For a single-component liquid, there is only one LES formulation, but this study revealed that for a multicomponent liquid, there are two non-equivalent LES formulations for the conservation equations describing the composition of the vapor. Criteria were proposed for selecting the multicomponent LES formulation that gives the best accuracy and increased computational efficiency. These criteria were applied in examination of filtered DNS databases to compute the terms in the LES equations. The DNS databases are from mixing layers of diesel and kerosene fuels. The comparisons resulted in the selection of one of the multicomponent LES formulations as the most promising with respect to all criteria.
    Keywords: Man/System Technology and Life Support
    Type: NPO-45065 , NASA Tech Briefs, May 2009; 41
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 144
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: A software package that has been designed to allow authentication for determining if the rover(s) is/are within a set of boundaries or a specific area to access critical geospatial information by using GPS signal structures as a means to authenticate mobile devices into a network wirelessly and in real-time has been developed. The advantage lies in that the system only allows those with designated geospatial boundaries or areas into the server. The Geospatial Authentication software has two parts Server and Client. The server software is a virtual private network (VPN) developed in Linux operating system using Perl programming language. The server can be a stand-alone VPN server or can be combined with other applications and services. The client software is a GUI Windows CE software, or Mobile Graphical Software, that allows users to authenticate into a network. The purpose of the client software is to pass the needed satellite information to the server for authentication.
    Keywords: Man/System Technology and Life Support
    Type: SSC-00282 , NASA Tech Briefs, May 2009; 15
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 145
    Publication Date: 2019-07-12
    Description: Amorphous silk fibroin has shown promise as a polymeric material derivable from natural sources for making membranes for use in removing CO2 from mixed-gas streams. For most applications of silk fibroin, for purposes other than gas separation, this material is used in its highly crystalline, nearly natural form because this form has uncommonly high tensile strength. However, the crystalline phase of silk fibroin is impermeable, making it necessary to convert the material to amorphous form to obtain the high permeability needed for gas separation. Accordingly, one aspect of the present development is a process for generating amorphous silk fibroin by treating native silk fibroin in an aqueous methanol/salt solution. The resulting material remains self-standing and can be prepared as thin film suitable for permeation testing. The permeability of this material by pure CO2 has been found to be highly improved, and its mixed-gas permeability has been found to exceed the mixed-gas permeabilities of several ultrahigh-CO2-permeable synthetic polymers. Only one of the synthetic polymers poly(trimethylsilylpropyne) [PTMSP] may be more highly permeable by CO2. PTMSP becomes unstable with time, whereas amorphous silk should not, although at the time of this reporting this has not been conclusively proven.
    Keywords: Man/System Technology and Life Support
    Type: MSC-24032-1 , NASA Tech Briefs, May 2009; 22
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 146
    Publication Date: 2019-07-12
    Description: A document describes a conceptual transportation system that would support exploratory visits by humans to locations dispersed across the surface of the Moon and provide transport of humans and cargo to sustain one or more permanent Lunar outpost. The system architecture reflects requirements to (1) minimize the amount of vehicle hardware that must be expended while maintaining high performance margins and (2) take advantage of emerging capabilities to produce propellants on the Moon while also enabling efficient operation using propellants transported from Earth. The system would include reusable single- stage lander spacecraft and a depot in a low orbit around the Moon. Each lander would have descent, landing, and ascent capabilities. A crew-taxi version of the lander would carry a pressurized crew module; a cargo version could carry a variety of cargo containers. The depot would serve as a facility for storage and for refueling with propellants delivered from Earth or propellants produced on the Moon. The depot could receive propellants and cargo sent from Earth on a variety of spacecraft. The depot could provide power and orbit maintenance for crew vehicles from Earth and could serve as a safe haven for lunar crews pending transport back to Earth.
    Keywords: Man/System Technology and Life Support
    Type: MSC-24231-1 , NASA Tech Briefs, May 2009; 41
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 147
    Publication Date: 2019-07-12
    Description: The NASA Deep Space Network (DSN) requires a broadband VLBI (very long baseline interferometry) correlator to process data routinely taken as part of the VLBI source Catalogue Maintenance and Enhancement task (CAT M&E) and the Time and Earth Motion Precision Observations task (TEMPO). The data provided by these measurements are a crucial ingredient in the formation of precision deep-space navigation models. In addition, a VLBI correlator is needed to provide support for other VLBI related activities for both internal and external customers. The JPL VLBI Correlator (JVC) was designed, developed, and delivered to the DSN as a successor to the legacy Block II Correlator. The JVC is a full-capability VLBI correlator that uses software processes running on multiple computers to cross-correlate two-antenna broadband noise data. Components of this new system (see Figure 1) consist of Linux PCs integrated into a Beowulf Cluster, an existing Mark5 data storage system, a RAID array, an existing software correlator package (SoftC) originally developed for Delta DOR Navigation processing, and various custom- developed software processes and scripts. Parallel processing on the JVC is achieved by assigning slave nodes of the Beowulf cluster to process separate scans in parallel until all scans have been processed. Due to the single stream sequential playback of the Mark5 data, some ramp-up time is required before all nodes can have access to required scan data. Core functions of each processing step are accomplished using optimized C programs. The coordination and execution of these programs across the cluster is accomplished using Pearl scripts, PostgreSQL commands, and a handful of miscellaneous system utilities. Mark5 data modules are loaded on Mark5 Data systems playback units, one per station. Data processing is started when the operator scans the Mark5 systems and runs a script that reads various configuration files and then creates an experiment-dependent status database used to delegate parallel tasks between nodes and storage areas (see Figure 2). This script forks into three processes: extract, translate, and correlate. Each of these processes iterates on available scan data and updates the status database as the work for each scan is completed. The extract process coordinates and monitors the transfer of data from each of the Mark5s to the Beowulf RAID storage systems. The translate process monitors and executes the data conversion processes on available scan files, and writes the translated files to the slave nodes. The correlate process monitors the execution of SoftC correlation processes on the slave nodes for scans that have completed translation. A comparison of the JVC and the legacy Block II correlator outputs reveals they are well within a formal error, and that the data are comparable with respect to their use in flight navigation. The processing speed of the JVC is improved over the Block II correlator by a factor of 4, largely due to the elimination of the reel-to-reel tape drives used in the Block II correlator.
    Keywords: Man/System Technology and Life Support
    Type: NPO-46279 , NASA Tech Briefs, May 2009; 38-39
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 148
    Publication Date: 2019-07-12
    Description: A computational method and system based on a hybrid of an artificial neural network (NN) and a support vector machine (SVM) (see figure) has been conceived as a means of maximizing or minimizing an objective function, optionally subject to one or more constraints. Such maximization or minimization could be performed, for example, to optimize solve a data-regression or data-classification problem or to optimize a design associated with a response function. A response function can be considered as a subset of a response surface, which is a surface in a vector space of design and performance parameters. A typical example of a design problem that the method and system can be used to solve is that of an airfoil, for which a response function could be the spatial distribution of pressure over the airfoil. In this example, the response surface would describe the pressure distribution as a function of the operating conditions and the geometric parameters of the airfoil. The use of NNs to analyze physical objects in order to optimize their responses under specified physical conditions is well known. NN analysis is suitable for multidimensional interpolation of data that lack structure and enables the representation and optimization of a succession of numerical solutions of increasing complexity or increasing fidelity to the real world. NN analysis is especially useful in helping to satisfy multiple design objectives. Feedforward NNs can be used to make estimates based on nonlinear mathematical models. One difficulty associated with use of a feedforward NN arises from the need for nonlinear optimization to determine connection weights among input, intermediate, and output variables. It can be very expensive to train an NN in cases in which it is necessary to model large amounts of information. Less widely known (in comparison with NNs) are support vector machines (SVMs), which were originally applied in statistical learning theory. In terms that are necessarily oversimplified to fit the scope of this article, an SVM can be characterized as an algorithm that (1) effects a nonlinear mapping of input vectors into a higher-dimensional feature space and (2) involves a dual formulation of governing equations and constraints. One advantageous feature of the SVM approach is that an objective function (which one seeks to minimize to obtain coefficients that define an SVM mathematical model) is convex, so that unlike in the cases of many NN models, any local minimum of an SVM model is also a global minimum.
    Keywords: Man/System Technology and Life Support
    Type: ARC-14586 , NASA Tech Briefs, May 2009; 39-40
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 149
    Publication Date: 2019-07-12
    Description: Equations for computing tight bounds on error rates for coded pulse-position modulation (PPM) on a Poisson channel at high signal-to-noise ratio have been derived. These equations and elements of the underlying theory are expected to be especially useful in designing codes for PPM optical communication systems. The equations and the underlying theory apply, more specifically, to a case in which a) At the transmitter, a linear outer code is concatenated with an inner code that includes an accumulator and a bit-to-PPM-symbol mapping (see figure) [this concatenation is known in the art as "accumulate-PPM" (abbreviated "APPM")]; b) The transmitted signal propagates on a memoryless binary-input Poisson channel; and c) At the receiver, near-maximum-likelihood (ML) decoding is effected through an iterative process. Such a coding/modulation/decoding scheme is a variation on the concept of turbo codes, which have complex structures, such that an exact analytical expression for the performance of a particular code is intractable. However, techniques for accurately estimating the performances of turbo codes have been developed. The performance of a typical turbo code includes (1) a "waterfall" region consisting of a steep decrease of error rate with increasing signal-to-noise ratio (SNR) at low to moderate SNR, and (2) an "error floor" region with a less steep decrease of error rate with increasing SNR at moderate to high SNR. The techniques used heretofore for estimating performance in the waterfall region have differed from those used for estimating performance in the error-floor region. For coded PPM, prior to the present derivations, equations for accurate prediction of the performance of coded PPM at high SNR did not exist, so that it was necessary to resort to time-consuming simulations in order to make such predictions. The present derivation makes it unnecessary to perform such time-consuming simulations.
    Keywords: Man/System Technology and Life Support
    Type: NPO-42990 , NASA Tech Briefs, March 2009; 37
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 150
    Publication Date: 2019-07-13
    Description: Safe and reliable seal materials for high-pressure oxygen systems sometimes appear to be extinct species when sought out by oxygen systems designers. Materials that seal well are easy to find, but these materials are typically incompatible with oxygen, especially in cryogenic liquid form. This incompatibility can result in seals that leak, or much worse, seals that easily ignite and burn during use. Materials that are compatible with oxygen are easy to find, such as the long list of compatible metals, but these metallic materials are limiting as seal materials. A material that seals well and is oxygen compatible has been the big game in the designer's safari. Scientists at the Materials Combustion Research Facility (MCRF), part of NASA/Marshall Space Flight Center (MSFC), are constantly searching for better materials and processes to improve the safety of oxygen systems. One focus of this effort is improving the characteristics of polymers used in the presence of an oxygen enriched environment. Very few systems can be built which contain no polymeric materials; therefore, materials which have good impact resistance, low heat of combustion, high auto-ignition temperature and that maintain good mechanical properties are essential. The scientists and engineers at the Materials Combustion Research Facility, in cooperation with seal suppliers, are currently testing a new formulation of polytetrafluoroethylene (PTFE) with Brass filler. This Brass-filled PTFE is showing great promise as a seal and seat material for high pressure oxygen systems. Early research has demonstrated very encouraging results, which could rank this material as one of the best fluorinated polymers ever tested. This paper will compare the data obtained for Brass-filled PTFE with other fluorinated polymers, such as TFE-Teflon (PTFE) , Kel-F 81, Viton A, Viton A-500, Fluorel , and Algoflon . A similar metal filled fluorinated polymer, Salox-M , was tested in comparison to Brass-filled PTFE to demonstrate the importance of the metal chosen and relative percentage of filler. General conclusions on the oxygen compatibility of this formulation are drawn, with an emphasis on comparing and contrasting the materials performance to the performance of the current state-of-the-art oxygen compatible polymers.
    Keywords: Man/System Technology and Life Support
    Type: M09-0199 , 12th International Symposium on Flammability and Sensitivity on Materital in Oxygen Enriched Atmospheres; Oct 07, 2009 - Oct 09, 2009; Berlin; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 151
    Publication Date: 2019-07-13
    Description: The International Space Station (ISS) currently provides potable water dispensing for rehydrating crewmembers food and drinking packages with one system located in the United States On-orbit Segment (USOS) and one system in the Russian Segment. The USOS Potable Water Dispenser (PWD) was delivered to ISS on ULF2, Shuttle Mission STS-126, and was subsequently activated in November 2008. The PWD activation on ISS is capable of supporting an ISS crew of six but nominally supplies only half the crew. The PWD is designed to provide incremental quantities of hot and ambient temperature potable water to US style food packages. PWD receives iodinated water from the US Laboratory Fuel Cell Water Bus, which is fed from the Water Processing Assembly (WPA). The PWD removes the biocidal iodine to make the water potable prior to dispensing. A heater assembly contained within the unit supplies up to 2.0 liters of hot water (65 to 93oC) every thirty minutes. This quantity supports three to four crewmembers to rehydrate their food and beverages from this location during a single meal. The unit is designed to remain functional for up to ten years with replacement of limited life items such as filters. To date, the PWD on-orbit performance has been acceptable. Since activation of the PWD, there have been several differences between on-orbit functionality and expected performance of hardware design. The comparison of on-orbit functionality to performance of hardware design is outlined for the following key areas: microbiology, PWD to food package water leakage, no-dispense scenarios, under-dispense scenarios, and crewmember feedback on actual on-orbit use.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-19125 , International Conference on Environmental Systems; Jul 11, 2010 - Jul 15, 2010; Barcelona; Spain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 152
    Publication Date: 2019-07-13
    Description: NASA has completed the delivery of the regenerative Water Recovery System (WRS) for the International Space Station (ISS). The major assemblies included in this system are the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA). This paper summarizes the final effort to deliver the hardware to the Kennedy Space Center for launch on STS-126, the on-orbit status as of April 2009, and describes some of the technical challenges encountered and lessons learned over the past year.
    Keywords: Man/System Technology and Life Support
    Type: M09-0530 , 2009-01-2352 , International Conference on Environmental Systems; Jul 12, 2009 - Jul 16, 2009; Savannah, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 153
    Publication Date: 2019-07-13
    Description: The processing of lunar regolith for the production of oxygen is a key component of the In-Situ Resource Utilization plans currently being developed by NASA. Among various candidate processes, the modeling of oxygen production by hydrogen reduction, molten salt electrolysis, and carbothermal processing are presently being pursued. In the carbothermal process, a portion of the surface of the regolith in a container is heated by exposure to a heat source such as a laser beam or a concentrated solar heat flux, so that a small zone of molten regolith is established. The molten zone is surrounded by solid regolith particles that are poor conductors of heat. A continuous flow of methane is maintained over the molten regolith zone. Our model is based on a mechanism where methane pyrolyzes when it comes in contact with the surface of the hot molten regolith to form solid carbon and hydrogen gas. Carbon is deposited on the surface of the melt, and hydrogen is released into the gas stream above the melt surface. We assume that the deposited carbon mixes in the molten regolith and reacts with metal oxides in a reduction reaction by which gaseous carbon monoxide is liberated. Carbon monoxide bubbles through the melt and is released into the gas stream. Oxygen is produced subsequently by (catalytically) processing the carbon monoxide downstream. In this paper, we discuss the development of a chemical conversion model of the carbothermal process to predict the rate of production of carbon monoxide.
    Keywords: Man/System Technology and Life Support
    Type: NASA/TM-2009-215622 , E-16616-1 , Space Technology and Applications International Forum (STAIF-2008); Feb 10, 2008 - Feb 14, 2008; Albuquerque, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 154
    Publication Date: 2019-07-13
    Description: The experiment addresses the following high-priority NASA Risk Gaps in the Behavioral Health and Performance (BHP) area: 1) Identify brief, valid objective measures of changes in cognitive functions during spaceflight that astronauts can use with minimal burden. 2) Find a practical objective aid for astronauts to quickly identify and manage the effects of fatigue (from sleep loss, circadian disruptions, workload and other factors) on their performance during space flight.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-18714 , Increment 21/22 Science Symposium; Sep 02, 2009 - Sep 03, 2009; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 155
    Publication Date: 2019-07-13
    Description: This slide presentation reviews the use of variable pressure suits, intermittent recompression and Nitrox breathing mixtures to allow for multiple short extravehicular activities (EVAs) at different locations in a day. This new operational concept of multiple short EVAs requires short purge times and shorter prebreathes to assure rapid egress with a minimal loss of the vehicular air. Preliminary analysis has begun to evaluate the potential benefits of the intermittent recompression, and Nitrox breathing mixtures when used with variable pressure suits to enable reduce purges and prebreathe durations.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-18502 , Undersea and Hyperbaric Medical Society Annual Meeting; Jun 25, 2009 - Jun 27, 2009; Las Vegas, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 156
    Publication Date: 2019-07-13
    Description: Exploration Life Support (ELS) is one of NASA's Exploration Technology Development Projects. ELS plans, coordinates and implements the development of new life support technologies for human exploration missions as outlined in NASA's Vision for Space Exploration. ELS technology development currently supports three major projects of the Constellation Program - the Orion Crew Exploration Vehicle (CEV), the Altair Lunar Lander and Lunar Surface Systems. ELS content includes Air Revitalization Systems (ARS), Water Recovery Systems (WRS), Waste Management Systems (WMS), Habitation Engineering, Systems Integration, Modeling and Analysis (SIMA), and Validation and Testing. The primary goal of the ELS project is to provide different technology options to Constellation which fill gaps or provide substantial improvements over the state-of-the-art in life support systems. Since the Constellation missions are so challenging, mass, power, and volume must be reduced from Space Shuttle and Space Station technologies. Systems engineering analysis also optimizes the overall architecture by considering all interfaces with the life support system and potential for reduction or reuse of resources. For long duration missions, technologies which aid in closure of air and water loops with increased reliability are essential as well as techniques to minimize or deal with waste. The ELS project utilizes in-house efforts at five NASA centers, aerospace industry contracts, Small Business Innovative Research contracts and other means to develop advanced life support technologies. Testing, analysis and reduced gravity flight experiments are also conducted at the NASA field centers. This paper gives a current status of technologies under development by ELS and relates them to the Constellation customers who will eventually use them.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-17887 , JSC-CN-18743 , Space 2009; Sep 14, 2009 - Sep 17, 2009; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 157
    Publication Date: 2019-07-13
    Description: This slide presentation reviews the ongoing work on human factors and habitability in the development of the Constellation Program. The focus of the work is on how equipment, spacecraft design, tools, procedures and nutrition be used to improve the health, safety and efficiency of the crewmembers. There are slides showing the components of the Constellation Program, and the conceptual designs of the Orion Crew module, the lunar lander, (i.e., Altair) the microgravity EVA suit, and the lunar surface EVA suit, the lunar rover, and the lunar surface system infrastructure.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-19320 , Overview of Human Factors and Habitability at NASA (Meetings with NSBRI team leads); Nov 17, 2009 - Nov 18, 2009; Philadelphia, PA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 158
    Publication Date: 2019-07-13
    Description: NASA's Constellation Program has plans to return to the Moon within the next 10 years. Although reaching the Moon during the Apollo Program was a remarkable human engineering achievement, fewer than 20 extravehicular activities (EVAs) were performed. Current projections indicate that the next lunar exploration program will require thousands of EVAs, which will require spacesuits that are better optimized for human performance. Limited mobility and dexterity, and the position of the center of gravity (CG) are a few of many features of the Apollo suit that required significant crew compensation to accomplish the objectives. Development of a new EVA suit system will ideally result in performance close to or better than that in shirtsleeves at 1 G, i.e., in "a suit that is a pleasure to work in, one that you would want to go out and explore in on your day off." Unlike the Shuttle program, in which only a fraction of the crew perform EVA, the Constellation program will require that all crewmembers be able to perform EVA. As a result, suits must be built to accommodate and optimize performance for a larger range of crew anthropometry, strength, and endurance. To address these concerns, NASA has begun a series of tests to better understand the factors affecting human performance and how to utilize various lunar gravity simulation environments available for testing.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-19301 , Next-Generation Suborbital Researchers Conference; Feb 18, 2010 - Feb 20, 2010; Boulder, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 159
    Publication Date: 2019-07-13
    Description: NASA EVA Physiology, Systems and Performance (EPSP) Project at JSC has been investigating the effects of Center of Gravity and other factors on astronaut performance in reduced gravity. A subset of the studies have been performed with the water immersion technique. Study results show correlation between Center of Gravity location and performance. However, data variability observed between subjects for prescribed Center of Gravity configurations. The hypothesis is that Anthropometric differences between test subjects could be a source of the performance variability.
    Keywords: Man/System Technology and Life Support
    Type: 39th International Conference on Environmental Systems; Jul 12, 2009 - Jul 16, 2009; Georgia; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 160
    Publication Date: 2019-07-13
    Description: Under a cooperative agreement with NASA, Hamilton Sundstrand has successfully designed, fabricated, tested and delivered three, state-of-the-art, solid amine prototype systems capable of continuous CO2 and humidity removal from a closed, habitable atmosphere. Two prototype systems (CAMRAS #1 and #2) incorporated a linear spool valve design for process flow control through the sorbent beds, with the third system (CAMRAS #3) employing a rotary valve assembly that improves system fluid interfaces and regeneration capabilities. The operational performance of CAMRAS #1 and #2 has been validated in a relevant environment, through both simulated human metabolic loads in a closed chamber and through human subject testing in a closed environment. Performance testing at Hamilton Sundstrand on CAMRAS #3, which incorporates a new valve and modified canister design, showed similar CO2 and humidity removal performance as CAMRAS #1 and #2, demonstrating that the system form can be modified within certain bounds with little to no effect in system function or performance. Demonstration of solid amine based CO2 and humidity control is an important milestone in developing this technology for human spaceflight. The systems have low power requirements; with power for air flow and periodic valve actuation and indication the sole requirements. Each system occupies the same space as roughly four shuttle non-regenerative LiOH canisters, but have essentially indefinite CO2 removal endurance provided a regeneration pathway is available. Using the solid amine based systems to control cabin humidity also eliminates the latent heat burden on cabin thermal control systems and the need for gas/liquid phase separation in a low gravity environment, resulting in additional simplification of vehicle environmental control and life support system process requirements.
    Keywords: Man/System Technology and Life Support
    Type: 09ICES-0212 , JSC-CN-18290 , 39th International Conference on Environmental Systems; Jul 12, 2009 - Jul 16, 2009; Savannah, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 161
    Publication Date: 2019-07-13
    Description: The stability of silver biocide, used to keep drinking water on the CEV potable water sterile, is unknown as the system design is still in progress. Silver biocide in water can deplete rapidly when exposed to various metal surfaces. Additionally, silver depletion rates may be affected by the surface-area-to-volume (SA/V) ratios in the water system. Therefore, to facilitate the CEV water system design, it would be advantageous to know the biocide depletion rates in water exposed to the surfaces of these candidate metals at various SA/V ratios. Certain surface treatments can be employed to reduce the depletion rates of silver compared to the base metal. The purpose of this work is to determine the compatibility of specific spaceflight-certified metals that could used in the design of the CEV potable water system with silver biocide as well as understand the effect of surface are to volume ratios of metals used in the construction of the potable water system on the silver concentration.
    Keywords: Man/System Technology and Life Support
    Type: 09ICES-0291 , JSC-CN-18275 , 39th International Conference on Environmental Systems; Jul 12, 2009 - Jul 16, 2009; Savannah, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 162
    Publication Date: 2019-07-13
    Description: A compact, low-power electrochemically-driven fluid cooling pump is currently being developed by Lynntech, Inc. With no electric motor and minimal lightweight components, the pump is significantly lighter than conventional rotodynamic and displacement pumps. Reliability and robustness is achieved with the absence of rotating or moving components (apart from the bellows). By employing sulfonated polystyrene-based proton exchange membranes, rather than conventional Nafion membranes, a significant reduction in the actuator power consumption was demonstrated. Lynntech also demonstrated that these membranes possess the necessary mechanical strength, durability, and temperature range for long life space operation. The preliminary design for a Phase II prototype pump compares very favorably to the fluid cooling pumps currently used in space suit primary life support systems (PLSSs). Characteristics of the electrochemically-driven pump are described and the benefits of the technology as a replacement for electric motor pumps in mechanically pumped single-phase fluid loops is discussed.
    Keywords: Man/System Technology and Life Support
    Type: 09ICES-0305 , JSC-CN-18104 , 39th International Conference on Environmental Systems; Jul 12, 2009 - Jul 16, 2009; Savannah, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 163
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: For NASA, human-centered design (HCD) seeks opportunities to mitigate the challenges of living and working in space in order to enhance human productivity and well-being. Direct design participation during the development stage is difficult, however, during project formulation, a HCD approach can lead to better more cost-effective products. HCD can also help a program enter the development stage with a clear vision for product acquisition. HCD tools for clarifying design intent are listed. To infuse HCD into the spaceflight lifecycle the Space and Life Sciences Directorate developed the Habitability Design Center. The Center has collaborated successfully with program and project design teams and with JSC's Engineering Directorate. This presentation discusses HCD capabilities and depicts the Center's design examples and capabilities.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-18281 , Aerospace Medical Association Annual Meeting; May 03, 2009 - May 07, 2009; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 164
    Publication Date: 2019-08-14
    Description: Life support systems are a critical part of human exploration beyond low earth orbit. NASA s Altair Lunar Lander has unique missions to perform and will need a unique life support system to complete them. Initial work demonstrated a feasible minimally-functional Lander design. This work was completed in Design Analysis Cycles (DAC) 1, 2, and 3 were reported in a previous paper. On October 21, 2008, the Altair project completed the Mission Concept Review (MCR), moving the project into Phase A. In Phase A activities, the project is preparing for the System Requirements Review (SRR). Altair has conducted two Requirements Analysis Cycles (RACs) to begin this work. During this time, the life support team must examine the Altair mission concepts, Constellation Program level requirements, and interfaces with other vehicles and spacesuits to derive the right set of requirements for the new vehicle. The minimum functionality design meets some of these requirements already and can be easily adapted to meet others. But Altair must identify which will be more costly in mass, power, or other resources to meet. These especially costly requirements must be analyzed carefully to be sure they are truly necessary, and are the best way of explaining and meeting the true need. If they are necessary and clear, they become important mass threats to track at the vehicle level. If they are not clear or do not seem necessary to all stakeholders, Altair must work to redefine them or push back on the requirements writers. Additionally, the life support team is evaluating new technologies to see if they are more effective than the existing baseline design at performing necessary functions in Altair s life support system.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-19265 , 40th International Conference on Environmental Systems; Jul 11, 2010 - Jul 15, 2010; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 165
    Publication Date: 2019-07-12
    Description: Performance enhancements associated with selected forms of automation were quantified in a recent human-in-the-loop evaluation of two candidate operational concepts for fault management on next-generation spacecraft. The baseline concept, called Elsie, featured a full-suite of "soft" fault management interfaces. However, operators were forced to diagnose malfunctions with minimal assistance from the standalone caution and warning system. The other concept, called Besi, incorporated a more capable C&W system with an automated fault diagnosis capability. Results from analyses of participants' eye movements indicate that the greatest empirical benefit of the automation stemmed from eliminating the need for text processing on cluttered, text-rich displays.
    Keywords: Man/System Technology and Life Support
    Type: ARC-E-DAA-TN1222
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 166
    Publication Date: 2019-07-12
    Description: Two prototype Reconfigurable, Bi-directional Flexfet Level Shifters (ReBiLS) have been developed, where one version is a stand-alone component designed to interface between external low voltage and high voltage, and the other version is an embedded integrated circuit (IC) for interface between internal low-voltage logic and external high-voltage components. Targeting stand-alone and embedded circuits separately allows optimization for these distinct applications. Both ReBiLS designs use the commercially available 180-nm Flex fet Independently Double-Gated (IDG) SOI CMOS (silicon on insulator, complementary metal oxide semiconductor) technology. Embedded ReBiLS circuits were integrated with a Reed-Solomon (RS) encoder using CMOS Ultra-Low-Power Radiation Tolerant (CULPRiT) double-gated digital logic circuits. The scope of the project includes: creation of a new high-voltage process, development of ReBiLS circuit designs, and adjustment of the designs to maximize performance through simulation, layout, and manufacture of prototypes. The primary technical objectives were to develop a high-voltage, thick oxide option for the 180-nm Flexfet process, and to develop a stand-alone ReBiLS IC with two 8-channel I/O busses, 1.8 2.5 I/O on the low-voltage pins, 5.0-V-tolerant input and 3.3-V output I/O on the high-voltage pins, and 100-MHz minimum operation with 10-pF external loads. Another objective was to develop an embedded, rad-hard ReBiLS I/O cell with 0.5-V low-voltage operation for interface with core logic, 5.0-V-tolerant input and 3.3-V output I/O pins, and 100-MHz minimum operation with 10- pF external loads. A third objective was to develop a 0.5- V Reed-Solomon Encoder with embedded ReBilS I/O: Transfer the existing CULPRiT RS encoder from a 0.35-micron bulk-CMOS process to the ASI 180-nm Flexfet, rad-hard SOI Process. 0.5-V low-voltage core logic. 5.0-V-tolerant input and 3.3-V output I/O pins. 100-MHz minimum operation with 10- pF external loads. The stand-alone ReBiLS chip will allow system designers to provide efficient bi-directional communication between components operating at different voltages. Embedding the ReBiLS cells into the proven Reed-Solomon encoder will demonstrate the ability to support new product development in a commercially viable, rad-hard, scalable 180-nm SOI CMOS process.
    Keywords: Man/System Technology and Life Support
    Type: GSC-15565-1 , NASA Tech Briefs, December 2009; 13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 167
    Publication Date: 2019-07-12
    Description: A crater-detection algorithm has been conceived to enable automation of what, heretofore, have been manual processes for utilizing images of craters on a celestial body as landmarks for navigating a spacecraft flying near or landing on that body. The images are acquired by an electronic camera aboard the spacecraft, then digitized, then processed by the algorithm, which consists mainly of the following steps: 1. Edges in an image detected and placed in a database. 2. Crater rim edges are selected from the edge database. 3. Edges that belong to the same crater are grouped together. 4. An ellipse is fitted to each group of crater edges. 5. Ellipses are refined directly in the image domain to reduce errors introduced in the detection of edges and fitting of ellipses. 6. The quality of each detected crater is evaluated. It is planned to utilize this algorithm as the basis of a computer program for automated, real-time, onboard processing of crater-image data. Experimental studies have led to the conclusion that this algorithm is capable of a detection rate 〉93 percent, a false-alarm rate 〈5 percent, a geometric error 〈0.5 pixel, and a position error 〈0.3 pixel.
    Keywords: Man/System Technology and Life Support
    Type: NPO-40122 , NASA Tech Briefs, December 2009; 23
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 168
    Publication Date: 2019-07-12
    Description: A single-pixel prototype of a W-band detector module with a digital back-end was developed to serve as a building block for large focal-plane arrays of monolithic millimeter-wave integrated circuit (MMIC) detectors. The module uses low-noise amplifiers, diode-based mixers, and a WR10 waveguide input with a coaxial local oscillator. State-of-the-art InP HEMT (high electron mobility transistor) MMIC amplifiers at the front end provide approximately 40 dB of gain. The measured noise temperature of the module, at an ambient temperature of 300 K, was found to be as low as 450 K at 95 GHz. The modules will be used to develop multiple instruments for astrophysics radio telescopes, both on the ground and in space. The prototype is being used by Stanford University to characterize noise performance at cryogenic temperatures. The goal is to achieve a 30-50 K noise temperature around 90 GHz when cooled to a 20 K ambient temperature. Further developments include characterization of the IF in-phase (I) and quadrature (Q) signals as a function of frequency to check amplitude and phase; replacing the InP low-noise amplifiers with state-of-the-art 35-nm-gate-length NGC low-noise amplifiers; interfacing the front-end module with a digital back-end spectrometer; and developing a scheme for local oscillator and IF distribution in a future array. While this MMIC is being developed for use in radio astronomy, it has the potential for use in other industries. Applications include automotive radar (both transmitters and receivers), communication links, radar systems for collision avoidance, production monitors, ground-penetrating sensors, and wireless personal networks.
    Keywords: Man/System Technology and Life Support
    Type: NPO-46522 , NASA Tech Briefs, December 2009; 14-15
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 169
    Publication Date: 2019-07-12
    Description: This innovation is designed to prevent a single end system communication node from negatively influencing the whole system s behavior so that the network system can still operate if an end node is faulty. Placing a hub (star) in the middle of the system prevents propagation of critical control information that other end systems would react to, like block reset messages.
    Keywords: Man/System Technology and Life Support
    Type: MSC-24459-1 , NASA Tech Briefs, December 2009; 14
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 170
    Publication Date: 2019-07-12
    Description: A prototype embedded avionics system has been designed for the next generation of NASA extra-vehicular-activity (EVA) spacesuits. The system performs biomedical and other sensor monitoring, image capture, data display, and data transmission. An existing NASA Phase I and II award winning design for an embedded computing system (ZIN vMetrics - BioWATCH) has been modified. The unit has a reliable, compact form factor with flexible packaging options. These innovations are significant, because current state-of-the-art EVA spacesuits do not provide capability for data displays or embedded data acquisition and management. The Phase 1 effort achieved Technology Readiness Level 4 (high fidelity breadboard demonstration). The breadboard uses a commercial-grade field-programmable gate array (FPGA) with embedded processor core that can be upgraded to a space-rated device for future revisions.
    Keywords: Man/System Technology and Life Support
    Type: LEW-18399-1 , NASA Tech Briefs, December 2009; 14
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 171
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: Superconducting electronic components have been developed that provide current rectification that is tunable by design and with an externally applied magnetic field to the circuit component. The superconducting material used in the device is relatively free of pinning sites with its critical current determined by a geometric energy barrier to vortex entry. The ability of the vortices to move freely inside the device means this innovation does not suffer from magnetic hysteresis effects changing the state of the superconductor. The invention requires a superconductor geometry with opposite edges along the direction of current flow. In order for the critical current asymmetry effect to occur, the device must have different vortex nucleation conditions at opposite edges. Alternative embodiments producing the necessary conditions include edges being held at different temperatures, at different local magnetic fields, with different current-injection geometries, and structural differences between opposite edges causing changes in the size of the geometric energy barrier. An edge fabricated with indentations of the order of the coherence length will significantly lower the geometric energy barrier to vortex entry, meaning vortex passage across the device at lower currents causing resistive dissipation. The existing prototype is a two-terminal device consisting of a thin-film su - perconducting strip operating at a temperature below its superconducting transition temperature (Tc). Opposite ends of the strip are connected to electrical leads made of a higher Tc superconductor. The thin-film lithographic process provides an easy means to alter edge-structures, current-injection geo - metries, and magnetic-field conditions at the edges. The edge-field conditions can be altered by using local field(s) generated from dedicated higher Tc leads or even using the device s own higher Tc superconducting leads.
    Keywords: Man/System Technology and Life Support
    Type: GSC-15643-1 , NASA Tech Briefs, December 2009; 15
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 172
    Publication Date: 2019-07-12
    Description: A proposed development of laser-based instrumentation systems would extend the art of laser Doppler vibrometry beyond the prior limits of laser-assisted remote hearing and industrial vibrometry for detecting defects in operating mechanisms. A system according to the proposal could covertly measure vibrations of objects at distances as large as thousands of kilometers and could process the measurement data to enable recognition of vibrations characteristic of specific objects of interest, thereby enabling recognition of the objects themselves. A typical system as envisioned would be placed in orbit around the Earth for use as a means of determining whether certain objects on or under the ground are of interest as potential military targets. Terrestrial versions of these instruments designed for airborne or land- or sea-based operation could be similarly useful for military or law-enforcement purposes. Prior laser-based remote-hearing systems are not capable of either covert operation or detecting signals beyond modest distances when operated at realistic laser power levels. The performances of prior systems for recognition of objects by remote vibrometry are limited by low signal-to-noise ratios and lack of filtering of optical signals returned from targets. The proposed development would overcome these limitations. A system as proposed would include a narrow-band laser as its target illuminator, a lock-in-detection receiver subsystem, and a laser-power-control subsystem that would utilize feedback of the intensity of background illumination of the target to adjust the laser power. The laser power would be set at a level high enough to enable the desired measurements but below the threshold of detectability by an imaginary typical modern photodetector located at the target and there exposed to the background illumination. The laser beam would be focused tightly on the distant target, such that the receiving optics would be exposed to only one speckle. The return signal would be extremely-narrow-band filtered (to sub-kilohertz bandwidth) in the optical domain by a whispering-gallery- mode filter so as to remove most of the background illumination. The filtered optical signal would be optically amplified. This combination of optical filtering and optical amplification would provide an optical signal that would be strong enough to be detectable but not so strong as to saturate the detector in the lock-in detection subsystem.
    Keywords: Man/System Technology and Life Support
    Type: NPO-45309 , NASA Tech Briefs, December 2009; 7
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 173
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: A portable system of electromechanical and electronic hardware and documentation has been developed as an automated means of instructing technicians in matters of safety and quality. The system enables elimination of most of the administrative tasks associated with traditional training. Customized, performance-based, hands-on training with integral testing is substituted for the traditional instructional approach of passive attendance in class followed by written examination.
    Keywords: Man/System Technology and Life Support
    Type: MSC-23232-1 , NASA Tech Briefs, December 2009; 24
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 174
    Publication Date: 2019-07-12
    Description: A proposed system for storing oxygen in liquid form and dispensing it in gaseous form is based on (1) initial subcooling of the liquid oxygen; (2) containing the liquid oxygen in a flexible vessel; (3) applying a gas spring to the flexible vessel to keep the oxygen compressed above the saturation pressure and, thus, in the liquid state; and (4) using heat leakage into the system for vaporizing the oxygen to be dispensed. In a typical prior system based on these principles, the flexible vessel is a metal bellows housed in a rigid tank, and the gas spring consists of pressurized helium in the tank volume surrounding the bellows. Unfortunately, the welds in the bellows corrugations are subject to fatigue, and, because bellows have large ullage, a correspondingly large fraction of the oxygen content cannot be expelled. In the proposed system, the flexible vessel would be a bladder made of a liquid- crystal polymer (LCP). (LCPs are strong and compatible with liquid oxygen.) In comparison with a metal bellows, a polymeric bladder would have less ullage and would weigh less. In experiments involving fatigue cycling at liquid-nitrogen temperatures, two LCPs were found to be suitable for this application.
    Keywords: Man/System Technology and Life Support
    Type: MSC-22943-1 , NASA Tech Briefs, December 2009; 20
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 175
    Publication Date: 2019-07-12
    Description: In this invention, command and monitor functionality is moved between the two independent pieces of hardware, in which one had been dedicated to command and the other had been dedicated to monitor, such that some command and some monitor functionality appears in each. The only constraint is that the monitor for signal cannot be in the same hardware as the command I/O it is monitoring. The splitting of the command outputs between independent pieces of hardware may require some communication between them, i.e. an intra-switch trunk line. This innovation reduces the amount of wasted hardware and allows the two independent pieces of hardware to be designed identically in order to save development costs.
    Keywords: Man/System Technology and Life Support
    Type: MSC-24458-1 , NASA Tech Briefs, December 2009; 13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 176
    Publication Date: 2019-07-12
    Description: A new process uses local heating and temperature monitoring to soften the adhesive under Invar clips enough that they can be removed without damaging the composite underneath or other nearby bonds. Two 1x1 in. (approx.2.5x2.5 cm), 10-W/sq in. (approx.1.6-W/sq cm), 80-ohm resistive foil Kapton foil heaters, with pressure-sensitive acrylic adhesive backing, are wired in parallel to a 50-V, 1-A limited power supply. At 1 A, 40 W are applied to the heater pair. The temperature is monitored in the clip radius and inside the tube, using a dual thermocouple readout. Several layers of aluminum foil are used to speed the heat up, allowing clips to be removed in less than five minutes. The very local heating via the foil heaters allows good access for clip removal and protects all underlying and adjacent materials.
    Keywords: Man/System Technology and Life Support
    Type: GSC-15770-1 , NASA Tech Briefs, December 2009; 17
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 177
    Publication Date: 2019-07-12
    Description: A document discusses the development of a finite element model for describing thermal transport through microcalorimeter arrays in order to assist in heat-sinking design. A fabricated multi-absorber transition edge sensor (PoST) was designed in order to reduce device wiring density by a factor of four. The finite element model consists of breaking the microcalorimeter array into separate elements, including the transition edge sensor (TES) and the silicon substrate on which the sensor is deposited. Each element is then broken up into subelements, whose surface area subtends 10 10 microns. The heat capacity per unit temperature, thermal conductance, and thermal diffusivity of each subelement are the model inputs, as are the temperatures of each subelement. Numerical integration using the Finite in Time Centered in Space algorithm of the thermal diffusion equation is then performed in order to obtain a temporal evolution of the subelement temperature. Thermal transport across interfaces is modeled using a thermal boundary resistance obtained using the acoustic mismatch model. The document concludes with a discussion of the PoST fabrication. PoSTs are novel because they enable incident x-ray position sensitivity with good energy resolution and low wiring density.
    Keywords: Man/System Technology and Life Support
    Type: GSC-15671-1 , NASA Tech Briefs, December 2009; 27
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 178
    Publication Date: 2019-07-12
    Description: Three-dimensional (3D) optical coherence tomography (OCT) is an advanced method of noninvasive infrared imaging of tissues in depth. Heretofore, commercial OCT systems for 3D imaging have been designed principally for external ophthalmological examination. As explained below, such systems have been based on a one-dimensional OCT principle, and in the operation of such a system, 3D imaging is accomplished partly by means of a combination of electronic scanning along the optical (Z) axis and mechanical scanning along the two axes (X and Y) orthogonal to the optical axis. In 3D OCT, 3D imaging involves a form of electronic scanning (without mechanical scanning) along all three axes. Consequently, the need for mechanical adjustment is minimal and the mechanism used to position the OCT probe can be correspondingly more compact. A 3D OCT system also includes a probe of improved design and utilizes advanced signal- processing techniques. Improvements in performance over prior OCT systems include finer resolution, greater speed, and greater depth of field.
    Keywords: Man/System Technology and Life Support
    Type: LEW-18352-1 , NASA Tech Briefs, May 2009; 43-44
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 179
    Publication Date: 2019-07-12
    Description: This compact, lightweight, dual-frequency antenna feed developed for future soil moisture and sea surface salinity (SSS) missions can benefit future soil and ocean studies by lowering mass, volume, and cost of the antenna system. It also allows for airborne soil moisture and salinity remote sensors operating on small aircraft. While microstrip antenna technology has been developed for radio communications, it has yet to be applied to combined radar and radiometer for Earth remote sensing. The antenna feed provides a key instrument element enabling high-resolution radiometric observations with large, deployable antennas. The design is based on the microstrip stacked-patch array (MSPA) used to feed a large, lightweight, deployable, rotating mesh antenna for spaceborne L-band (approximately equal to 1 GHz) passive and active sensing systems. The array consists of stacked patches to provide dual-frequency capability and suitable radiation patterns. The stacked-patch microstrip element was designed to cover the required L-band center frequencies at 1.26 GHz (lower patch) and 1.413 GHz (upper patch), with dual-linear polarization capabilities. The dimension of patches produces the required frequencies. To achieve excellent polarization isolation and control of antenna sidelobes for the MSPA, the orientation of each stacked-patch element within the array is optimized to reduce the cross-polarization. A specialized feed-distribution network was designed to achieve the required excitation amplitude and phase for each stacked-patch element.
    Keywords: Man/System Technology and Life Support
    Type: NPO-44470 , NASA Tech Briefs, May 2009; 6-7
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 180
    Publication Date: 2019-07-12
    Description: A mechanical fitting and relatively simple and safe method of installing it on the metal case of a battery have been devised to provide access to the interior of the battery to perform inspection and/or to measure such internal conditions as temperature and pressure. A metal boss or stud having an exterior thread is attached to the case by capacitor-discharge stud welding (CDSW), which takes only 3 to 6 milliseconds and in which the metallurgical bond (weld) and the heat-affected zone are limited to a depth of a few thousandths of an inch (a few hundredths of a millimeter). These characteristics of CDSW prevent distortion of the case and localized internal heating that could damage the chemical components inside of the battery. An access hole is then drilled through the stud and case, into the interior of the battery. A mechanical fitting having a matching thread is installed on the stud and the interior end of the fitting is sealed with a pressure-sealing washer/gasket. The exterior end of the fitting is configured for attachment of whatever instrumentation is required for the selected inspection or measurement.
    Keywords: Man/System Technology and Life Support
    Type: MSC-23827-1 , NASA Tech Briefs, May 2009; 18
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 181
    Publication Date: 2019-07-12
    Description: A highly efficient means of microfluidic mixing has been created for use with the rHEALTH sensor an elliptical mixer and passive curvilinear mixing patterns. The rHEALTH sensor provides rapid, handheld, complete blood count, cell differential counts, electrolyte measurements, and other lab tests based on a reusable, flow-based microfluidic platform. These geometries allow for cleaning in a reusable manner, and also allow for complete mixing of fluid streams. The microfluidic mixing is performed by flowing two streams of fluid into an elliptical or curvilinear design that allows the combination of the flows into one channel. The mixing is accomplished by either chaotic advection around micro - fluidic loops. All components of the microfluidic chip are flow-through, meaning that cleaning solution can be introduced into the chip to flush out cells, plasma proteins, and dye. Tests were performed on multiple chip geometries to show that cleaning is efficient in any flowthrough design. The conclusion from these experiments is that the chip can indeed be flushed out with microliter volumes of solution and biological samples are cleaned readily from the chip with minimal effort. The technology can be applied in real-time health monitoring at patient s bedside or in a doctor s office, and real-time clinical intervention in acute situations. It also can be used for daily measurement of hematocrit for patients on anticoagulant drugs, or to detect acute myocardial damage outside a hospital.
    Keywords: Man/System Technology and Life Support
    Type: LEW-18391-1 , NASA Tech Briefs, May 2009; 49-50
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 182
    Publication Date: 2019-07-12
    Description: Several techniques for manipulating neutral atoms (more precisely, ultracold clouds of neutral atoms) in chip-based magnetic traps and atomic waveguides have been demonstrated. Such traps and waveguides are promising components of future quantum sensors that would offer sensitivities much greater than those of conventional sensors. Potential applications include gyroscopy and basic research in physical phenomena that involve gravitational and/or electromagnetic fields. The developed techniques make it possible to control atoms with greater versatility and dexterity than were previously possible and, hence, can be expected to contribute to the value of chip-based magnetic traps and atomic waveguides. The basic principle of these techniques is to control gradient magnetic fields with suitable timing so as to alter a trap to exert position-, velocity-, and/or time-dependent forces on atoms in the trap to obtain desired effects. The trap magnetic fields are generated by controlled electric currents flowing in both macroscopic off-chip electromagnet coils and microscopic wires on the surface of the chip. The methods are best explained in terms of examples. Rather than simply allowing atoms to expand freely into an atomic waveguide, one can give them a controllable push by switching on an externally generated or a chip-based gradient magnetic field. This push can increase the speed of the atoms, typically from about 5 to about 20 cm/s. Applying a non-linear magnetic-field gradient exerts different forces on atoms in different positions a phenomenon that one can exploit by introducing a delay between releasing atoms into the waveguide and turning on the magnetic field.
    Keywords: Man/System Technology and Life Support
    Type: NPO-43015 , NASA Tech Briefs, May 2009; 34
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 183
    Publication Date: 2019-07-12
    Description: A process has been developed for fabricating membranes of a perfluoropolyether (PFPE) and integrating them into valves and pumps in laboratory-on-achip microfluidic devices. Membranes of poly(tetrafluoroethylene) [PTFE] and poly(dimethylsilane) [PDMS] have been considered for this purpose and found wanting. By making it possible to use PFPE instead of PTFE or PDMS, the present process expands the array of options for further development of microfluidic devices for diverse applications that could include detection of biochemicals of interest, detection of toxins and biowarfare agents, synthesis and analysis of proteins, medical diagnosis, and synthesis of fuels.
    Keywords: Man/System Technology and Life Support
    Type: NPO-45725 , NASA Tech Briefs, May 2009; 18-19
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 184
    Publication Date: 2019-07-12
    Description: An experimental combination of an off-the-shelf valved pulsejet combustor and an aerodynamically optimized ejector has shown promise as a prototype of improved combustors for gas turbine engines. Despite their name, the constant pressure combustors heretofore used in gas turbine engines exhibit typical pressure losses ranging from 4 to 8 percent of the total pressures delivered by upstream compressors. In contrast, the present ejector-enhanced pulsejet combustor exhibits a pressure rise of about 3.5 percent at overall enthalpy and temperature ratios compatible with those of modern turbomachines. The modest pressure rise translates to a comparable increase in overall engine efficiency and, consequently, a comparable decrease in specific fuel consumption. The ejector-enhanced pulsejet combustor may also offer potential for reducing the emission of harmful exhaust compounds by making it practical to employ a low-loss rich-burn/quench/lean-burn sequence. Like all prior concepts for pressure-gain combustion, the present concept involves an approximation of constant-volume combustion, which is inherently unsteady (in this case, more specifically, cyclic). The consequent unsteadiness in combustor exit flow is generally regarded as detrimental to the performance of downstream turbomachinery. Among other adverse effects, this unsteadiness tends to detract from the thermodynamic benefits of pressure gain. Therefore, it is desirable in any intermittent combustion process to minimize unsteadiness in the exhaust path.
    Keywords: Man/System Technology and Life Support
    Type: LEW-18096-1 , NASA Tech Briefs, May 2009; 25
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 185
    Publication Date: 2019-07-12
    Description: Modal filters in the approximately equal to 10-micrometer spectral range have been implemented as planar dielectric waveguides in infrared interferometric applications such as searching for Earth-like planets. When looking for a small, dim object ("Earth") in close proximity to a large, bright object ("Sun"), the interferometric technique uses beams from two telescopes combined with a 180 phase shift in order to cancel the light from a brighter object. The interferometer baseline can be adjusted so that, at the same time, the light from the dimmer object arrives at the combiner in phase. This light can be detected and its infrared (IR) optical spectra can be studied. The cancellation of light from the "Sun" to approximately equal to 10(exp 6) is required; this is not possible without special devices-modal filters- that equalize the wavefronts arriving from the two telescopes. Currently, modal filters in the approximately equal to 10-micrometer spectral range are implemented as single- mode fibers. Using semiconductor technology, single-mode waveguides for use as modal filters were fabricated. Two designs were implemented: one using an InGaAs waveguide layer matched to an InP substrate, and one using InAlAs matched to an InP substrate. Photon Design software was used to design the waveguides, with the main feature all designs being single-mode operation in the 10.5- to 17-micrometer spectral range. Preliminary results show that the filter's rejection ratio is 26 dB.
    Keywords: Man/System Technology and Life Support
    Type: NPO-44457 , NASA Tech Briefs, May 2009; 30-31
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 186
    Publication Date: 2019-07-12
    Description: An architecture for autonomous operation of an aerobot (i.e., a robotic blimp) to be used in scientific exploration of planets and moons in the Solar system with an atmosphere (such as Titan and Venus) is undergoing development. This architecture is also applicable to autonomous airships that could be flown in the terrestrial atmosphere for scientific exploration, military reconnaissance and surveillance, and as radio-communication relay stations in disaster areas. The architecture was conceived to satisfy requirements to perform the following functions: a) Vehicle safing, that is, ensuring the integrity of the aerobot during its entire mission, including during extended communication blackouts. b) Accurate and robust autonomous flight control during operation in diverse modes, including launch, deployment of scientific instruments, long traverses, hovering or station-keeping, and maneuvers for touch-and-go surface sampling. c) Mapping and self-localization in the absence of a global positioning system. d) Advanced recognition of hazards and targets in conjunction with tracking of, and visual servoing toward, targets, all to enable the aerobot to detect and avoid atmospheric and topographic hazards and to identify, home in on, and hover over predefined terrain features or other targets of scientific interest. The architecture is an integrated combination of systems for accurate and robust vehicle and flight trajectory control; estimation of the state of the aerobot; perception-based detection and avoidance of hazards; monitoring of the integrity and functionality ("health") of the aerobot; reflexive safing actions; multi-modal localization and mapping; autonomous planning and execution of scientific observations; and long-range planning and monitoring of the mission of the aerobot. The prototype JPL aerobot (see figure) has been tested extensively in various areas in the California Mojave desert.
    Keywords: Man/System Technology and Life Support
    Type: NPO-45837 , NASA Tech Briefs, May 2009; 8
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 187
    Publication Date: 2019-07-12
    Description: A proposed device, denoted a miniature microfluidic biomarker extractor (mu-EX), would extract trace amounts of chemicals of interest from samples, such as soils and rocks. Traditionally, such extractions are performed on a large scale with hazardous organic solvents; each solvent capable of dissolving only those molecules lying within narrow ranges of specific chemical and physical characteristics that notably include volatility, electric charge, and polarity. In contrast, in the mu-EX, extractions could be performed by use of small amounts (typically between 0.1 and 100 L) of water as a universal solvent. As a rule of thumb, in order to enable solvation and extraction of molecules, it is necessary to use solvents that have polarity sufficiently close to the polarity of the target molecules. The mu-EX would make selection of specific organic solvents unnecessary, because mu-EX would exploit a unique property of liquid water: the possibility of tuning its polarity to match the polarity of organic solvents appropriate for extraction of molecules of interest. The change of the permittivity of water would be achieved by exploiting interactions between the translational states of water molecules and an imposed electromagnetic field in the frequency range of 300 to 600 GHz. On a molecular level, these interactions would result in disruption of the three-dimensional hydrogen-bonding network among liquid-water molecules and subsequent solvation and hydrolysis of target molecules. The mu-EX is expected to be an efficient means of hydrolyzing chemical bonds in complex macromolecules as well and, thus, enabling analysis of the building blocks of these complex chemical systems. The mu-EX device would include a microfluidic channel, part of which would lie within a waveguide coupled to an electronically tuned source of broad-band electromagnetic radiation in the frequency range from 300 to 600 GHz (see figure). The part of the microfluidic channel lying in the waveguide would constitute an interaction volume. The dimensions of the interaction volume would be chosen in accordance with the anticipated amount of solid sample material needed to ensure extraction of sufficient amount of target molecules for detection and analysis. By means that were not specified at the time of reporting the information for this article, the solid sample material would be placed in the interaction volume. Then the electromagnetic field would be imposed within the waveguide and water would be pumped through the interaction volume to effect the extraction.
    Keywords: Man/System Technology and Life Support
    Type: NPO-46150 , NASA Tech Briefs, May 2009; 50-51
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 188
    Publication Date: 2019-07-12
    Description: A modified scheme for electron-beam (E-beam) writing used in the fabrication of convex or concave diffraction gratings makes it possible to suppress the ghost diffraction heretofore exhibited by such gratings. Ghost diffraction is a spurious component of diffraction caused by a spurious component of grating periodicity as described below. The ghost diffraction orders appear between the main diffraction orders and are typically more intense than is the diffuse scattering from the grating. At such high intensity, ghost diffraction is the dominant source of degradation of grating performance. The pattern of a convex or concave grating is established by electron-beam writing in a resist material coating a substrate that has the desired convex or concave shape. Unfortunately, as a result of the characteristics of electrostatic deflectors used to control the electron beam, it is possible to expose only a small field - typically between 0.5 and 1.0 mm wide - at a given fixed position of the electron gun relative to the substrate. To make a grating larger than the field size, it is necessary to move the substrate to make it possible to write fields centered at different positions, so that the larger area is synthesized by "stitching" the exposed fields.
    Keywords: Man/System Technology and Life Support
    Type: NPO-41302 , NASA Tech Briefs, May 2009; 27-28
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 189
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: The Surface Habitat Systems (SHS) Focused Investment Group (FIG) is part of the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) effort to provide a focused direction and funding to the various projects that are working on human surface habitat designs and technologies for the planetary exploration missions. The overall SHS-FIG effort focuses on directing and guiding those projects that: 1) develop and demonstrate new surface habitat system concepts, innovations, and technologies to support human exploration missions, 2) improve environmental systems that interact with human habitats, 3) handle and emplace human surface habitats, and 4) focus on supporting humans living and working in habitats on planetary surfaces. The activity areas of the SHS FIG described herein are focused on the surface habitat project near-term objectives as described in this document. The SHS-FIG effort focuses on mitigating surface habitat risks (as identified by the Lunar Surface Systems Project Office (LSSPO) Surface Habitat Element Team; and concentrates on developing surface habitat technologies as identified in the FY08 gap analysis. The surface habitat gap assessment will be updated annually as the surface architecture and surface habitat definition continues to mature. These technologies are mapped to the SHS-FIG Strategic Development Roadmap. The Roadmap will bring to light the areas where additional innovative efforts are needed to support the development of habitat concepts and designs and the development of new technologies to support of the LSSPO Habitation Element development plan. Three specific areas of development that address Lunar Architecture Team (LAT)-2 and Constellation Architecture Team (CxAT) Lunar habitat design issues or risks will be focused on by the SHS-FIG. The SHS-FIG will establish four areas of development that will help the projects prepare in their planning for surface habitat systems development. Those development areas are the 1) surface habitat concept definition, 2) inflatable surface habitat development, and 3) autonomous habitat operations, and 4) cross-cutting / systems engineering. In subsequent years, the SHS-FIG will solicit a call for innovations and technologies that will support the development of these four development areas. The other development areas will be assessed yearly and identified on the SHS-FIG s Strategic Development Roadmap. Initial investment projects that are funded by the Constellation Program Office (CxPO), LSSPO, or the Exploration Technology Development Projects (ETDP) will also be included on the Roadmap. For example, in one or two years from now, the autonomous habitat operations and testbed would collaborations with the Integrated Systems Health Management (ISHM) and Automation for Operations ETDP projects, which will give the surface habitat projects an integrated habitat autonomy testbed to test software and systems. The SHS-FIG scope is to provide focused direction for multiple innovations, technologies and subsystems that are needed to support humans at a remote planetary surface habitat during the concept development, design definition, and integration phases of that project. Subsystems include: habitability, lightweight structures, power management, communications, autonomy, deployment, outfitting, life support, wireless connectivity, lighting, thermal and more.
    Keywords: Man/System Technology and Life Support
    Type: JSC-17681
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 190
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: An instrument that functions mainly as a particle-image velocimeter provides data on the sizes and velocities of flying opaque particles. The instrument is being developed as a means of characterizing fluxes of wind-borne dust particles in the Martian atmosphere. The instrument could also adapted to terrestrial use in measuring sizes and velocities of opaque particles carried by natural winds and industrial gases. Examples of potential terrestrial applications include monitoring of airborne industrial pollutants and airborne particles in mine shafts. The design of this instrument reflects an observation, made in field research, that airborne dust particles derived from soil and rock are opaque enough to be observable by use of bright field illumination with high contrast for highly accurate measurements of sizes and shapes. The instrument includes a source of collimated light coupled to an afocal beam expander and an imaging array of photodetectors. When dust particles travel through the collimated beam, they cast shadows. The shadows are magnified by the beam expander and relayed to the array of photodetectors. Inasmuch as the images captured by the array are of dust-particle shadows rather of the particles themselves, the depth of field of the instrument can be large: the instrument has a depth of field of about 11 mm, which is larger than the depths of field of prior particle-image velocimeters. The instrument can resolve, and measure the sizes and velocities of, particles having sizes in the approximate range of 1 to 300 m. For slowly moving particles, data from two image frames are used to calculate velocities. For rapidly moving particles, image smear lengths from a single frame are used in conjunction with particle- size measurement data to determine velocities.
    Keywords: Man/System Technology and Life Support
    Type: GSC-15230-1 , NASA Tech Briefs, March 2009; 31-32
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 191
    Publication Date: 2019-07-12
    Description: An improved generic design has been devised for implementing signal chains involved in readout from complementary metal oxide/semiconductor (CMOS) image sensors and for other readout integrated circuits (ICs) that perform equivalent functions. The design applies to any such IC in which output signal charges from the pixels in a given row are transferred simultaneously into sampling capacitors at the bottoms of the columns, then voltages representing individual pixel charges are read out in sequence by sequentially turning on column-selecting field-effect transistors (FETs) in synchronism with source-follower- or operational-amplifier-based amplifier circuits. The improved design affords the best features of prior source-follower-and operational- amplifier-based designs while overcoming the major limitations of those designs. The limitations can be summarized as follows: a) For a source-follower-based signal chain, the ohmic voltage drop associated with DC bias current flowing through the column-selection FET causes unacceptable voltage offset, nonlinearity, and reduced small-signal gain. b) For an operational-amplifier-based signal chain, the required bias current and the output noise increase superlinearly with size of the pixel array because of a corresponding increase in the effective capacitance of the row bus used to couple the sampled column charges to the operational amplifier. The effect of the bus capacitance is to simultaneously slow down the readout circuit and increase noise through the Miller effect.
    Keywords: Man/System Technology and Life Support
    Type: NPO-42006 , NASA Tech Briefs, March 2009; 34 - 35
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 192
    Publication Date: 2019-07-12
    Description: A monolithic silicon-on-insulator (SOI) complementary metal oxide/semiconductor (CMOS) image-detecting integrated circuit of the active-pixel-sensor type, now undergoing development, is designed to operate at visible and near-infrared wavelengths and to offer a combination of high quantum efficiency and low diffusion and capacitive cross-talk among pixels. The imager is designed to be especially suitable for astronomical and astrophysical applications. The imager design could also readily be adapted to general scientific, biological, medical, and spectroscopic applications. One of the conditions needed to ensure both high quantum efficiency and low diffusion cross-talk is a relatively high reverse bias potential (between about 20 and about 50 V) on the photodiode in each pixel. Heretofore, a major obstacle to realization of this condition in a monolithic integrated circuit has been posed by the fact that the required high reverse bias on the photodiode is incompatible with metal oxide/semiconductor field-effect transistors (MOSFETs) in the CMOS pixel readout circuitry. In the imager now being developed, the SOI structure is utilized to overcome this obstacle: The handle wafer is retained and the photodiode is formed in the handle wafer. The MOSFETs are formed on the SOI layer, which is separated from the handle wafer by a buried oxide layer. The electrical isolation provided by the buried oxide layer makes it possible to bias the MOSFETs at CMOS-compatible potentials (between 0 and 3 V), while biasing the photodiode at the required higher potential, and enables independent optimization of the sensory and readout portions of the imager.
    Keywords: Man/System Technology and Life Support
    Type: NPO-45593 , NASA Tech Briefs, March 2009; 35 - 36
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 193
    Publication Date: 2019-07-12
    Description: An investigational method of improving the performance of a fuel cell that contains a polymer-electrolyte membrane (PEM) is based on the concept of roughening the surface of the PEM, prior to deposition of a thin layer of catalyst, in order to increase the PEM/catalyst interfacial area and thereby increase the degree of utilization of the catalyst. The roughening is done by means of laser ablation under carefully controlled conditions. Next, the roughened membrane surface is coated with the thin layer of catalyst (which is typically platinum), then sandwiched between two electrode/catalyst structures to form a membrane/ele c t - rode assembly. The feasibility of the roughening technique was demonstrated in experiments in which proton-conducting membranes made of a perfluorosulfonic acid-based hydrophilic, protonconducting polymer were ablated by use of femtosecond laser pulses. It was found that when proper combinations of the pulse intensity, pulse-repetition rate, and number of repetitions was chosen, the initially flat, smooth membrane surfaces became roughened to such an extent as to be converted to networks of nodules interconnected by filaments (see Figure 1). In further experiments, electrochemical impedance spectroscopy (EIS) was performed on a pristine (smooth) membrane and on two laser-roughened membranes after the membranes were coated with platinum on both sides. Some preliminary EIS data were interpreted as showing that notwithstanding the potential for laser-induced damage, the bulk conductivities of the membranes were not diminished in the roughening process. Other preliminary EIS data (see Figure 2) were interpreted as signifying that the surface areas of the laser-roughened membranes were significantly greater than those of the smooth membrane. Moreover, elemental analyses showed that the sulfur-containing molecular groups necessary for proton conduction remained intact, even near the laser-roughened surfaces. These preliminary results can be taken as indications that laser-roughened PEMs should function well in fuel cells and, in particular, should exhibit current and power densities greater than those attainable by use of smooth membranes.
    Keywords: Man/System Technology and Life Support
    Type: NPO-45075 , NASA Tech Briefs, March 2009; 16 - 17
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 194
    Publication Date: 2019-07-12
    Description: An alternative scheme has been conceived for packaging of silicon-based back-illuminated, back-side-thinned complementary metal oxide/semiconductor (CMOS) and charge-coupled-device image-detector integrated circuits, including an associated fabrication process. This scheme and process are complementary to those described in "Making a Back-Illuminated Imager With Back-Side Connections" (NPO-42839), NASA Tech Briefs, Vol. 32, No. 7 (July 2008), page 38. To avoid misunderstanding, it should be noted that in the terminology of imaging integrated circuits, "front side" or "back side" does not necessarily refer to the side that, during operation, faces toward or away from a source of light or other object to be imaged. Instead, "front side" signifies that side of a semiconductor substrate upon which the pixel pattern and the associated semiconductor devices and metal conductor lines are initially formed during fabrication, and "back side" signifies the opposite side. If the imager is of the type called "back-illuminated," then the back side is the one that faces an object to be imaged. Initially, a back-illuminated, back-side-thinned image-detector is fabricated with its back side bonded to a silicon handle wafer. At a subsequent stage of fabrication, the front side is bonded to a glass wafer (for mechanical support) and the silicon handle wafer is etched away to expose the back side. The frontside integrated circuitry includes metal input/output contact pads, which are rendered inaccessible by the bonding of the front side to the glass wafer. Hence, one of the main problems is to make the input/output contact pads accessible from the back side, which is ultimately to be the side accessible to the external world. The present combination of an alternative packaging scheme and associated fabrication process constitute a solution of the problem.
    Keywords: Man/System Technology and Life Support
    Type: NPO-41225 , NASA Tech Briefs, March 2009; 15
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 195
    Publication Date: 2019-07-12
    Description: A concept for an ultra-broad-band optical parametric amplifier or oscillator has emerged as a by-product of a theoretical study in fundamental quantum optics. The study was originally intended to address the question of whether the two-photon temporal correlation function of light [in particular, light produced by spontaneous parametric down conversion (SPDC)] can be considerably narrower than the inverse of the spectral width (bandwidth) of the light. The answer to the question was found to be negative. More specifically, on the basis of the universal integral relations between the quantum two-photon temporal correlation and the classical spectrum of light, it was found that the lower limit of two-photon correlation time is set approximately by the inverse of the bandwidth. The mathematical solution for the minimum two-photon correlation time also provides the minimum relative frequency dispersion of the down-converted light components; in turn, the minimum relative frequency dispersion translates to the maximum bandwidth, which is important for the design of an ultra-broad-band optical parametric oscillator or amplifier. In the study, results of an analysis of the general integral relations were applied in the case of an optically nonlinear, frequency-dispersive crystal in which SPDC produces collinear photons. Equations were found for the crystal orientation and pump wavelength, specific for each parametric-down-converting crystal, that eliminate the relative frequency dispersion of collinear degenerate (equal-frequency) signal and idler components up to the fourth order in the frequency-detuning parameter
    Keywords: Man/System Technology and Life Support
    Type: NPO-41584 , NASA Tech Briefs, March 2009; 31
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 196
    Publication Date: 2019-07-12
    Description: An effort to develop large-aperture, wide-angle-scanning reflectarray antennas for microwave radar and communication systems is underway. In an antenna of this type as envisioned, scanning of the radiated or incident microwave beam would be effected through mechanical rotation of the passive (reflective) patch antenna elements, using microelectromechanical systems (MEMS) stepping rotary actuators typified by piezoelectric micromotors. It is anticipated that the cost, mass, and complexity of such an antenna would be less than, and the reliability greater than, those of an electronically scanned phased-array antenna of comparable beam-scanning capability and angular resolution. In the design and operation of a reflectarray, one seeks to position and orient an array of passive patch elements in a geometric pattern such that, through constructive interference of the reflections from them, they collectively act as an efficient single reflector of radio waves within a desired frequency band. Typically, the patches lie in a common plane and radiation is incident upon them from a feed horn.
    Keywords: Man/System Technology and Life Support
    Type: NPO-45971 , NASA Tech Briefs, March 2009; 10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 197
    Publication Date: 2019-07-12
    Description: A multi-agent software/hardware architecture, inspired by the multicellular nature of living organisms, has been proposed as the basis of design of a robust, reliable, persistent computing system. Just as a multicellular organism can adapt to changing environmental conditions and can survive despite the failure of individual cells, a multi-agent computing system, as envisioned, could adapt to changing hardware, software, and environmental conditions. In particular, the computing system could continue to function (perhaps at a reduced but still reasonable level of performance) if one or more component( s) of the system were to fail. One of the defining characteristics of a multicellular organism is unity of purpose. In biology, the purpose is survival of the organism. The purpose of the proposed multi-agent architecture is to provide a persistent computing environment in harsh conditions in which repair is difficult or impossible. A multi-agent, organism-like computing system would be a single entity built from agents or cells. Each agent or cell would be a discrete hardware processing unit that would include a data processor with local memory, an internal clock, and a suite of communication equipment capable of both local line-of-sight communications and global broadcast communications. Some cells, denoted specialist cells, could contain such additional hardware as sensors and emitters. Each cell would be independent in the sense that there would be no global clock, no global (shared) memory, no pre-assigned cell identifiers, no pre-defined network topology, and no centralized brain or control structure. Like each cell in a living organism, each agent or cell of the computing system would contain a full description of the system encoded as genes, but in this case, the genes would be components of a software genome.
    Keywords: Man/System Technology and Life Support
    Type: LAR-16857-1 , NASA Tech Briefs, March 2009; 37-38
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 198
    Publication Date: 2019-07-19
    Description: Water vapor permeability is shown to be useful in rejecting heat and managing moisture accumulation in launch-and-entry pressure suits. Currently this is accomplished through a porous Gortex layer in the Advanced Crew and Escape Suit (ACES) and in the baseline design of the Constellation Suit System Element (CSSE) Suit 1. Non-porous dense monolithic membranes (DMM) that are available offer potential improvements for water vapor permeability with reduced gas leak. Accordingly, three different pressure bladder materials were investigated for water vapor permeability and oxygen leak: ElasthaneTM 80A (thermoplastic polyether urethane) provided from stock polymer material and two custom thermoplastic polyether urethanes. Water vapor, carbon dioxide and oxygen permeability of the DMM's was measured in a 0.13 mm thick stand-alone layer, a 0.08 mm and 0.05 mm thick layer each bonded to two different nylon and polyester woven reinforcing materials. Additional water vapor permeability and mechanical compression measurements were made with the reinforced 0.05 mm thick layers, further bonded with a polyester wicking and overlaid with moistened polyester fleece thermal underwear .This simulated the pressure from a supine crew person. The 0.05 mm thick nylon reinforced sample with polyester wicking layer was further mechanically tested for wear and abrasion. Concepts for incorporating these materials in launch/entry and Extravehicular Activity pressure suits are presented.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-19219 , 40th International Conference on Environmental Systems; Nov 11, 2010; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 199
    Publication Date: 2019-07-19
    Description: Air stripping and distillation are two different gravity-based methods, which may be applied to the purification of wastewater on the lunar base. These gravity-based solutions to water processing are robust physical separation techniques, which may be advantageous to many other techniques for their simplicity in design and operation. The two techniques can be used in conjunction with each other to obtain high purity water. The components and feed compositions for modeling waste water streams are presented in conjunction with the Aspen property system for traditional stage distillation models and air stripping models. While the individual components for each of the waste streams will vary naturally within certain bounds, an analog model for waste water processing is suggested based on typical concentration ranges for these components. Target purity levels for the for recycled water are determined for each individual component based on NASA s required maximum contaminant levels for potable water Distillation processes are modeled separately and in tandem with air stripping to demonstrate the potential effectiveness and utility of these methods in recycling wastewater on the Moon. Optimum parameters such as reflux ratio, feed stage location, and processing rates are determined with respect to the power consumption of the process. Multistage distillation is evaluated for components in wastewater to determine the minimum number of stages necessary for each of 65 components in humidity condensate and urine wastewater mixed streams. Components of the wastewater streams are ranked by Henry s Law Constant and the suitability of air stripping in the purification of wastewater in terms of component removal is evaluated. Scaling factors for distillation and air stripping columns are presented to account for the difference in the lunar gravitation environment. Commercially available distillation and air stripping units which are considered suitable for Exploration Life Support are presented. The advantages to the various designs are summarized with respect to water purity levels, power consumption, and processing rates.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-19220 , 40th International Conference on Environmental Systems; Jul 11, 2010 - Jul 15, 2010; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 200
    Publication Date: 2019-07-19
    Description: Subjective measures of physical exertion, compensation, and controllability while performing tasks in simulated reduced gravity can be affected by changing the center of gravity (CG) of the overall system. The CG of the overall system is defined as the combined CG of the subject, the spacesuit, and the equipment required to change the CG. PURPOSE: To determine if changing the CG affects subjective ratings of suited human performance in simulated lunar gravity. METHODS: A custom weight support structure interfaced with the lunar prototype spacesuit, allowing manipulation of the CG. Weight locations to alter CG were based on a reference subject (81.6 kg, 182.9 cm). Six subjects (80.0 +/- 10.6 kg, 182.3 +/- 6.2 cm) completed 4 tasks (walking, kneel/stand, rock pickup, and shoveling) with system CG at 3 different locations (B=4.8/1.0, C=7.6/14.4, and P=11.2/20.1 cm aft/above the standard subject?s CG). Lunar gravity (0.17-g) was simulated by parabolic flight. Suited testing was performed at 29.6 kPa with a combined suit and structure mass of 181 kg. In all conditions, subjects provided ratings of perceived exertion (RPE) and the gravity compensation and performance scale (GCPS) upon completion of each task. RESULTS: Mean RPE and GCPS were highest at P for all tasks. Variability was greatest at B and lowest at C, and large variations between subjects at the same CG existed for both RPE and GCPS. These trends were not consistent with results from unsuited CG studies performed in other underwater and overhead suspension lunar gravity simulations. CONCLUSION: Modifying CG during suited testing at lunar gravity seems to affect subjective human performance. However, variation in subjective ratings at a given CG location indicates that further study is needed to determine the interactions among lunar gravity simulation, system CG, system mass, and subject characteristics such as anthropometry, strength, and fitness.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-19241 , 81st Annual Scientific Meeting of the Aerospace Medical Association; May 09, 2010 - May 13, 2010; Phoenix, AZ; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...