ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (18,874)
Collection
  • Articles  (18,874)
Publisher
Years
Journal
Topic
  • 11
    Publication Date: 2019-09-19
    Description: The aerosol driven radiative effects on marine low-level cloud represent a large uncertainty in climate simulations, in particular over the Southern Ocean, which is also an important region for sea spray aerosol production. Observations of sea spray aerosol organic enrichment and the resulting impact on water uptake over the remote southern hemisphere are scarce, and are therefore the region is under-represented in existing parameterisations. The Surface Ocean Aerosol Production (SOAP) voyage was a 23 day voyage which sampled three phytoplankton blooms in the highly productive water of the Chatham Rise, east of New Zealand. In this study we examined the enrichment of organics to nascent sea spray aerosol and the modifications to sea spray aerosol water uptake using in-situ chamber measurements of seawater samples taken during the SOAP voyage. Primary marine organics contributed up to 23 % of the sea spray mass for particles with diameter less than approximately 1 μm, and up to 87 % of the particle volume in the Aitken mode. The composition of the organic fraction was consistent throughout the voyage and was largely comprised of a polysaccharide-like component, characterised by very low alkane to hydroxyl concentration ratios of approximately 0.1–0.2. The enrichment of organics was compared to the output from the chlorophyll-a based sea spray aerosol parameterisation suggested by Gantt et al. (2011) and the OCEANFILMS models. OCEANFILMS improved on the representation of the organic fraction predicted using chlorophyll-a, in particular when the co-adsoprtion of polysaccharides was included, however the model still under predicted the proportion of polysaccharides by an average of 33 %. Nascent sea spray aerosol hygroscopic growth factors averaged 1.93 ± 0.08, and did not decrease with increasing sea spray aerosol organic fractions. The observed hygroscopicity was greater than expected from the assumption of full solubility, particularly during the most productive phytoplankton bloom (B1), during which organic fractions were greater than approximately 0.4. The water uptake behaviour observed in this study is consistent with that observed for other measurements of phytoplankton blooms, and was attributed to the surface partitioning of the organic components which leads to a decrease in particle surface tension and an increase in hygroscopicity. The compressed film model was used to estimate the influence of surface partitioning and the error in the modelled hygroscopicity was low only when the entire organic fraction was available to partition to the particle surface. The modelled sea spray aerosol hygroscopicity at high organic fractions was underestimated when only a portion of the organic component was available to be partitioned to the surface. The findings from the SOAP voyage highlight the influence of biologically-sourced organics on sea spray aerosol composition, these data improve the capacity to parameterise sea spray aerosol organic enrichment and water uptake.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-09-18
    Description: Ice nucleating particles (INPs) in the troposphere can form ice in clouds via heterogeneous ice nucleation. Yet, atmospheric number concentrations of INPs (NINP) are not well characterized and although there is some understanding of their sources, it is still unclear to what extend different sources contribute, nor if all sources are known. In this work, we examined properties of INPs at Cape Verde from different sources, the oceanic sea surface microlayer (SML) and underlying water (ULW), the atmosphere close to both sea and cloud level as well as cloud water. Both enrichment and depletion of NINP in SML compared to ULW were observed. The enrichment factor (EF) varied from roughly 0.4 to 11, and there was no clear trend in EF with temperature. NINP in PM10 sampled at Cape Verde Atmospheric Observatory (CVAO) at any particular temperature spanned around 1 order of magnitude below −15 °C, and about 2 orders of magnitude at warmer temperatures (〉−12 °C). NINP in PM1 were generally lower than those in PM10 at CVAO. About 83 ± 22 %, 67 ± 18 % and 77 ± 14 % (median ± standard deviation) of INPs had a diameter 〉 1 µm at ice activation temperatures of −12, −15, and −18 °C, respectively. Among the 17 PM10 samples at CVAO, three PM10 filters showed elevated NINP at warm temperatures, e.g., above 0.01 std L−1 at −10 °C. However, for NINP in PM1 at CVAO, this is not the case. At these higher temperatures, often biological particles have been found to be ice active. Consequently, the difference in NINP between PM1 and PM10 at CVAO, suggests that biological ice active particles were present in the super-micron size range. NINP in PM10 at CVAO was found to be similar to that on Monte Verde (MV, at 744 m a.s.l.) during non-cloud events. During cloud events, most INPs on MV were activated to cloud droplets. When highly ice active particles were present in PM10 filters at CVAO, they were not observed in PM10 filters on MV, but in cloud water samples, instead. This is direct evidence that these INPs which are likely biological are activated to cloud droplets during cloud events. In general, Cape Verde was often affected by dust from the Saharan desert during our measurement. For the observed air masses, atmospheric NINP in air fit well to the concentrations observed in cloud water. When comparing concentrations of both sea salt and INPs in both seawater and PM10 filters, it can be concluded that sea spray aerosol (SSA) only contributed a minor fraction to the atmospheric NINP. Therefore it can be said that, unless there would be a significant enrichment of NINP during the formation of SSA particles, NINP was mainly dominated by mineral dust at cold temperatures with few contributions from possible biological particles at warmer temperatures.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-09-17
    Description: Atmospheric aerosols are the precondition for the formation of cloud droplets and have thus large influence on the microphysical and radiative properties of clouds. In this work four different methods to derive potential cloud condensation nuclei (CCN) number concentrations were analyzed and compared: A model parameterization based on simulated particle concentrations, the same parameterization based on gravimetrical particle measurements, direct CCN measurements with a CCN counter at a certain observation site and lidar derived CCN profiles. In order to allow for sensitivity studies of the anthropogenic impact, a scenario for the maximum CCN concentration under peak aerosol conditions (1985) was estimated as well. In general, the simulations are in good agreement with the observation. At ground level, an average value of around 1 × 109 CCN/m3 at a supersaturation of 0.2 % was found with all methods. The discrimination of the chemical species revealed an almost equal contribution of ammonium sulfate and ammonium nitrate to the total number of potential CCN. This was not the case for the peak aerosol scenario, where almost no nitrate particles were formed. The potential activation at five different supersaturation values has been compared to the measurements. The discrepancies were lowest for the lowest and highest supersaturations, since chemical composition and the size distribution of the particles are less important in this range. In the mid supersaturation regime, the model overestimated the potentially activated particle fraction by around 30 %. The analysis of the modern (2013) and the peak aerosol scenario (1985) resulted in a scaling factor, which was defined as the quotient of the average vertical profile of the peak aerosol and present day CCN concentration. This factor was found to be around 2 close to the ground, increasing to around 3.5 between 2 and 5 km and approaching 1 (i.e., no difference between present day and peak aerosol conditions) with increasing height. By comparing the simulation with observed profiles, the vertical distribution of the potential CCN was found to be reasonable.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-09-17
    Description: In-situ measurements of Arctic clouds frequently show that ice crystal number concentrations (ICNCs) are much higher than the available ice-nucleating particles (INPs), suggesting that Secondary Ice Production (SIP) may be active. Here we use a Lagrangian Parcel Model and a Large Eddy Simulation to investigate the impact of three SIP mechanisms (rime-splintering, break-up from ice-ice collisions and droplet-shattering) on a summer Arctic stratocumulus case observed during the Cloud Coupling And Climate Interactions in the Arctic (ACCACIA) campaign. Primary ice alone cannot explain the observed ICNCs, and droplet-shattering is an ineffective SIP mechanism for the conditions considered. Rime-splintering, a mechanism that usually dominates within the studied temperature range, is also weak owing to the lack of large droplets to initiate this process. In contrast, break-up enhances ICNCs by 1–1.5 orders of magnitude, bringing simulations in good agreement with observations. Combining both processes can further explain some of the largest ICNCs observed. The main conclusions of this study show low sensitivity to the assumed INP and Cloud Condensation Nuclei (CCN) conditions. Our results indicate that collisional break-up may be an important ice-multiplication mechanism that is currently not represented in large-scale models. Finally, we also show that a simplified treatment of SIP, using a LPM constrained by a LES and/or observations, provides a realistic yet computationally efficient description of SIP effects that can eventually serve as an efficient way to parameterize this process in large-scale models.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-09-16
    Description: Characterizing vertical profiles of aerosol optical properties is important because only replying on the surface or column-integrated measurements is unable to unambiguously constrain the radiative impacts of aerosol. This study presents series of vertical profiles of in-situ measured multi-wavelength optical properties of aerosols during three pollution events in Nov. to Dec. 2016 over Beijing region. For all pollution events, clean periods (CP) before pollution initialization showed higher scattering Ångström exponent and smaller asymmetry parameter (g), and relatively uniform vertical structures. The heavy pollution (HP) periods showed increased particle size, causing these parameters to vary in the opposite way. During the transition periods (TP), regional transport of aged aerosols at upper level was found. The AERONET aerosol optical depth (AOD) matched the in-situ measurements within 10 %, however the AERONET absorption optical depth (AAOD) was 10–20 % higher than in-situ measurements, and this positive discrepancy increased to 30 % at shorter wavelength. The absorption of brown carbon (BrC) was identified by increased absorption Ångström exponent (AAE), and the heating rate of black carbon (BC) and BrC was calculated by computing the wavelength-dependent absorption coefficient and actinic flux by the radiative transfer model. BC and BrC had heating rate up to 0.18 K/h and 0.05 K/h in the planetary boundary layer (PBL) respectively during the pollution period. The fraction of BrC absorption increased from 12 % to 40 % in the PBL from CP to HP period. Notably, higher contribution of BrC heating was found above the PBL under polluted condition. This study gives a full picture of shortwave heating impacts of carbonaceous aerosols during different stages of pollution event, and highlights the increased contribution of BrC absorption especially at higher level during pollution.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-09-16
    Description: To elucidate the factors governing urban ozone (O3) pollution during the campaign of G20 summit in 2016 Hangzhou, China, the Weather Research Forecast with Chemistry (WRF-Chem) model was used to simulate the spatial and temporal O3 evolution in the Yangtze River Delta (YRD) region from 24 August to 6 September 2016. Various atmospheric processes were analyzed to determine the influential factors of ozone formation through integrated process rate method. The results indicated that both the vertical diffusion and the enhanced process of local chemical generation accounted for the increase of surface O3 concentration in Hangzhou. Local chemical generation was found to positively correlated with O3 concentrations, with correlation coefficient of 0.77. In accordance with the tropical weather cycle, subsidence air and stagnant weather were induced. Dynamic circulations of O3 through advection were associated with the urban heat island effect. All these factors intensified ozone pollution in Hangzhou, particularly on 25 August 2016 (O3-8 h: 98 ppb). These findings provide insight into urban O3 formation and dispersion during tropical cyclone events, and support the Model Intercomparison Study Asia Phase III (MICS-Asia Phase III).
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-09-13
    Description: The evaluation of modeling diagnostics with appropriate observations is an important task that establishes the capabilities and reliability of models. In this study we compare aerosol and cloud properties obtained from three different climate models ECHAM-HAM, ECHAM-HAM-SALSA, and NorESM with satellite observations using MOderate Resolution Imaging Spectrometer (MODIS) data. The simulator MODIS-COSP version 1.4 was implemented into the climate models to obtain MODIS-like cloud diagnostics, thus enabling model to model and model to satellite comparisons. Cloud droplet number concentrations (CDNC) are derived identically from MODIS-COSP simulated and MODIS-retrieved values of cloud optical depth and effective radius. For CDNC, the models capture the observed spatial distribution of higher values typically found near the coasts, downwind of the major continents, and lower values over the remote ocean and land areas. However, the COSP-simulated CDNC values are higher than those observed, whilst the direct model CDNC output is significantly lower than the MODIS-COSP diagnostics. NorESM produces large spatial biases for ice cloud properties and thick clouds over land. Despite having identical cloud modules, ECHAM-HAM and ECHAM-HAM-SALSA diverge in their representation of spatial and vertical distribution of clouds. From the spatial distributions of aerosol optical depth (AOD) and aerosol index (AI), we find that NorESM shows large biases for AOD over bright land surfaces, while discrepancies between ECHAM-HAM and ECHAM-HAM-SALSA can be observed mainly over oceans. Overall, the AIs from the different models are in good agreement globally, with higher negative biases on the Northern Hemisphere. We computed the aerosol-cloud interactions as the sensitivity of dln(CDNC)/dln(AI) on a global scale. However, one year of data may be considered not enough to assess the similarity or dissimilarities of the models due to large temporal variability in cloud properties. This study shows how simulators facilitate the evaluation of cloud properties and expose model deficiencies which are necessary steps to further improve the parametrization in climate models.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-09-13
    Description: This work presents synergistic satellite, airborne and surface based observations of a Pocket of Open Cells (POC) in the remote south-east Atlantic. The observations were obtained over and upwind of Ascension Island during the CLouds and Aerosol Radiative Impacts and Forcing (CLARIFY) and the Layered Smoke Interacting with Clouds (LASIC) field experiments. A novel aspect of this case-study is that an extensive free-tropospheric biomass burning aerosol plume that had been transported from the African continent was observed to be in contact with the boundary layer inversion over the POC and the surrounding closed cellular cloud regime. The in-situ measurements show marked contrasts in the boundary layer thermodynamic structure, cloud properties, precipitation and aerosol conditions between the open cells and surrounding overcast cloud field. The data demonstrate that the overlying biomass burning aerosol was mixing down into the boundary layer in the stratocumulus cloud downwind of the POC, with elevated carbon monoxide, black carbon mass loadings and accumulation mode aerosol concentrations measured beneath the trade-wind inversion. The stratocumulus cloud in this region was moderately polluted and exhibited very little precipitation falling below cloud base. A rapid transition to actively precipitating cumulus clouds and detrained stratiform remnants in the form of thin quiescent veil clouds was observed across the boundary into and deep within the POC. The sub-cloud layer in the POC was much cleaner than that in the stratocumulus region. The clouds in the POC formed within an ultra-clean layer (accumulation mode aerosol concentrations ~ few cm−3) in the upper region of the boundary layer, that was likely to have been formed via efficient collision-coalescence and sedimentation processes. Enhanced Aitken mode aerosol concentrations were also observed intermittently in this ultra-clean layer, suggesting that new particle formation was taking place. Across the boundary layer inversion and immediately above the ultra-clean layer, accumulation mode aerosol concentrations were ~ 1000 cm−3. Importantly, the airmass in the POC showed no evidence of elevated carbon monoxide over and above typical background conditions at this location and time of year. As carbon monoxide is a good tracer for biomass burning aerosol that is not readily removed by cloud processing and precipitation, it demonstrates that the open cellular convection in the POC is not able to entrain large quantities of the free-tropospheric aerosol that was sitting directly on top of the boundary layer inversion. This suggests that the structure of the mesoscale cellular convection may play an important role in regulating the transport of aerosol from the free-troposphere down into the marine boundary layer. We then develop a climatology of open cellular cloud conditions in the south-east Atlantic from 19 years of September MODIS Terra imagery. This shows that the maxima in open cell frequency (〉 0.25) occurs far offshore and in a region where subsiding biomass burning aerosol plumes may often come into contact with the underlying boundary layer cloud. If the results from the observational case-study applied more broadly, then the apparent low susceptibility of open cells to free-tropospheric intrusions of additional cloud condensation nuclei could have some important consequences for aerosol-cloud interactions in the region.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-09-13
    Description: Land transport is an important emission source of nitrogen oxides, carbon monoxide and volatile organic compounds, which serves as precursors for tropospheric ozone. Besides the direct negative impact of nitrogen oxides, air quality is also affected by these enhanced ozone tropospheric ozone concentrations. As ozone is radiativly active, its increase contributes to climate change. Due to the strong non-linearity of the ozone chemistry, the contribution of land transport emissions to tropospheric ozone cannot be calculated or measured directly, instead atmospheric-chemistry models equipped with specific source apportionment methods (called tagging) are required. In this study we investigate the contributions of land transport emissions to ozone and ozone precursors using the MECO(n) model system, coupling a global and a regional chemistry climate model, which are equipped with a tagging diagnostic. For the first time the effects of long range transport and regional effects of regional emissions are investigated. This is only possible by applying a tagging method simultaneously and consistently on the global and regional scale. We performed two three-year simulations with different anthropogenic emission inventories for Europe by applying our global model with two regional refinements, i.e. a European nest (50 km resolution) in the global model and a German nest (12 km resolution) in the European nest. We find contributions of land transport emissions to reactive nitrogen (NOy) near ground-level in the range of 5 to 10 nmol mol−1, corresponding to 50 to 70 % of the ground level NOy values. The largest contributions are around Paris, Southern England, Moscow, the Po Valley, and Western Germany. Carbon monoxide contributions range from 30 nmol mol−1 to more than 75 nmol mol−1 near emission hot spots such as Paris or Moscow. The contribution of land transport emissions to ozone show a strong seasonal cycle which absolute contributions of 3 nmol mol−1 during winter and 5 to 10 nmol mol−1 during summer. This corresponds to relative contributions of 8 to 10 % during winter and up to 16 % during summer. Those largest values during summer are confined to the Po Valley, while the contribution in Western Europa ranges from 12 to 14 %. The ozone contributions are robust. Only during summer the ozone contributions are slightly influenced by the emission inventory, but these differences are smaller than the range of the seasonal cycle of the contribution. This cycle is caused by a complex interplay of seasonal cycles of other emissions (e.g. biogenic) and seasonal difference of the ozone regimes. This small difference of the ozone contributions due to the emission inventory is remarkable as the precursor concentrations (NOx and CO) are much more affected by the change. In addition, our results suggest that during events with large ozone values the contribution of land transport emissions and biogenic emissions increase strongly. Here, the contribution of land transport emission peak up to 28 %. Hence, land transport is an important contributor to events of large ozone values.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-09-13
    Description: Convection-permitting simulations are used to understand the effects of cloud-aerosol interactions on a case of heavy rainfall over south China. The simulations are evaluated using radar observations from the South China Monsoon Rainfall Experiment and remotely sensed estimates of precipitation, clouds and radiation. We focus on the effects of complexity in cloud-aerosol interactions, especially processing and transport of dissolved material inside clouds. In particular, simulations with aerosol concentrations held constant are compared with a fully coupled cloud-aerosol-interacting system to isolate the effects of processing on a line of organised-deep convection. It is shown that in-cloud processing of aerosols can change the vertical structure of squall lines thereby inducing changes in the statistics of surface rainfall. These effects are shown to be consistent with a modulation by aerosol of the timescale of the converting cloud-droplets to rain.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...