ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (618,799)
  • Oxford University Press  (428,340)
  • Periodicals Archive Online (PAO)  (190,459)
Collection
Years
  • 1
    Publication Date: 2020-08-27
    Description: The origin of the population of very massive stars observed within ∼0.4 pc of the supermassive black hole in the Galactic Centre is a mystery. Tidal forces from the black hole would likely inhibit in situ star formation whilst the youth of the massive stars would seem to exclude formation elsewhere followed by transportation (somehow) into the Galactic Centre. Here, we consider a third way to produce these massive stars from the lower mass stars contained in the nuclear stellar cluster which surrounds the supermassive black hole. A passing gas cloud can be tidally shredded by the supermassive black hole forming an accretion disc around the black hole. Stars embedded within this accretion disc will accrete gas from the disc via Bondi–Hoyle accretion, where the accretion rate on to a star, $dot{M}_star propto M_star ^2$. This super-exponential growth of accretion can lead to a steep increase in stellar masses, reaching the required 40–50 M⊙ in some cases. The mass growth rate depends sensitively on the stellar orbital eccentricities and their inclinations. The evolution of the orbital inclinations and/or their eccentricities as stars are trapped by the disc, and their orbits are circularized, will increase the number of massive stars produced. Thus accretion on to low-mass stars can lead to a top heavy stellar mass function in the Galactic Centre and other galactic nuclei. The massive stars produced will pollute the environment via supernova explosions and potentially produce compact binaries whose mergers may be detectable by the LIGO–VIRGO gravitational waves observatories.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-08-27
    Description: We present a 3D semi-analytical model of self-gravitating discs, and include a prescription for dust trapping in the disc spiral arms. Using Monte Carlo radiative transfer, we produce synthetic ALMA (Atacama Large Millimeter/submillimeter Array) observations of these discs. In doing so, we demonstrate that our model is capable of producing observational predictions, and able to model real image data of potentially self-gravitating discs. For a disc to generate spiral structure that would be observable with ALMA requires that the disc’s dust mass budget is dominated by millimetre- and centimetre-sized grains. Discs in which grains have grown to the grain fragmentation threshold may satisfy this criterion; thus, we predict that signatures of gravitational instability may be detectable in discs of lower mass than has previously been suggested. For example, we find that discs with disc-to-star mass ratios as low as 0.10 are capable of driving observable spiral arms. Substructure becomes challenging to detect in discs where no grain growth has occurred or in which grain growth has proceeded well beyond the grain fragmentation threshold. We demonstrate how we can use our model to retrieve information about dust trapping and grain growth through multiwavelength observations of discs, and using estimates of the opacity spectral index. Applying our disc model to the Elias 27, WaOph 6, and IM Lup systems, we find gravitational instability to be a plausible explanation for the observed substructure in all three discs, if sufficient grain growth has indeed occurred.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-08-27
    Description: The star formation in molecular clouds is inefficient. The ionizing extreme-ultraviolet radiation (hν ≥ 13.6 eV) from young clusters has been considered as a primary feedback effect to limit the star formation efficiency (SFE). Here, we focus on the effects of stellar far-ultraviolet (FUV) radiation (6 eV ≤ hν ≤ 13.6 eV) during the cloud disruption stage. The FUV radiation may further reduce the SFE via photoelectric heating, and it also affects the chemical states of the gas that is not converted to stars (‘cloud remnants’) via photodissociation of molecules. We have developed a one-dimensional semi-analytical model that follows the evolution of both the thermal and chemical structure of a photodissociation region (PDR) during the dynamical expansion of an H ii region. We investigate how the FUV feedback limits the SFE, supposing that the star formation is quenched in the PDR where the temperature is above a threshold value (e.g. 100 K). Our model predicts that the FUV feedback contributes to reduce the SFEs for massive (Mcl ≳ 105 M⊙) clouds with low surface densities ($Sigma _{ m cl}lesssim 100~{ m M}_odot , { m pc}^{-2}$). Moreover, we show that a large part of the H2 molecular gas contained in the cloud remnants should be ‘CO-dark’ under the FUV feedback for a wide range of cloud properties. Therefore, the dispersed molecular clouds are potential factories of CO-dark gas, which returns into the cycle of the interstellar medium.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-08-31
    Description: The Pan-STARRS1 (PS1) 3π survey is a comprehensive optical imaging survey of three quarters of the sky in the grizy broad-band photometric filters. We present the methodology used in assembling the source classification and photometric redshift (photo-z) catalogue for PS1 3π Data Release 1, titled Pan-STARRS1 Source Types and Redshifts with Machine learning (PS1-STRM). For both main data products, we use neural network architectures, trained on a compilation of public spectroscopic measurements that has been cross-matched with PS1 sources. We quantify the parameter space coverage of our training data set, and flag extrapolation using self-organizing maps. We perform a Monte-Carlo sampling of the photometry to estimate photo-z uncertainty. The final catalogue contains 2,902,054,648 objects. On our validation data set, for non-extrapolated sources, we achieve an overall classification accuracy of $98.1\%$ for galaxies, $97.8\%$ for stars, and $96.6\%$ for quasars. Regarding the galaxy photo-z estimation, we attain an overall bias of =0.0005, a standard deviation of σ(Δznorm) = 0.0322, a median absolute deviation of MAD(Δznorm) = 0.0161, and an outlier fraction of $Pleft(|Delta z_{mathrm{norm}}|〉0.15 ight)=1.89\%$. The catalogue will be made available as a high-level science product via the Mikulski Archive for Space Telescopes.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-08-27
    Description: We present CO observations towards a sample of six H i-rich Ultradiffuse galaxies (UDGs) as well as one UDG (VLSB-A) in the Virgo Cluster with the Institut de RadioAstronomie Millimétrique (IRAM) 30-m telescope. CO J = 1–0 is marginally detected at 4σ level in AGC 122966, as the first detection of CO emission in UDGs. We estimate upper limits of molecular mass in other galaxies from the non-detection of CO lines. These upper limits and the marginal CO detection in AGC 122966 indicate low mass ratios between molecular and atomic gas masses. With the star formation efficiency derived from the molecular gas, we suggest that the inefficiency of star formation in such H i-rich UDGs is likely caused by the low efficiency in converting molecules from atomic gas, instead of low efficiency in forming stars from molecular gas.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-10-09
    Description: Diffuse nutrient pollution from agriculture has been the concern of policymakers for several decades, and yet it remains a persistent environmental issue. The current approach to mitigating the problem is predominantly via command and control regulation within the Nitrates Directive and the Water Framework Directive. This article will set out how diffuse pollution can be considered a wicked policy problem which acts as an explanation of how it has eluded the current regulatory regime. It will further establish that the traditional planning process overlooked the complexity of the problem. Finally, it will illustrate the ineffectiveness of the current regulatory framework to mitigate the problem. This will be exemplified through the legal framework of Northern Ireland.
    Print ISSN: 0952-8873
    Electronic ISSN: 1464-374X
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Law
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-08-31
    Description: Supermassive black holes (SMBHs) that reside at the centres of galaxies can inject vast amounts of energy into the surrounding gas and are thought to be a viable mechanism to quench star formation in massive galaxies. Here, we study the $10^{9-12.5}, mathrm{M_odot }$ stellar mass central galaxy population of the IllustrisTNG simulation, specifically the TNG100 and TNG300 volumes at z = 0, and show how the three components – SMBH, galaxy, and circumgalactic medium (CGM) – are interconnected in their evolution. We find that gas entropy is a sensitive diagnostic of feedback injection. In particular, we demonstrate how the onset of the low-accretion black hole (BH) feedback mode, realized in the IllustrisTNG model as a kinetic, BH-driven wind, leads not only to star formation quenching at stellar masses $gtrsim 10^{10.5}, mathrm{M_odot }$ but also to a change in thermodynamic properties of the (non-star-forming) gas, both within the galaxy and beyond. The IllustrisTNG kinetic feedback from SMBHs increases the average gas entropy, within the galaxy and in the CGM, lengthening typical gas cooling times from $10!-!100, mathrm{Myr}$ to $1!-!10, mathrm{Gyr}$, effectively ceasing ongoing star formation and inhibiting radiative cooling and future gas accretion. In practice, the same active galactic nucleus (AGN) feedback channel is simultaneously ‘ejective’ and ‘preventative’ and leaves an imprint on the temperature, density, entropy, and cooling times also in the outer reaches of the gas halo, up to distances of several hundred kiloparsecs. In the IllustrisTNG model, a long-lasting quenching state can occur for a heterogeneous CGM, whereby the hot and dilute CGM gas of quiescent galaxies contains regions of low-entropy gas with short cooling times.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-09-03
    Description: We study the stationary points of the hierarchical three body problem in the planetary limit (m1, m2 ≪ m0) at both the quadrupole and octupole orders. We demonstrate that the extension to octupole order preserves the principal stationary points of the quadrupole solution in the limit of small outer eccentricity e2 but that new families of stable fixed points occur in both prograde and retrograde cases. The most important new equilibria are those that branch off from the quadrupolar solutions and extend to large e2. The apsidal alignment of these families is a function of mass and inner planet eccentricity, and is determined by the relative directions of precession of ω1 and ω2 at the quadrupole level. These new equilibria are also the most resilient to the destabilizing effects of relativistic precession. We find additional equilibria that enable libration of the inner planet argument of pericentre in the limit of radial orbits and recover the non-linear analogue of the Laplace–Lagrange solutions in the coplanar limit. Finally, we show that the chaotic diffusion and orbital flips identified with the eccentric Kozai–Lidov mechanism and its variants can be understood in terms of the stationary points discussed here.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-08-31
    Description: Summary On 24th August 2016 at 01:36 UTC a ML6.0 earthquake struck several villages in central Italy, among which Accumoli, Amatrice and Arquata del Tronto. The earthquake was recorded by about 350 seismic stations, causing 299 fatalities and damage with macroseismic intensities up to 11. The maximum acceleration was observed at Amatrice station (AMT) reaching 916 cm/s2 on E-W component, with epicentral distance of 15 km and Joyner and Boore distance to the fault surface (RJB) of less than a kilometre. Motivated by the high levels of observed ground motion and damage, we generate broadband seismograms for engineering purposes by adopting a hybrid method. To infer the low frequency seismograms, we considered the kinematic slip model by Tinti et al. (2016). The high frequency seismograms were produced using a stochastic finite-fault model approach based on dynamic corner-frequency. Broadband synthetic time series were therefore obtained by merging the low and high frequency seismograms. Simulated hybrid ground motions were compared both with the observed ground motions and the ground-motion prediction equations (GMPEs), to explore their performance and to retrieve the region-specific parameters endorsed for the simulations. In the near-fault area we observed that hybrid simulations have a higher capability to detect near source effects and to reproduce the source complexity than the use of GMPEs. Indeed, the general good consistency found between synthetic and observed ground motion (both in the time and frequency domain), suggests that the use of regional-specific source scaling and attenuation parameters together with the source complexity in hybrid simulations improves ground motion estimations. To include the site effect in stochastic simulations at selected stations, we tested the use of amplification curves derived from HVRSs (horizontal-to-vertical response spectra) and from HVSRs (horizontal-to-vertical spectral ratios) rather than the use of generic curves according to NTC-18 Italian seismic design code. We generally found a further reduction of residuals between observed and simulated both in terms of time histories and spectra.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-09-03
    Description: Despite its likely importance in astrochemistry, pure rotational spectra are not observable for gas phase N2 since this molecule has no permanent dipole moment. Complexation of monomeric N2 with a cationic metal (MN2+) may be kinetically and thermodynamically favorable, and the detection of such MN2+ molecules could be useful tracers of N2 in order to probe its abundance and kinetics. Highly accurate quartic force field methods have been applied here to compute rotational and vibrational spectroscopic properties of the NaN2+ and MgN2+ molecules via a coupled cluster-based composite approach with additional corrections for post-CCSD(T) electron correlation and relativistic effects. The relative energies of various isomers have also been computed and show that both NaN2+ and MgN2+ have linear ground electronic states. At the highest level of theory, rotational constants (B0) of 4086.9 and 4106.0 MHz are predicted for NaN2+ and MgN2+, respectively, with dipole moments of 6.92 D and 4.34 D, respectively making them rotationally observable even at low concentrations. Post-CCSD(T) electron correlation corrections lower the N-N stretching frequency while relativistic corrections have a much smaller effect putting the fundamental frequencies at 2333.7 cm−1 and 2313.6 cm−1, respective of NaN2+ and MgN2+ slightly above that in N2H+. Additive corrections do not significantly change the other two vibrational modes. An anharmonic, zero-point corrected N2 dissociation energy of 7.3 and 7.0 kcal mol−1 is, respectively, reported for NaN2+ and MgN2+ suggesting possible formation of these molecules in protoplanetary disks or planetary nebulae that are metal- and nitrogen-rich.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...