ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Triticum aestivum  (853)
  • wheat  (807)
  • kinetics  (727)
  • Springer  (2,093)
  • 1
    ISSN: 1432-2145
    Keywords: Key words Male sterility ; Starch ; Triticum aestivum ; Water stress ; Anther ; Pollen
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Water deficit during meiosis in microspore mother cells of wheat (Triticum aestivum L.) induces male sterility, which reduces grain yield. In plants stressed during meiosis and then re-watered, division of microspore mother cells seems to proceed normally, but subsequent pollen development is arrested. Stress-affected anthers generally lack starch. We employed light microscopy in conjunction with histochemistry to compare the developmental anatomy of water-stress-affected and normal anthers. The earliest effects of stress, detectable between meiosis and young microspore stages, were the degeneration of meiocytes, loss of orientation of the reproductive cells, and abnormal vacuolization of tapetal cells. Other effects observed during subsequent developmental stages were deposition of starch in the connective tissue where it is normally not present, hypertrophy of the middle layer or endothecial cells, and deposition of sporopollenin-like substances in the anther loculus. The resulting pollen grains lacked both starch and intine. These results suggest that abnormal degeneration of the tapetum in water-stressed anthers coupled with a loss of orientation of the reproductive cells could be part of early events leading to abortion of microspores.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2145
    Keywords: Flower ; Meristem ; Gene transfer Particle bombardment ; Triticum aestivum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Direct gene transfer to floral meristems could contribute to cell-fate mapping, to the study of flower-specific genes and promoters, and to the production of transgenic gametes via the transformation of sporogenic tissues. Despite the wide potential of its applications, direct gene transfer to floral meristems has not been achieved so far because of the lack of suitable technology. We show in this paper that ballistic micro-targeting is the technique of choice for this purpose, and in this way, we were able to transfer genes efficiently into excised wheat immature spikes. Particle size was adjusted for optimal penetration into the L1 and L2 cell layers of the spikes with limited cell damage. Spikes at different developmental stages were shot either with a plasmid containing two genes involved in anthocyanin biosynthesis or with a plasmid bearing the uidA (β-glucuronidase) gene. The transient expression of these marker genes was observed in the different developmental stages tested and in cells of both the L1 and the L2 layers. The transient expression of the uidA gene was significantly increased when the sucrose concentration in the culture medium was increased from 0.06 to 0.52 M. At the highest concentration, 100% of the targeted spikes expressed the uidA gene, with an average of 69 blue cells per spike. Twelve days after microtargeting, multicellular sectors showing transgene expression and containing up to 17 cells were found in 85% of the shot immature inflorescences. This indicated that targeted cells survived particle bombardment. Sectors were found in primordia of both vegetative and reproductive organs.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1890
    Keywords: Key words Arbuscular mycorrhiza ; Hordeum vulgare ; Triticum aestivum ; Glomus intraradices ; Mycorrhiza-helper bacteria ; Secondary compounds
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Colonization of Hordeum vulgare L. cv. Salome (barley)and Triticum aestivum L. cv. Caprimus (wheat) roots by the arbuscular mycorrhizal fungus Glomus intraradices Schenck & Smith leads to de novo synthesis of isoprenoid cyclohexenone derivatives with blumenin [9-O-(2′-O-β-glucuronosyl)-β-glucopyranoside of 6-(3-hydroxybutyl)-1,1,5-trimethyl-4-cyclohexen-3-one] as the major constituent and to transient accumulation of hydroxycinnamate amides (4-coumaroylagmatine and -putrescine). Accumulation of these compounds in mycorrhizal wheat roots started 2 weeks after sowing together with the onset of arbuscule formation and proceeded with mycorrhizal progression. Highest levels were reached in 3- to 4-week-old secondary roots (root branches of first and higher order) characterized by the formation of vesicles. In the final developmental stages, the fungus produced massive amounts of spores, enclosing the stele of older root parts (older than 5 weeks) characterized by cortical death. In these root parts, the secondary compounds were detected in trace amounts only, indicating that they were located in the cortical tissues. Some rhizosphere bacteria tested, i.e. Agrobacterium rhizogenes, Pseudomonas fluorescens, and Rhizobium leguminosarum, markedly stimulated both fungal root colonization and blumenin accumulation, thus, acting as mycorrhiza-helper bacteria (MHB). Application of blumenin itself strongly inhibited fungal colonization and arbuscule formation at early stages of mycorrhiza development. This was associated with a markedly reduced accumulation of the hydroxycinnamate amides 4-coumaroylputrescine and -agmatine. The results suggest that both the isoprenoid and the phenylpropanoid metabolism are closely linked to the developmental stage and the extent of fungal colonization. Their possible involvement in the regulation of mycorrhiza development is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1890
    Keywords: Key words Glomus mosseae ; Hydroponics ; Nitrate uptake ; Root respiration ; Triticum aestivum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Oxygen and CO2 fluxes were measured in hydroponically grown mycorrhizal and non-mycorrhizal Triticum aestivum L. cv. Hano roots. The NO3 – uptake of the plants was used to estimate the amount of root respiration attributable to ion uptake. Plants were grown at 4 mM N and 10 μM P, where a total and viable mycorrhizal root colonisation of 48% and 18%, respectively, by Glomus mosseae (Nicol. and Gerd.) Gerd. and Trappe (BEG 107) was observed. The O2 consumption and NO3 – uptake rates were similar and the CO2 release was higher in mycorrhizal than in non-mycorrhizal wheat. This resulted in a significantly higher respiratory quotient (RQ, mol CO2 mol–1 O2) in mycorrhizal (1.27±0.13) than in non-mycorrhizal (0.79±0.05) wheat. As the biomass and N and P concentrations in mycorrhizal and non-mycorrhizal wheat were the same, the higher RQ resulted from the mycorrhizal colonisation and not differences in nutrition per se.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1424
    Keywords: charybdotoxin ; erythrocytes ; iodination ; kinetics ; peptides ; potassium channels ; scorpions
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary Two charybdotoxin peptides were purified from venom of the Israeli scorpion,Leiurus quinquestriatus hebraeus. Microsequencing of the most abundant toxin, ChTX-Lq1, revealed identity with the 37-residue peptide previously sequenced by Gimenez-Gallego et al. [Gimenez-Gallego, G., et al.,Proc. Natl. Acad. Sci. USA 85:3329–3333 (1988)]. Sequence data on the minor peptide, ChTX-Lq2, showed substantial homology to ChTX-Lq1 with differences observed at eight positions. These two charybdotoxin sequences, along with that of noxiustoxin, define a distinct family of scorpion peptide toxins with activity against K+ channels. Both charybdotoxin homologs inhibited Ca2+-dependent K+ efflux from human erythrocytes with similar potency,K 0.5∼-40nm. In planar bilayer assays of single K(Ca) channels from rat muscle, ChTX-Lq1 and ChTX-Lq2 blocked with intrinsicK d's of 1.3 and 43nm, respectively, in the presence of 50mm external KCl. A new application of dwell-time histogram analysis of single-channel blocking events was used to characterize the kinetic homogeneity of toxin samples and the blocking kinetics of ChTX derivatives. The lower blocking affinity of ChTX-Lq2 was the combined result of a faster dissociation rate and a slower association rate as compared to ChTX-Lq1. The blocking activity of two mono-iodinated derivatives of ChTX-Lq1 was also analyzed. Blocked dwell-time histograms of the iodinated peptides were characterized by predominately brief (0.2–2 sec) blocking events in comparison to the native toxin (20 sec). Histogram analysis revealed that mono-iodination of ChTX-Lq1 impairs blocking activity by adverse effects on both dissociation and association rate constants. Frequency density histograms of single channel blocking events provide a sensitive assay of toxin purity suitable for quantitating structure-activity relationships of charybdotoxin derivatives.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 76 (1983), S. 289-297 
    ISSN: 1432-1424
    Keywords: neuron ; internal perfusion ; Mn current ; kinetics ; Ca blocker
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary Characteristics of currents carried by Mn2+ and other divalent cations were studied in the isolated identified neuron in the circumesophageal ganglia ofHelix aspersa using a suction pipette technique which allows internal perfusion of the cell body and voltage clamp. Increases in [Mn2+] 0 induced not only saturation of the peak ofI Mn but also shifts theI–V relationships along the voltage axis to the more positive potentials. Internal perfusion with F−, which blocks Ca channels, depressedI Mn. Diltiazem, an organic Ca blocker, inhibitedI Mn over the entire range of theI–V relation without shifting the threshold and peak voltage of theI–V relation. Co2+, Ni2+, Cd2+ and La3+ also suppressedI Mn. Relative maximum peak currents of the divalent cations wereI Ba=I Sr〉I Ca〉I Mn=I Zn. Time constants for activation (τ m ) and inactivation (τ h ) of these cations were voltage dependent, and both time constants were greater in the sequence ofI Mn=I Zn〉I Ba=I Sr〉I Ca over the whole voltage range.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 132 (1993), S. 167-178 
    ISSN: 1432-1424
    Keywords: red cell ; glucose transport protein ; GLUT1 ; kinetics ; rapid reactions ; tryptophan
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary The kinetics of the initial phases of d-glucose binding to the glucose transport protein (GLUT1) of the human red cell can be followed by stopped-flow measurements of the time course of tryptophan (trp) fluorescence enhancement. A number of control experiments have shown that the trp fluorescence kinetics are the result of conformational changes in GLUT1. One shows that nontransportable l-glucose has no kinetic response, in contrast to d-glucose kinetics. Other controls show that d-glucose binding is inhibited by cytochalasin B and by extracellular d-maltose. A typical time course for a transportable sugar, such as d-glucose, consists of a zero-time displacement, too fast for us to measure, followed by three rapid reactions whose exponential time courses have rate constants of0.5–100 sec+−1 at 20°C. It is suggested that the zero-time displacement represents the initial bimolecular ligand/GLUT1 association. Exponential 1 appears to be located at, or near, the external membrane face where it is involved in discriminating among the sugars. Exponential 3 is apparently controlled by events at the cytosolic face. Trp kinetics distinguish the K d of the epimer, d-galactose, from the K dfor d-glucose, with results in agreement with determinations by other methods. Trp kinetics distinguish between the binding of the α- and β-d-glucose anomers. The exponential 1 activation energy of the β-anomer, 13.6 ± 1.4 kcal mol+−1, is less than that of α-d-glucose, 18.4 ± 0.8 kcal mol+−1, and the two Arrhenius lines cross at ≈23.5°C. The temperature dependence of the kinetic response following α-d-glucose binding illustrates the interplay among the exponentials and the increasing dominance of exponential 2 as the temperature increases from 22.3 to 36.6°C. The existence of these interrelations means that previously acceptable approximations in simplified reaction schemes for sugar transport will now have to be justified on a point-to-point basis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 102 (1988), S. 225-234 
    ISSN: 1432-1424
    Keywords: erythrocytes ; valinomycin ; protonophore ; CCCP ; permeability ; kinetics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary A transport model for translocation of the protonophore CCCP across the red cell membrane has been established and cellular CCCP binding parameters have been determined. The time course of the CCCP redistribution across the red cell membrane, following a jump in membrane potential induced by valinomycin addition, has been characterized by fitting values of preequilibrium extracellular pHvs. time to the transport model. It is demonstrated, that even in the presence of valinomycin, the CCCP-anion is “well behaved,” in that the translocation can be described by simple electrodiffusion. The translocation kinetics conform to an Eyring transport model, with a single activation energy barrier, contrary to translocation across lipid bilayers, that is reported to follow a transport model with a plateau in the activation energy barrier. The CCCP anion permeability across the red cell membrane has been calculated to be close to 2.0×10−4 cm/sec at 37°C with small variations between donors. Thus the permeability of CCCP in the human red cell membrane deviates from that found in black lipid membranes, in which the permeability is found to be a factor of 10 higher.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-1424
    Keywords: ion transport ; carriers ; lipid bilayers ; kinetics ; nonactin ; methylation ; macrotetralides
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary The effects of methylation on the rate constants of carrier-mediated ion transport have been studied on monooleindecane bilayers with K+, Rb+, NH 4 + , and TI+ ions, using the series of homologue carriers, nonactin, monactin, dinactin, trinactin, and tetranactin, each member of the series differing from the previous one by only one methyl group. Measurements of the amplitude and time constant of the current relaxation after a voltage jump over a large domain of voltage and permeant ion concentration, together with a computer curve-fitting procedure, have allowed us, without the help of steady-state current-voltage data, to deduce and compare the values of the various rate constants for ion transport: formation (k Ri) and dissociation (k Di) of the ion-carrier complex at the interface, translocation across the membrane interior of the carrier (k s) and the complex (k is). With the additional information from steady-state low-voltage conductance measurements, we have obtained the value of the aqueous phase-membrane and torus-membrane partition coefficient of the carrier ({ie191-1} and {ie191-2}). From nonactin to tetranactin with the NH 4 + ion,k is, and {ie191-3} are found to increase by factors of 5 and 3, respectively,k Di and {ie191-4} to decrease respectively by factors 8 and 2, whilek Ri andk s are practically invariant. Nearly identical results are found for K+, Rb+, and Tl+ ions.k Ri,k s andk is are quite invariant from one ion to the other except for Tl+ wherek Ri is about five times larger. On the other hand,k Di depends strongly on the ion, indicating that dissociation is the determining step of the ionic selectivity of a given carrier. The systematic variations in the values of the rate constants with increasing methylation are interpreted in terms of modifications of energy barriers induced by the carrier increasing size. Within this framework, we have been able to establish and verify a fundamental relationship between the variations ofk is andk Di with methylation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 69 (1982), S. 35-40 
    ISSN: 1432-1424
    Keywords: axon ; hydrostatic pressure ; K currents ; kinetics ; activation volume
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary The effect of pressure upon the delayed, K, voltage-clamp currents of giant axons from the squidLoligo vulgaris was studied in axons treated with 300nm TTX to block the early, Na, currents. The effect of TTX remained unaltered by pressure. The major change produced by pressures up to 62 MPa is a slowing down of the rising phase of the K currents by a time scaling factor which depends on pressure according to an apparent activation volume, ΔV∓, of 31 cm3/mole at 15°C; ΔV∓ increased to about 42 cm3/mole at 5°C. Pressure slightly increased the magnitude, but did not produce any obvious major change in the voltage dependence, of the steady-state K conductance estimated from the current jump at the end of step depolarizations of small amplitude (to membrane potentials,E, ≦20 mV) and relatively short duration. At higher depolarizations, pressure produced a more substantial increase of the late membrane conductance, associated with an apparent enhancement of a slow component of the K conductance which could not be described within the framework of the Hodgkin-Huxley (HH)n 4 kinetic scheme. The apparent ΔV∓ values that characterize the pressure dependence of the early component of the K conductance are very close to those that describe the effect of pressure on Na activation kinetics, and it is conceivable that they are related to activation volumes involved in the isomerization of the normal K channels. The enhancement of the slow component of membrane conductance by pressure implies either a large increase in the conductance of the ionic channels that are responsible for it or a strong relative hastening of their turn-on kinetics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...