ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Artikel  (83)
  • Climate change  (44)
  • Ocean acidification  (42)
  • O11
  • Educación
  • 2020-2023  (83)
  • 1
    Publikationsdatum: 2022-10-27
    Beschreibung: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Pold, G., Baillargeon, N., Lepe, A., Rastetter, E. B., & Sistla, S. A. Warming effects on arctic tundra biogeochemistry are limited but habitat-dependent: a meta-analysis. Ecosphere, 12(10), (2021): e03777, https://doi.org/10.1002/ecs2.3777.
    Beschreibung: Arctic tundra consists of diverse habitats that differ in dominant vegetation, soil moisture regimes, and relative importance of organic vs. inorganic nutrient cycling. The Arctic is also the most rapidly warming global area, with winter warming dominating. This warming is expected to have dramatic effects on tundra carbon and nutrient dynamics. We completed a meta-analysis of 166 experimental warming study papers to evaluate the hypotheses that warming changes tundra biogeochemical cycles in a habitat- and seasonally specific manner and that the carbon (C), nitrogen (N), and phosphorus (P) cycles will be differentially accelerated, leading to decoupling of elemental cycles. We found that nutrient availability and plant leaf stoichiometry responses to experimental warming were variable and overall weak, but that both gross primary productivity and the plant C pool tended to increase with growing season warming. The effects of winter warming on C fluxes did not extend into the growing season. Overall, although warming led to more consistent increases in C fluxes compared to N or P fluxes, evidence for decoupling of biogeochemical cycles is weak and any effect appears limited to heath habitats. However, data on many habitats are too sparse to be able to generalize how warming might decouple biogeochemical cycles, and too few year-round warming studies exist to ascertain whether the season under which warming occurs alters how ecosystems respond to warming. Coordinated field campaigns are necessary to more robustly document tundra habitat-specific responses to realistic climate warming scenarios in order to better understand the mechanisms driving this heterogeneity and identify the tundra habitats, communities, and soil pools most susceptible to warming.
    Beschreibung: Funding for this project was provided by NSF Signals in the Soil grant number 1841610 to SAS and ER. SAS and ER conceived of and acquired funding for the project. NB completed the literature search.
    Schlagwort(e): Arctic ; Biogeochemistry ; Climate change ; Experimental warming ; Meta-analysis ; Stoichiometry ; Tundra
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2022-10-27
    Beschreibung: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Stunz, E., Fetcher, N., Lavretsky, P., Mohl, J., Tang, J., & Moody, M. Landscape genomics provides evidence of ecotypic adaptation and a barrier to gene flow at treeline for the arctic foundation species Eriophorum vaginatum. Frontiers in Plant Science, 13, (2022): 860439, https://doi.org/10.3389/fpls.2022.860439.
    Beschreibung: Global climate change has resulted in geographic range shifts of flora and fauna at a global scale. Extreme environments, like the Arctic, are seeing some of the most pronounced changes. This region covers 14% of the Earth’s land area, and while many arctic species are widespread, understanding ecotypic variation at the genomic level will be important for elucidating how range shifts will affect ecological processes. Tussock cottongrass (Eriophorum vaginatum L.) is a foundation species of the moist acidic tundra, whose potential decline due to competition from shrubs may affect ecosystem stability in the Arctic. We used double-digest Restriction Site-Associated DNA sequencing to identify genomic variation in 273 individuals of E. vaginatum from 17 sites along a latitudinal gradient in north central Alaska. These sites have been part of 30 + years of ecological research and are inclusive of a region that was part of the Beringian refugium. The data analyses included genomic population structure, demographic models, and genotype by environment association. Genome-wide SNP investigation revealed environmentally associated variation and population structure across the sampled range of E. vaginatum, including a genetic break between populations north and south of treeline. This structure is likely the result of subrefugial isolation, contemporary isolation by resistance, and adaptation. Forty-five candidate loci were identified with genotype-environment association (GEA) analyses, with most identified genes related to abiotic stress. Our results support a hypothesis of limited gene flow based on spatial and environmental factors for E. vaginatum, which in combination with life history traits could limit range expansion of southern ecotypes northward as the tundra warms. This has implications for lower competitive attributes of northern plants of this foundation species likely resulting in changes in ecosystem productivity.
    Beschreibung: This research was made possible by funding provided by NSF/PLR-1417645 to MM. The Botanical Society of America Graduate Student Research Award and the Dodson Research Grant from the Graduate School of the University of Texas at El Paso provided assistance to ES. The grant 5U54MD007592 from the National Institute on Minority Health and Health Disparities (NIMHD), a component of the National Institutes of Health (NIH) provided bioinformatics resources and support of JM.
    Schlagwort(e): Arctic ; Climate change ; Eriophorum vaginatum ; Landscape genomics ; Environmental niche modeling ; Genotype-environment association analyses ; Refugia
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2022-10-27
    Beschreibung: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Rastetter, E., Kwiatkowski, B., Kicklighter, D., Plotkin, A., Genet, H., Nippert, J., O’Keefe, K., Perakis, S., Porder, S., Roley, S., Ruess, R., Thompson, J., Wieder, W., Wilcox, K., & Yanai, R. N and P constrain C in ecosystems under climate change: role of nutrient redistribution, accumulation, and stoichiometry. Ecological Applications, (2022): e2684, https://doi.org/10.1002/eap.2684.
    Beschreibung: We use the Multiple Element Limitation (MEL) model to examine responses of 12 ecosystems to elevated carbon dioxide (CO2), warming, and 20% decreases or increases in precipitation. Ecosystems respond synergistically to elevated CO2, warming, and decreased precipitation combined because higher water-use efficiency with elevated CO2 and higher fertility with warming compensate for responses to drought. Response to elevated CO2, warming, and increased precipitation combined is additive. We analyze changes in ecosystem carbon (C) based on four nitrogen (N) and four phosphorus (P) attribution factors: (1) changes in total ecosystem N and P, (2) changes in N and P distribution between vegetation and soil, (3) changes in vegetation C:N and C:P ratios, and (4) changes in soil C:N and C:P ratios. In the combined CO2 and climate change simulations, all ecosystems gain C. The contributions of these four attribution factors to changes in ecosystem C storage varies among ecosystems because of differences in the initial distributions of N and P between vegetation and soil and the openness of the ecosystem N and P cycles. The net transfer of N and P from soil to vegetation dominates the C response of forests. For tundra and grasslands, the C gain is also associated with increased soil C:N and C:P. In ecosystems with symbiotic N fixation, C gains resulted from N accumulation. Because of differences in N versus P cycle openness and the distribution of organic matter between vegetation and soil, changes in the N and P attribution factors do not always parallel one another. Differences among ecosystems in C-nutrient interactions and the amount of woody biomass interact to shape ecosystem C sequestration under simulated global change. We suggest that future studies quantify the openness of the N and P cycles and changes in the distribution of C, N, and P among ecosystem components, which currently limit understanding of nutrient effects on C sequestration and responses to elevated CO2 and climate change.
    Beschreibung: This material is based on work supported by the National Science Foundation under Grant No. 1651722 as well through the NSF LTER Program 1637459, 2220863 (ARC), 1637686 (NWT), 1832042 (KBS), 2025849 (KNZ), 1636476 (BNZ), 1637685 (HBR), 1832210 (HFR), 2025755 (AND). We also acknowledge NSF grants 1637653 and 1754126 (INCyTE RCN), and DOE grant DESC0019037. We also acknowledge support through the USDA Forest Service Hubbard Brook Experimental Forest, North Woodstock, New Hampshie (USDA NIFA 2019-67019-29464) and Pacific Northwest Research Station, Corvallis, Oregon.
    Schlagwort(e): Carbon dioxide fertilization ; Carbon sequestration ; Carbon-nitrogen interactions ; Carbon-phosphorus interactions ; Climate change ; Long-term ecological research (LTER) ; Nitrogen cycle ; Phosphorus cycle ; Terrestrial ecosystem stoichiometry
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    facet.materialart.
    Unbekannt
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publikationsdatum: 2022-10-31
    Beschreibung: Dataset: Abalone consumption rates from the Sitka Sound (SSSC)
    Beschreibung: To determine the effect of current and future seasonal differences in carbonate chemistry on abalone bioenergetics, this experiment exposed juvenile, non-reproductive (36 ± 5 mm) H. kamschatkana to three pH/pCO2 levels (i.e., pHT 8.1, 7.8, 7.5) for four months in a flow-through system at the Sitka Sound Science Center (SSSC) from June-October 2017. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/855075
    Beschreibung: NSF Division of Ocean Sciences (NSF OCE) OCE-1752600
    Schlagwort(e): Feeding ; Energetics ; Abalone ; Ocean acidification ; Diet
    Repository-Name: Woods Hole Open Access Server
    Materialart: Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2022-10-31
    Beschreibung: Dataset: Symbiodiniaceae communities in corals with ITS-2 rDNA amplicon sequencing
    Beschreibung: Symbiodiniaceae communities were investigated at three locations on the Great Barrier Reef in October 2014. Acropora millepora samples from Davies Reef lagoon (18°30′3.96′′S, 147°22′48′′E), Rib Reef (18°28′53.4′′S, 146°52′24.96′′E), and Pandora Island (18°48′45′′S, 146°25′59.16′′E), were exposed to various stressors including pCO2, heat, bacteria, all of these, or none of these (control). This dataset lists accessions and collection information for ITS-2 rDNA amplicon data that are available at the National Center for Biotechnology Information (NCBI) under BioProject PRJNA596498. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/844431
    Beschreibung: NSF Division of Ocean Sciences (NSF OCE) OCE-1635798
    Schlagwort(e): Acropora millepora ; Alpha diversity ; Beta diversity ; Climate change ; Coral ; Symbiodiniaceae
    Repository-Name: Woods Hole Open Access Server
    Materialart: Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    facet.materialart.
    Unbekannt
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publikationsdatum: 2022-10-31
    Beschreibung: Dataset: Abalone respiration rates from the Sitka Sound (SSSC)
    Beschreibung: This data shows juvenile, non-reproductive Abalone respiration responses (represented by measured dissolved oxygen) to a fully factorial mesocosm experiment that manipulates pH and diet. This data was collected from June to October 2017 at the Sitka Sound Science Center (SSSC). For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/856199
    Beschreibung: NSF Division of Ocean Sciences (NSF OCE) OCE-1752600
    Schlagwort(e): Feeding ; Energetics ; Abalone ; Ocean acidification ; Diet ; Respirometry
    Repository-Name: Woods Hole Open Access Server
    Materialart: Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    facet.materialart.
    Unbekannt
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publikationsdatum: 2022-10-31
    Beschreibung: Dataset: Experimental coral treatments
    Beschreibung: Coral samples from reefs in Mo'orea, French Polynesia were exposed to various experimental treatments to quantify how different environmental stressors impact the coral health and microbial community structure of the corals. Environmental stressors included increased temperature and nutrients as well as exudate released from corals when they bleach. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/843188
    Beschreibung: NSF Division of Ocean Sciences (NSF OCE) OCE-1635798, NSF Division of Ocean Sciences (NSF OCE) OCE-1635913
    Schlagwort(e): Coral reef ; Holobiont ; Coral microbiome ; Climate change
    Repository-Name: Woods Hole Open Access Server
    Materialart: Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    facet.materialart.
    Unbekannt
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publikationsdatum: 2022-10-31
    Beschreibung: Dataset: Abalone growth rates from the Sitka Sound (SSSC)
    Beschreibung: This data shows juvenile, non-reproductive Abalone growth responses (represented by percentage change in weight in grams to a fully factorial mesocosm experiment that manipulates pH and diet. This data was collected from June to October 2017 at the Sitka Sound Science Center (SSSC). For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/856089
    Beschreibung: NSF Division of Ocean Sciences (NSF OCE) OCE-1752600
    Schlagwort(e): Abalone ; Growth ; Ocean acidification
    Repository-Name: Woods Hole Open Access Server
    Materialart: Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2022-10-27
    Beschreibung: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Winters, G., Teichberg, M., Reuter, H., Viana, I. G., & Willette, D. A. Editorial: seagrasses under times of change. Frontiers in Plant Science, 13, (2022): 870478, https://doi.org/10.3389/fpls.2022.870478.
    Beschreibung: Awareness of the ecological importance of seagrasses is growing due to recent attention to their role in carbon sequestration as a potential blue carbon sink (Fourqurean et al., 2012; Bedulli et al.), as well as their role in nutrient cycling (Romero et al., 2006), sediment stabilization (James et al., 2019), pathogen filtration (Lamb et al., 2017), and the formation of essential habitats for economically important marine species (Jackson et al., 2001; Jones et al.). Despite their importance and the increasing public and scientific awareness of seagrasses, simultaneous global (e.g., ocean warming, increase in frequency and severity of extreme events, introduction and spread of invasive species) and local (e.g., physical disturbances, eutrophication, and sedimentation) anthropogenic stressors continue to be the main causes behind the ongoing global decline of seagrass meadows (Orth et al., 2006; Waycott et al., 2009).
    Beschreibung: This research was partially funded through the BMBF project SEANARIOS (Seagrass scenarios under thermal and nutrient stress: FKZ 03F0826A) to HR and MT. MT was partially funded through the DFG project SEAMAC (Seagrass and macroalgal community dynamics and performance under environmental change; TE 1046/3-1). IV was supported by a postdoctoral research grant Juan de la Cierva-Incorporación (IJC2019-040554-I) and from MCIN/AEI /10.13039/501100011033 (Spain).
    Schlagwort(e): Seagrasses ; Climate change ; Eutrophication ; Responses of seagrasses to single and combined stressors ; Spatial-temporal modeling
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2022-10-27
    Beschreibung: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Chavarry, J. M., Law, K. L., Barton, A. D., Bowlin, N. M., Ohman, M. D., & Choy, C. A. Relative exposure to microplastics and prey for a pelagic forage fish. Environmental Research Letters, 17(6), (2022): 064038, https://doi.org/10.1088/1748-9326/ac7060.
    Beschreibung: In the global ocean, more than 380 species are known to ingest microplastics (plastic particles less than 5 mm in size), including mid-trophic forage fishes central to pelagic food webs. Trophic pathways that bioaccumulate microplastics in marine food webs remain unclear. We assess the potential for the trophic transfer of microplastics through forage fishes, which are prey for diverse predators including commercial and protected species. Here, we quantify Northern Anchovy (Engraulis mordax) exposure to microplastics relative to their natural zooplankton prey, across their vertical habitat. Microplastic and zooplankton samples were collected from the California Current Ecosystem in 2006 and 2007. We estimated the abundance of microplastics beyond the sampled size range but within anchovy feeding size ranges using global microplastic size distributions. Depth-integrated microplastics (0–30 m depth) were estimated using a depth decay model, accounting for the effects of wind-driven vertical mixing on buoyant microplastics. In this coastal upwelling biome, the median relative exposure for an anchovy that consumed prey 0.287–5 mm in size was 1 microplastic particle for every 3399 zooplankton individuals. Microplastic exposure varied, peaking within offshore habitats, during the winter, and during the day. Maximum exposure to microplastic particles relative to zooplankton prey was higher for juvenile (1:23) than adult (1:33) anchovy due to growth-associated differences in anchovy feeding. Overall, microplastic particles constituted fewer than 5% of prey-sized items available to anchovy. Microplastic exposure is likely to increase for forage fishes in the global ocean alongside declines in primary productivity, and with increased water column stratification and microplastic pollution.
    Beschreibung: This work originated from the Plastic Awareness Global Initiative (PAGI) international workshop, hosted by the Center for Marine Biodiversity and Conservation (CMBC) at Scripps Institution of Oceanography at the University of California San Diego in 2018, with support from Igor Korneitchouk and the Wilsdorf Mettler Future Foundation. We thank the workshop participants for early discussions and a collaborative meeting space. We thank Kelly Lance for her illustration contributions, and the SIO Communications Office for their support. We thank Miriam Doyle and Ryan Rykaczewski for their assistance in data acquisition, and we thank Penny Dockry and Stuart Sandin of CMBC for administrative and logistical support. Julia Chavarry was supported by the San Diego Fellowship. This paper is a contribution from the California Current Ecosystem Long Term Ecological Research site, supported by the National Science Foundation.
    Schlagwort(e): Upwelling ecosystems ; Food webs ; Climate change ; Engraulis mordax
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 11
    Publikationsdatum: 2022-10-18
    Beschreibung: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Pold, G., Kwiatkowski, B. L., Rastetter, E. B., & Sistla, S. A. Sporadic P limitation constrains microbial growth and facilitates SOM accumulation in the stoichiometrically coupled, acclimating microbe-plant-soil model. Soil Biology & Biochemistry, 165, (2022): 108489, https://doi.org/10.1016/j.soilbio.2021.108489.
    Beschreibung: Requirements for biomass carbon (C), nitrogen (N), and phosphorus (P) constrain organism growth and are important agents for structuring ecosystems. Arctic tundra habitats are strongly nutrient limited as decomposition and recycling of nutrients are slowed by low temperature. Modeling interactions among these elemental cycles affords an opportunity to explore how disturbances such as climate change might differentially affect these nutrient cycles. Here we introduce a C–N–P-coupled version of the Stoichiometrically Coupled Acclimating Microbe-Plant-Soil (SCAMPS) model, “SCAMPS-CNP”, and a corresponding modified CN-only model, “SCAMPS-CN”. We compared how SCAMPS-CNP and the modified SCAMPS-CN models project a moderate (RCP 6.0) air warming scenario will impact tussock tundra nutrient availability and ecosystem C stocks. SCAMPS-CNP was characterized by larger SOM and smaller organism C stocks compared to SCAMPS-CN, and a greater reduction in ecosystem C stocks under warming. This difference can largely be attributed to a smaller microbial biomass in the CNP model, which, instead of being driven by direct costs of P acquisition, was driven by variable resource limitation due to asynchronous C, N, and P availability and demand. Warming facilitated a greater relative increase in plant and microbial biomass in SCAMPS-CNP, however, facilitated by increased extracellular enzyme pools and activity, which more than offset the metabolic costs associated with their production. Although the microbial community was able to flexibly adapt its stoichiometry and become more bacteria-like (N-rich) in both models, its stoichiometry deviated further from its target value in the CNP model because of the need to balance cellular NP ratio. Our results indicate that seasonality and asynchrony in resources affect predicted changes in ecosystem C storage under warming in these models, and therefore build on a growing body of literature indicating stoichiometry should be considered in carbon cycling projections.
    Beschreibung: This work was funded by the National Science Foundation Signals in the Soil grant number 1841610 to SAS and EBR.
    Schlagwort(e): Stoichiometry ; Modeling ; Microbial physiology ; Tundra ; Climate change
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 12
    Publikationsdatum: 2022-05-27
    Beschreibung: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Burnham, K. A., Nowicki, R. J., Hall, E. R., Pi, J., & Page, H. N. Effects of ocean acidification on the performance and interaction of fleshy macroalgae and a grazing sea urchin. Journal of Experimental Marine Biology and Ecology, 547, (2022): 151662, https://doi.org/10.1016/j.jembe.2021.151662.
    Beschreibung: When predicting the response of marine ecosystems to climate change, it is increasingly recognized that understanding the indirect effects of ocean acidification on trophic interactions is as important as studying direct effects on organism physiology. Furthermore, comprehensive studies that examine these effects simultaneously are needed to identify and link the underlying mechanisms driving changes in species interactions. Using an onshore ocean acidification simulator system, we investigated the direct and indirect effects of elevated seawater pCO2 on the physiology and trophic interaction of fleshy macroalgae and the grazing sea urchin Lytechinus variegatus. Macroalgal (Dictyota spp.) biomass increased despite decreased photosynthetic rates after two-week exposure to elevated pCO2. Algal tissue carbon content remained constant, suggesting the use of alternative carbon acquisition pathways beneficial to growth under acidification. Higher C:N ratios driven by a slight reduction in N content in algae exposed to elevated pCO2 suggest a decrease in nutritional content under acidification. Urchin (L. variegatus) respiration, biomass, and righting time did not change significantly after six-week exposure to elevated pCO2, indicating that physiological stress and changes in metabolism are not mechanisms through which the trophic interaction was impacted. Correspondingly, urchin consumption rates of untreated macroalgae (Caulerpa racemosa) were not significantly affected by pCO2. In contrast, exposure of urchins to elevated pCO2 significantly reduced the number of correct foraging choices for ambient macroalgae (Dictyota spp.), indicating impairment of urchin chemical sensing under acidification. However, exposure of algae to elevated pCO2 returned the number of correct foraging choices in similarly exposed urchins to ambient levels, suggesting alongside higher C:N ratios that algal nutritional content was altered in a way detectable by the urchins under acidification. These results highlight the importance of studying the indirect effects of acidification on trophic interactions simultaneously with direct effects on physiology. Together, these results suggest that changes to urchin chemical sensing and algal nutritional quality are the driving mechanisms behind surprisingly unaltered urchin foraging behavior for fleshy macroalgae under joint exposure to ocean acidification. Consistent foraging behavior and consumption rates suggest that the trophic interaction between L. variegatus and fleshy macroalgae may be sustained under future acidification. However, increases in fleshy macroalgal biomass driven by opportunistic carbon acquisition strategies have the potential to cause ecological change, depending on how grazer populations respond. Additional field research is needed to determine the outcome of these results over time and under a wider range of environmental conditions.
    Beschreibung: This work was supported by Mote Marine Laboratory Postdoctoral Fellowships (RJN and HNP), Becker Internship Funding, and philanthropic funds to ERH.
    Schlagwort(e): Climate change ; Elevated pCO2 ; Direct effects ; Physiology ; Indirect effects ; Herbivory
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 13
    Publikationsdatum: 2022-10-05
    Beschreibung: Este documento de trabajo examina los vínculos entre el aprendizaje de la alfabetización, el desarrollo de competencias y el mundo del trabajo, en línea con el tema del Día Internacional de la Alfabetización (ILD, por sus siglas en inglés) 2018. Su objetivo es identificar acciones de política que ayudan a integrar el aprendizaje de la alfabetización y el desarrollo de competencias, con el objetivo de apoyar las vías hacia el empleo.
    Beschreibung: OPENASFA INPUT Documento de trabajo preparado para la Conferencia Internacional sobre “Alfabetización y desarrollo de competencias” (París, 7 de septiembre de 2018)
    Beschreibung: Published
    Beschreibung: Not Known
    Schlagwort(e): Desarrollo de competencias ; Alfabetización ; Educación ; Desempleo ; Igualdad de género
    Repository-Name: AquaDocs
    Materialart: Report
    Format: 20pp.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 14
    facet.materialart.
    Unbekannt
    UNESCO | Paris, France
    Publikationsdatum: 2022-09-24
    Beschreibung: A combination of anthropogenic and natural pressures is impacting the health and productivity of LMEs, compromising the sustainability of LME ecosystem services. These pressures are accelerating, and without concerted action their impacts could become irreversible.
    Beschreibung: OPENASFA INPUT
    Beschreibung: Published
    Beschreibung: Not Known
    Schlagwort(e): Large marine ecosystems (LME) ; Ocean acidification ; Nutrients ; Human impact ; ASFA_2015::E::Ecosystems ; ASFA_2015::B::Biodiversity ; ASFA_2015::S::Sustainable development
    Repository-Name: AquaDocs
    Materialart: Report
    Format: 24pp.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 15
    Publikationsdatum: 2022-06-06
    Beschreibung: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Applied Meteorology and Climatology 60(9), (2021): 1361–1370, https://doi.org/10.1175/JAMC-D-20-0254.1.
    Beschreibung: We analyze how winter thaw events (TE; T 〉 0°C) are changing on the summit of Mount Washington, New Hampshire, using three metrics: the number of TE, number of thaw hours, and number of thaw degree-hours for temperature and dewpoint for winters from 1935/36 to 2019/20. The impact of temperature-only TE and dewpoint TE on snow depth are compared to quantify the different impacts of sensible-only heating and sensible-and-latent heating, respectively. Results reveal that temperature and dewpoint TE for all metrics increased at a statistically significant rate (p 〈 0.05) over the full time periods studied for temperature (1935/36–2019/20) and dewpoint (1939/40–2019/20). Notably, around 2000/01, the positive trends increased for most variables, including dewpoint-thaw degree-hours that increased by 82.11 degree-hours decade−1 during 2000–20, which is approximately 5 times as faster as the 1939–2020 rate of 17.70 degree-hours decade−1. Furthermore, a clear upward shift occurred around 1990 in the lowest winter values of thaw hours and thaw degree-hours—winters now have a higher baseline amount of thaw than before 1990. Snow-depth loss during dewpoint TE (0.36 cm h−1) occurred more than 2 times as fast as temperature-only TE (0.14 cm h−1). With winters projected to warm throughout the twenty-first century in the northeastern United States, it is expected that the trends in winter thaw events, and the sensible and latent energy that they bring, will continue to rise and lead to more frequent winter flooding, fewer days of good quality snow for winter recreation, and changes in ecosystem function.
    Schlagwort(e): Atmosphere ; Snowmelt/icemelt ; Snowpack ; Winter/cool season ; Climate change ; Humidity ; Latent heating/cooling ; Snow cover ; Temperature
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 16
    Publikationsdatum: 2022-07-20
    Beschreibung: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Clark, S., Hubbard, K., Ralston, D., McGillicuddy, D., Stock, C., Alexander, M., & Curchitser, E. Projected effects of climate change on Pseudo-nitzschia bloom dynamics in the Gulf of Maine. Journal of Marine Systems, 230, (2022): 103737, https://doi.org/10.1016/j.jmarsys.2022.103737.
    Beschreibung: Worldwide, warming ocean temperatures have contributed to extreme harmful algal bloom events and shifts in phytoplankton species composition. In 2016 in the Gulf of Maine (GOM), an unprecedented Pseudo-nitzschia bloom led to the first domoic-acid induced shellfishery closures in the region. Potential links between climate change, warming temperatures, and the GOM Pseudo-nitzschia assemblage, however, remain unexplored. In this study, a global climate change projection previously downscaled to 7-km resolution for the Northwest Atlantic was further refined with a 1–3-km resolution simulation of the GOM to investigate the effects of climate change on HAB dynamics. A 25-year time slice of projected conditions at the end of the 21st century (2073–2097) was compared to a 25-year hindcast of contemporary ocean conditions (1994–2018) and analyzed for changes to GOM inflows, transport, and Pseudo-nitzschia australis growth potential. On average, climate change is predicted to lead to increased temperatures, decreased salinity, and increased stratification in the GOM, with the largest changes occurring in the late summer. Inflows from the Scotian Shelf are projected to increase, and alongshore transport in the Eastern Maine Coastal Current is projected to intensify. Increasing ocean temperatures will likely make P. australis growth conditions less favorable in the southern and western GOM but improve P. australis growth conditions in the eastern GOM, including a later growing season in the fall, and a longer growing season in the spring. Combined, these changes suggest that P. australis blooms in the eastern GOM could intensify in the 21st century, and that the overall Pseudo-nitzschia species assemblage might shift to warmer-adapted species such as P. plurisecta or other Pseudo-nitzschia species that may be introduced.
    Beschreibung: This research was funded by the National Science Foundation (Grant Number OCE-1840381), the National Institute of Environmental Health Sciences (Grant Number 1P01ES028938), the Woods Hole Center for Oceans and Human Health, and the Academic Programs Office of the Woods Hole Oceanographic Institution.
    Schlagwort(e): Gulf of Maine ; ROMS ; Pseudo-nitzschia ; Climate change ; Harmful algal blooms
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 17
    Publikationsdatum: 2022-12-22
    Beschreibung: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Venkataraman, Y. R., White, S. J., & Roberts, S. B. Differential DNA methylation in Pacific oyster reproductive tissue in response to ocean acidification. BMC Genomics, 23(1), (2022): 556, https://doi.org/10.1186/s12864-022-08781-5.
    Beschreibung: Background There is a need to investigate mechanisms of phenotypic plasticity in marine invertebrates as negative effects of climate change, like ocean acidification, are experienced by coastal ecosystems. Environmentally-induced changes to the methylome may regulate gene expression, but methylome responses can be species- and tissue-specific. Tissue-specificity has implications for gonad tissue, as gonad-specific methylation patterns may be inherited by offspring. We used the Pacific oyster (Crassostrea gigas) — a model for understanding pH impacts on bivalve molecular physiology due to its genomic resources and importance in global aquaculture— to assess how low pH could impact the gonad methylome. Oysters were exposed to either low pH (7.31 ± 0.02) or ambient pH (7.82 ± 0.02) conditions for 7 weeks. Whole genome bisulfite sequencing was used to identify methylated regions in female oyster gonad samples. C- 〉 T single nucleotide polymorphisms were identified and removed to ensure accurate methylation characterization. Results Analysis of gonad methylomes revealed a total of 1284 differentially methylated loci (DML) found primarily in genes, with several genes containing multiple DML. Gene ontologies for genes containing DML were involved in development and stress response, suggesting methylation may promote gonad growth homeostasis in low pH conditions. Additionally, several of these genes were associated with cytoskeletal structure regulation, metabolism, and protein ubiquitination — commonly-observed responses to ocean acidification. Comparison of these DML with other Crassostrea spp. exposed to ocean acidification demonstrates that similar pathways, but not identical genes, are impacted by methylation. Conclusions Our work suggests DNA methylation may have a regulatory role in gonad and larval development, which would shape adult and offspring responses to low pH stress. Combined with existing molluscan methylome research, our work further supports the need for tissue- and species-specific studies to understand the potential regulatory role of DNA methylation.
    Beschreibung: This work was funded by National Science Foundation award 1634167 to SBR. The Hall Conservation Genetics Research Fund (YRV) supported sequencing for this project.
    Schlagwort(e): Pacific oyster ; Bivalve ; Ocean acidification ; DNA methylation ; Gonad development
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 18
    Publikationsdatum: 2022-12-23
    Beschreibung: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 49(12), (2022): e2021GL097598, https://doi.org/10.1029/2021GL097598.
    Beschreibung: The ocean is inhomogeneous in hydrographic properties with diverse water masses. Yet, how this inhomogeneity has evolved in a rapidly changing climate has not been investigated. Using multiple observational and reanalysis datasets, we show that the spatial standard deviation (SSD) of the global ocean has increased by 1.4 ± 0.1% in temperature and 1.5 ± 0.1% in salinity since 1960. A newly defined thermohaline inhomogeneity index, a holistic measure of both temperature and salinity changes, has increased by 2.4 ± 0.1%. Climate model simulations suggest that the observed ocean inhomogeneity increase is dominated by anthropogenic forcing and projected to accelerate by 200%–300% during 2015–2100. Geographically, the rapid upper-ocean warming at mid-to-low latitudes dominates the temperature inhomogeneity increase, while the increasing salinity inhomogeneity is mainly due to the amplified salinity contrast between the subtropical and subpolar latitudes.
    Beschreibung: This work is supported by the Strategic Priority Research Program of Chinese Academy of Sciences (grant XDB42000000 and XDB40000000), the National Key R&D Program of China (2017YFA0603200), and the Shandong Provincial Natural Science Foundation (ZR2020JQ17), and the U.S. National Science Foundation Physical Oceanography Program (OCE- 2048336).
    Beschreibung: 2022-12-23
    Schlagwort(e): Global ocean ; Temperature ; Salinity ; Spatial inhomogeneity ; Climate change
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 19
    Publikationsdatum: 2022-05-26
    Beschreibung: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Pirotta, E., Thomas, L., Costa, D., Hall, A., Harris, C., Harwood, J., Kraus, S., Miller, P., Moore, M., Photopoulou, T., Rolland, R., Schwacke, L., Simmons, S., Southall, B., & Tyack, P. Understanding the combined effects of multiple stressors: a new perspective on a longstanding challenge. Science of The Total Environment, 821, (2022): 153322, https://doi.org/10.1016/j.scitotenv.2022.153322.
    Beschreibung: Wildlife populations and their habitats are exposed to an expanding diversity and intensity of stressors caused by human activities, within the broader context of natural processes and increasing pressure from climate change. Estimating how these multiple stressors affect individuals, populations, and ecosystems is thus of growing importance. However, their combined effects often cannot be predicted reliably from the individual effects of each stressor, and we lack the mechanistic understanding and analytical tools to predict their joint outcomes. We review the science of multiple stressors and present a conceptual framework that captures and reconciles the variety of existing approaches for assessing combined effects. Specifically, we show that all approaches lie along a spectrum, reflecting increasing assumptions about the mechanisms that regulate the action of single stressors and their combined effects. An emphasis on mechanisms improves analytical precision and predictive power but could introduce bias if the underlying assumptions are incorrect. A purely empirical approach has less risk of bias but requires adequate data on the effects of the full range of anticipated combinations of stressor types and magnitudes. We illustrate how this spectrum can be formalised into specific analytical methods, using an example of North Atlantic right whales feeding on limited prey resources while simultaneously being affected by entanglement in fishing gear. In practice, case-specific management needs and data availability will guide the exploration of the stressor combinations of interest and the selection of a suitable trade-off between precision and bias. We argue that the primary goal for adaptive management should be to identify the most practical and effective ways to remove or reduce specific combinations of stressors, bringing the risk of adverse impacts on populations and ecosystems below acceptable thresholds.
    Beschreibung: This work was supported by the Office of Naval Research [grant numbers N000142012697, N000142112096]; and the Strategic Environmental Research and Development Program [grant numbers RC20-1097, RC20-7188, RC21-3091].
    Schlagwort(e): Adaptive management ; Climate change ; Combined effects ; Mechanistic modelling ; Multiple stressors ; Population consequences
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 20
    Publikationsdatum: 2022-12-01
    Beschreibung: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 103(6), (2022): E1502-E1521, https://doi.org/10.1175/bams-d-21-0227.1.
    Beschreibung: Climate observations inform about the past and present state of the climate system. They underpin climate science, feed into policies for adaptation and mitigation, and increase awareness of the impacts of climate change. The Global Climate Observing System (GCOS), a body of the World Meteorological Organization (WMO), assesses the maturity of the required observing system and gives guidance for its development. The Essential Climate Variables (ECVs) are central to GCOS, and the global community must monitor them with the highest standards in the form of Climate Data Records (CDR). Today, a single ECV—the sea ice ECV—encapsulates all aspects of the sea ice environment. In the early 1990s it was a single variable (sea ice concentration) but is today an umbrella for four variables (adding thickness, edge/extent, and drift). In this contribution, we argue that GCOS should from now on consider a set of seven ECVs (sea ice concentration, thickness, snow depth, surface temperature, surface albedo, age, and drift). These seven ECVs are critical and cost effective to monitor with existing satellite Earth observation capability. We advise against placing these new variables under the umbrella of the single sea ice ECV. To start a set of distinct ECVs is indeed critical to avoid adding to the suboptimal situation we experience today and to reconcile the sea ice variables with the practice in other ECV domains.
    Beschreibung: PH’s contribution was funded under the Australian Government’s Antarctic Science Collaboration Initiative program, and contributes to Project 6 of the Australian Antarctic Program Partnership (ASCI000002). PH acknowledges support through the Australian Antarctic Science Projects 4496 and 4506, and the International Space Science Institute (Bern, Switzerland) project #405.
    Beschreibung: 2022-12-01
    Schlagwort(e): Sea ice ; Climate change ; Climatology ; Climate records
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 21
    Publikationsdatum: 2022-10-26
    Beschreibung: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Owens, W., Zilberman, N., Johnson, K., Claustre, H., Scanderbeg, M., Wijffels, S., & Suga, T. OneArgo: a new paradigm for observing the global ocean. Marine Technology Society Journal, 56(3), (2022): 84–90, https://doi.org/10.4031/MTSJ.56.3.8.
    Beschreibung: OneArgo is a major expansion of the Argo program, which has provided two decades of transformative physical data for the upper 2 km of the global ocean. The present Argo array will be expanded in three ways: (1) Global Core: the existing upper ocean measurements will be extended to high latitudes and marginal seas and with enhanced coverage in the tropics and western boundaries of the major ocean basins; (2) Deep: deep ocean measurements will be obtained for the 50% of the global oceans that are below 2,000-m depth; and (3) Biogeochemical: dissolved oxygen, pH, nitrate, chlorophyll, optical backscatter, and irradiance data will be collected to investigate biogeochemical variability of the upper ocean and the processes by which these cycles respond to a changing climate. The technology and infrastructure necessary for this expansion is now being developed through large-scale regional pilots to further refine the floats and sensors and to demonstrate the utility of these measurements. Further innovation is expected to improve the performance of the floats and sensors and to develop the analyses necessary to provide research-quality data. A fully global OneArgo should be operational within 5–10 years.
    Beschreibung: In the United States, the National Science Foundation–funded Global Ocean Biogeochemistry Array (GO-BGC; https://go-bgc.org).
    Schlagwort(e): Argo floats ; Argo sensors ; OneArgo ; Climate change ; Biogeochemical measurements
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 22
    Publikationsdatum: 2022-10-26
    Beschreibung: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 36(1), (2022): e2021GB007113, https://doi.org/10.1029/2021GB007113.
    Beschreibung: Stordalen Mire is a peatland in the discontinuous permafrost zone in arctic Sweden that exhibits a habitat gradient from permafrost palsa, to Sphagnum bog underlain by permafrost, to Eriophorum-dominated fully thawed fen. We used three independent approaches to evaluate the annual, multi-decadal, and millennial apparent carbon accumulation rates (aCAR) across this gradient: seven years of direct semi-continuous measurement of CO2 and CH4 exchange, and 21 core profiles for 210Pb and 14C peat dating. Year-round chamber measurements indicated net carbon balance of −13 ± 8, −49 ± 15, and −91 ± 43 g C m−2 y−1 for the years 2012–2018 in palsa, bog, and fen, respectively. Methane emission offset 2%, 7%, and 17% of the CO2 uptake rate across this gradient. Recent aCAR indicates higher C accumulation rates in surface peats in the palsa and bog compared to current CO2 fluxes, but these assessments are more similar in the fen. aCAR increased from low millennial-scale levels (17–29 g C m−2 y−1) to moderate aCAR of the past century (72–81 g C m−2 y−1) to higher recent aCAR of 90–147 g C m−2 y−1. Recent permafrost collapse, greater inundation and vegetation response has made the landscape a stronger CO2 sink, but this CO2 sink is increasingly offset by rising CH4 emissions, dominated by modern carbon as determined by 14C. The higher CH4 emissions result in higher net CO2-equivalent emissions, indicating that radiative forcing of this mire and similar permafrost ecosystems will exert a warming influence on future climate.
    Beschreibung: We would like to acknowledge the following funding in support of this project: Swedish Research Council (Vetenskapsrådet, VR) grants (NT 2007-4547 and NT 2013-5562 to P. Crill), U.S. Department of Energy grants (DE-SC0004632 and DE-SC0010580 to V. Rich and S. Saleska), and U.S. National Science Foundation MacroSystems Biology grant (NSF EF #1241037, PI Varner). This work was supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research under the Genomic Science program. We also acknowledge funding from the National Science Foundation for the EMERGE Biology Integration Institute, NSF Award #2022070.
    Beschreibung: 2022-07-03
    Schlagwort(e): Peat ; Carbon cycling ; Permafrost ; Carbon-14 ; Lead-210 ; Climate change
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 23
    Publikationsdatum: 2022-10-26
    Beschreibung: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 127(1), (2022): e2021JC017424, https://doi.org/10.1029/2021JC017424.
    Beschreibung: By compiling boreal summer (June to October) CO2 measurements from 1989 to 2019 on the Bering and eastern Chukchi Sea shelves, we find that the study areas act as a CO2 sink except when impacted by river runoff and wind-driven upwelling. The CO2 system in this area is seasonally dominated by the biological pump especially in the northern Bering Sea and near Hanna Shoal, while wind-driven upwelling of CO2-rich bottom water can cause episodic outgassing. Seasonal surface ΔfCO2 (oceanic fCO2 – air fCO2) is dominantly driven by temperature only during periods of weak CO2 outgassing in shallow nearshore areas. However, after comparing the mean summer ΔfCO2 during the periods of 1989–2013 and 2014–2019, we suggest that temperature does drive long-term, multi-decadal patterns in ΔfCO2. In the northern Chukchi Sea, rapid warming concurrent with reduced seasonal sea-ice persistence caused the regional summer CO2 sink to decrease. By contrast, increasing primary productivity caused the regional summer CO2 sink on the Bering Sea shelf to increase over time. While additional time series are needed to confirm the seasonal and annual trajectory of CO2 changes and ocean acidification in these dynamic and spatially complex ecosystems, this study provides a meaningful mechanistic analysis of recent changes in inorganic carbonate chemistry. As high-resolution time series of inorganic carbonate parameters lengthen and short-term variations are better constrained in the coming decades, we will have stronger confidence in assessing the mechanisms contributing to long-term changes in the source/sink status of regional sub-Arctic seas.
    Beschreibung: We gratefully acknowledge the support of the funding agencies that supported this analysis, including the New Sustained Observations for Arctic Research project and the DBO-NCIS project (NA14OAR4320158, NA19OAR4320074) from the NOAA Arctic Research Program.
    Beschreibung: 2022-06-17
    Schlagwort(e): Pacific Arctic region ; Sea-air CO2 flux ; Ocean acidification ; Climate change ; Sea-ice loss ; Surface ocean CO2 Atlas
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 24
    Publikationsdatum: 2022-10-27
    Beschreibung: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Rastetter, E. B., Griffin, K. L., Rowe, R. J., Gough, L., McLaren, J. R., & Boelman, N. T. Model responses to CO(2) and warming are underestimated without explicit representation of Arctic small-mammal grazing. Ecological Applications, (2021): e02478, https://doi.org/10.1002/eap.2478.
    Beschreibung: We use a simple model of coupled carbon and nitrogen cycles in terrestrial ecosystems to examine how “explicitly representing grazers” vs. “having grazer effects implicitly aggregated in with other biogeochemical processes in the model” alters predicted responses to elevated carbon dioxide and warming. The aggregated approach can affect model predictions because grazer-mediated processes can respond differently to changes in climate compared with the processes with which they are typically aggregated. We use small-mammal grazers in a tundra as an example and find that the typical three-to-four-year cycling frequency is too fast for the effects of cycle peaks and troughs to be fully manifested in the ecosystem biogeochemistry. We conclude that implicitly aggregating the effects of small-mammal grazers with other processes results in an underestimation of ecosystem response to climate change, relative to estimations in which the grazer effects are explicitly represented. The magnitude of this underestimation increases with grazer density. We therefore recommend that grazing effects be incorporated explicitly when applying models of ecosystem response to global change.
    Beschreibung: This work was supported in part by the National Science Foundation under NSF grants 1651722, 1637459, 1603560, 1556772, 1841608 to E.B.R.; 1603777 to N.T.B. and K.L.G.; 1603654 to R.J.R.; 1603760 to L.G.; and 1603677 to J.R.M.
    Schlagwort(e): Arctic tundra ; Biogeochemistry ; Carbon cycling ; Carbon-nitrogen ecosystem model ; Climate change ; Nitrogen cycling ; Population cycles ; Small-mammal herbivores
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 25
    facet.materialart.
    Unbekannt
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publikationsdatum: 2022-10-31
    Beschreibung: Dataset: Krill physiology - In situ conditions
    Beschreibung: Physiological observations of Euphausia pacifica sampled in Puget Sound, WA aboard R/V Clifford A. Barnes during cruises CB1073 and CB1078 in 2017. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/840626
    Beschreibung: NSF Division of Ocean Sciences (NSF OCE) OCE-1154648
    Schlagwort(e): Euphausiids ; Ocean acidification ; Hypoxia ; ETS ; AARS ; Growth ; Respiration ; Metabolism
    Repository-Name: Woods Hole Open Access Server
    Materialart: Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 26
    facet.materialart.
    Unbekannt
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publikationsdatum: 2022-10-31
    Beschreibung: Dataset: Krill physiology - In situ conditions
    Beschreibung: Physiological observations of Euphausia pacifica sampled in Puget Sound, WA aboard R/V Clifford A. Barnes during cruises CB1073 and CB1078 in 2017. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/840626
    Beschreibung: NSF Division of Ocean Sciences (NSF OCE) OCE-1154648
    Schlagwort(e): Euphausiids ; Ocean acidification ; Hypoxia ; ETS ; AARS ; Growth ; Respiration ; Metabolism
    Repository-Name: Woods Hole Open Access Server
    Materialart: Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 27
    facet.materialart.
    Unbekannt
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publikationsdatum: 2022-10-31
    Beschreibung: Dataset: Carbonate Chemistry 2014-2017 and 2018-2020
    Beschreibung: The Ecosystem Science and Modeling lab has been collecting water samples from five stations in the Mission-Aransas Estuary (MAE, Northwest Gulf of Mexico, Texas coast) for carbonate system characterization on a monthly to twice monthly basis since May 2014. This dataset includes temperature, salinity, dissolved inorganic carbon (DIC), total alkalinity (TA), calcium, and pH measurements from surface and bottom water samples in MAE from May 2014 – Feb 2017 and Dec 2018 – Feb 2020. Additional data for this estuary to fill in the Feb 2017 – Dec 2018 gap are also archived with BCO-DMO (http://www.bco-dmo.org/dataset/784673, doi:10.1575/1912/bco-dmo.784673.1). For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/835227
    Beschreibung: NSF Division of Ocean Sciences (NSF OCE) OCE-1654232
    Schlagwort(e): Carbonate chemistry ; Ocean acidification ; Estuary ; Carbon cycling
    Repository-Name: Woods Hole Open Access Server
    Materialart: Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 28
    facet.materialart.
    Unbekannt
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publikationsdatum: 2022-10-31
    Beschreibung: Dataset: Krill Experiment - Experimental Conditions
    Beschreibung: Seawater conditions monitored and recorded during two separate laboratory experiments in 2017 to acclimate krill to dissolved oxygen (DO) or pH conditions. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/842922
    Beschreibung: NSF Division of Ocean Sciences (NSF OCE) OCE-1154648
    Schlagwort(e): Euphausiids ; Krill ; Hypoxia ; Ocean acidification ; Metabolism ; Growth ; Respiration
    Repository-Name: Woods Hole Open Access Server
    Materialart: Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 29
    facet.materialart.
    Unbekannt
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publikationsdatum: 2022-10-31
    Beschreibung: Dataset: Krill physiology - Experimental conditions
    Beschreibung: Physiological observations of Euphausia pacifica after a ten-day acclimation to dissolved oxygen (DO) and pH conditions in two separate laboratory experiments. Krill was sampled in the Puget Sound, WA, USA aboard R/V Clifford Barnes during cruises CB1073 and CB1078 in 2017. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/840572
    Beschreibung: NSF Division of Ocean Sciences (NSF OCE) OCE-1154648
    Schlagwort(e): Euphausiids ; Ocean acidification ; Hypoxia ; ETS ; AARS ; Growth ; Respiration ; Metabolism
    Repository-Name: Woods Hole Open Access Server
    Materialart: Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 30
    facet.materialart.
    Unbekannt
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publikationsdatum: 2022-10-31
    Beschreibung: Dataset: CTD casts - Krill cruises
    Beschreibung: CTD profiles acquired in Puget Sound, WA aboard R/V Clifford A. Barnes during cruises CB1073 and CB1078 in 2017. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/842972
    Beschreibung: NSF Division of Ocean Sciences (NSF OCE) OCE-1154648
    Schlagwort(e): Hypoxia ; Ocean acidification ; Coastal oceanography
    Repository-Name: Woods Hole Open Access Server
    Materialart: Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 31
    Publikationsdatum: 2022-10-27
    Beschreibung: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Biogeosciences 126(1), (2021): e2019JG005621, https://doi.org/10.1029/2019JG005621.
    Beschreibung: Ongoing ocean warming can release methane (CH4) currently stored in ocean sediments as free gas and gas hydrates. Once dissolved in ocean waters, this CH4 can be oxidized to carbon dioxide (CO2). While it has been hypothesized that the CO2 produced from aerobic CH4 oxidation could enhance ocean acidification, a previous study conducted in Hudson Canyon shows that CH4 oxidation has a small short‐term influence on ocean pH and dissolved inorganic radiocarbon. Here we expand upon that investigation to assess the impact of widespread CH4 seepage on CO2 chemistry and possible accumulation of this carbon injection along 234 km of the U.S. Mid‐Atlantic Bight. Consistent with the estimates from Hudson Canyon, we demonstrate that a small fraction of ancient CH4‐derived carbon is being assimilated into the dissolved inorganic radiocarbon (mean fraction of 0.5 ± 0.4%). The areas with the highest fractions of ancient carbon coincide with elevated CH4 concentration and active gas seepage. This suggests that aerobic CH4 oxidation has a greater influence on the dissolved inorganic pool in areas where CH4 concentrations are locally elevated, instead of displaying a cumulative effect downcurrent from widespread groupings of CH4 seeps. A first‐order approximation of the input rate of ancient‐derived dissolved inorganic carbon (DIC) into the waters overlying the northern U.S. Mid‐Atlantic Bight further suggests that oxidation of ancient CH4‐derived carbon is not negligible on the global scale and could contribute to deepwater acidification over longer time scales.
    Beschreibung: This study was sponsored by U.S. Department of Energy (DE‐FE0028980, awarded to J. D. K; DE‐FE0026195 interagency agreement with C. D. R.). We thank the crew of the R/V Hugh R. Sharp for their support, G. Hatcher, J. Borden, and M. Martini of the USGS for assistance with the LADCP, and Zach Bunnell, Lillian Henderson, and Allison Laubach for additional support at sea.
    Beschreibung: 2021-06-23
    Schlagwort(e): Radiocarbon ; Methane ; DIC ; Ocean acidification ; Climate change ; U.S Mid-Atlantic Bight
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 32
    Publikationsdatum: 2022-10-27
    Beschreibung: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Rastetter, E. B., Ohman, M. D., Elliott, K. J., Rehage, J. S., Rivera-Monroy, V. H., Boucek, R. E., Castaneda-Moya, E., Danielson, T. M., Gough, L., Groffman, P. M., Jackson, C. R., Miniat, C. F., & Shaver, G. R. Time lags: insights from the U.S. Long Term Ecological Research Network. Ecosphere, 12(5), (2021): e03431, https://doi.org/10.1002/ecs2.3431.
    Beschreibung: Ecosystems across the United States are changing in complex ways that are difficult to predict. Coordinated long-term research and analysis are required to assess how these changes will affect a diverse array of ecosystem services. This paper is part of a series that is a product of a synthesis effort of the U.S. National Science Foundation’s Long Term Ecological Research (LTER) network. This effort revealed that each LTER site had at least one compelling scientific case study about “what their site would look like” in 50 or 100 yr. As the site results were prepared, themes emerged, and the case studies were grouped into separate papers along five themes: state change, connectivity, resilience, time lags, and cascading effects and compiled into this special issue. This paper addresses the time lags theme with five examples from diverse biomes including tundra (Arctic), coastal upwelling (California Current Ecosystem), montane forests (Coweeta), and Everglades freshwater and coastal wetlands (Florida Coastal Everglades) LTER sites. Its objective is to demonstrate the importance of different types of time lags, in different kinds of ecosystems, as drivers of ecosystem structure and function and how these can effectively be addressed with long-term studies. The concept that slow, interactive, compounded changes can have dramatic effects on ecosystem structure, function, services, and future scenarios is apparent in many systems, but they are difficult to quantify and predict. The case studies presented here illustrate the expanding scope of thinking about time lags within the LTER network and beyond. Specifically, they examine what variables are best indicators of lagged changes in arctic tundra, how progressive ocean warming can have profound effects on zooplankton and phytoplankton in waters off the California coast, how a series of species changes over many decades can affect Eastern deciduous forests, and how infrequent, extreme cold spells and storms can have enduring effects on fish populations and wetland vegetation along the Southeast coast and the Gulf of Mexico. The case studies highlight the need for a diverse set of LTER (and other research networks) sites to sort out the multiple components of time lag effects in ecosystems.
    Beschreibung: This research was supported by the National Science Foundation Long Term Ecological Research program grants to the Arctic (Grants DEB-1637459 and 1026843), California Current (Grants OCE-1637632 and 1026607), Coweeta (Grants DEB-1637522, 1440485, 0823293, 9632854, and 0218001), and Florida Coastal Everglades (Grants DEB-9910514 and 1237517 and DBI-0620409) sites. We also acknowledge the sustained efforts of the CalCOFI program, present and previous staff of the SIO Pelagic Invertebrate Collection, and the late Ed Brinton for his pioneering insights in euphausiid ecology. The Coweeta research and synthesis were also supported by the USDA Forest Service, Southern Research Station, Coweeta Hydrologic Laboratory. Partial funding to VHRM was provided by the U.S. Department of the Interior South-Central Climate Science Center through Cooperative Agreement # G12AC00002.
    Schlagwort(e): Climate change ; Climate change detection ; Climate signal filtering ; Ecosystem response ; Special Feature: Forecasting Earth's Ecosystems with Long-Term Ecological Research
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 33
    Publikationsdatum: 2022-10-26
    Beschreibung: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Gassett, P. R., O’Brien-Clayton, K., Bastidas, C., Rheuban, J. E., Hunt, C., Turner, E., Liebman, M., Silva, E., Pimenta, A., Grear, J., Motyka, J., McCorkle, D., Stancioff, E., Brady, D., & Strong, A. Community science for coastal acidification monitoring and research. Coastal Management, 49(5), (2021): 510-531, https://doi.org/10.1080/08920753.2021.1947131.
    Beschreibung: Ocean and coastal acidification (OCA) present a unique set of sustainability challenges at the human-ecological interface. Extensive biogeochemical monitoring that can assess local acidification conditions, distinguish multiple drivers of changing carbonate chemistry, and ultimately inform local and regional response strategies is necessary for successful adaptation to OCA. However, the sampling frequency and cost-prohibitive scientific equipment needed to monitor OCA are barriers to implementing the widespread monitoring of dynamic coastal conditions. Here, we demonstrate through a case study that existing community-based water monitoring initiatives can help address these challenges and contribute to OCA science. We document how iterative, sequential outreach, workshop-based training, and coordinated monitoring activities through the Northeast Coastal Acidification Network (a) assessed the capacity of northeastern United States community science programs and (b) engaged community science programs productively with OCA monitoring efforts. Our results (along with the companion manuscript) indicate that community science programs are capable of collecting robust scientific information pertinent to OCA and are positioned to monitor in locations that would critically expand the coverage of current OCA research. Furthermore, engaging community stakeholders in OCA science and outreach enabled a platform for dialogue about OCA among other interrelated environmental concerns and fostered a series of co-benefits relating to public participation in resource and risk management. Activities in support of community science monitoring have an impact not only by increasing local understanding of OCA but also by promoting public education and community participation in potential adaptation measures.
    Beschreibung: AGU Centennial Grant NOAA OAP OFFICE North American Association for Environmental Education Curtis and Edith Munson Foundation Sea Grant programs within the region Senator George J. Mitchell Center for Sustainability Solutions Funding acknowledgment: MIT Sea Grant award NA18OAR4170105 to Bastidas NERACOOS The WestWind foundation (to Rheuban) Woods Hole Sea Grant (NOAA Grant No. NA18OAR4170104)
    Schlagwort(e): Ocean acidification ; Community science ; Citizen science ; Total alkalinity ; Water monitoring
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 34
    Publikationsdatum: 2022-10-19
    Beschreibung: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography and Paleoclimatology 36(7), (2021): e2020PA004088, https://doi.org/10.1029/2020PA004088.
    Beschreibung: We reconstruct deep water-mass salinities and spatial distributions in the western North Atlantic during the Last Glacial Maximum (LGM, 19–26 ka), a period when atmospheric CO2 was significantly lower than it is today. A reversal in the LGM Atlantic meridional bottom water salinity gradient has been hypothesized for several LGM water-mass reconstructions. Such a reversal has the potential to influence climate, ocean circulation, and atmospheric CO2 by increasing the thermal energy and carbon storage capacity of the deep ocean. To test this hypothesis, we reconstructed LGM bottom water salinity based on sedimentary porewater chloride profiles in a north-south transect of piston cores collected from the deep western North Atlantic. LGM bottom water salinity in the deep western North Atlantic determined by the density-based method is 3.41–3.99 ± 0.15% higher than modern values at these sites. This increase is consistent with: (a) the 3.6% global average salinity change expected from eustatic sea level rise, (b) a northward expansion of southern sourced deep water, (c) shoaling of northern sourced deep water, and (d) a reversal of the Atlantic's north-south deep water salinity gradient during the LGM.
    Beschreibung: This work was supported by the US National Science Foundation (grant numbers 1433150 and 1537485).
    Beschreibung: 2021-10-24
    Schlagwort(e): Carbon cycle ; Climate change ; Deep water ; Glaciation ; Meridional overturning circulation ; Paleosalinity ; Porewater
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 35
    Publikationsdatum: 2022-10-19
    Beschreibung: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Zhou, P., Ireland, T., Murray, R. W., & Clift, P. D. Marine sedimentary records of chemical weathering evolution in the western Himalaya since 17 Ma. Geosphere, 17(3), (2021): 824–853, https://doi.org/10.1130/GES02211.1.
    Beschreibung: The Indus Fan derives sediment from the western Himalaya and Karakoram. Sediment from International Ocean Discovery Program drill sites in the eastern part of the fan coupled with data from an industrial well near the river mouth allow the weathering history of the region since ca. 16 Ma to be reconstructed. Clay minerals, bulk sediment geochemistry, and magnetic susceptibility were used to constrain degrees of chemical alteration. Diffuse reflectance spectroscopy was used to measure the abundance of moisture-sensitive minerals hematite and goethite. Indus Fan sediment is more weathered than Bengal Fan material, probably reflecting slow transport, despite the drier climate, which slows chemical weathering rates. Some chemical weathering proxies, such as K/Si or kaolinite/(illite + chlorite), show no temporal evolution, but illite crystallinity and the chemical index of alteration do have statistically measurable decreases over long time periods. Using these proxies, we suggest that sediment alteration was moderate and then increased from 13 to 11 Ma, remained high until 9 Ma, and then reduced from that time until 6 Ma in the context of reduced physical erosion during a time of increasing aridity as tracked by hematite/goethite values. The poorly defined reducing trend in weathering intensity is not clearly linked to global cooling and at least partly reflects regional climate change. Since 6 Ma, weathering has been weak but variable since a final reduction in alteration state after 3.5 Ma that correlates with the onset of Northern Hemispheric glaciation. Reduced or stable chemical weathering at a time of falling sedimentation rates is not consistent with models for Cenozoic global climate change that invoke greater Himalayan weathering fluxes drawing down atmospheric CO2 but are in accord with the idea of greater surface reactivity to weathering.
    Beschreibung: This study was made possible by samples provided by the IODP. The work was partially funded by a grant from The U.S. Science Support Program (USSSP), as well as additional funding from the Charles T. McCord Jr. Endowed Chair in petroleum geology at LSU.
    Schlagwort(e): Alteration ; Arabian Sea ; Arid environment ; Asia ; Bengal Fan ; Chemical composition ; Chemical weathering ; Chlorite ; Chlorite group ; Clay minerals ; Climate change ; Cooling ; Crystallinity ; Emission spectra ; Erosion ; Expedition 355 ; Glaciation ; Goethite ; Grain size ; Hematite ; Himalayas ; ICP mass spectra ; Illite ; Indian Ocean ; Indus Fan ; International Ocean Discovery Program ; IODP Site U1456 ; IODP Site U1457 ; Kaolinite ; Karakoram ; Magnetic properties ; Magnetic susceptibility ; Marine environment ; Mass spectra ; Mineral assemblages ; Moisture ; Oxides ; Paleoclimatology ; Paleoenvironment ; Paleomagnetism ; Provenance ; Reactivity ; Reconstruction ; Sediment transport ; Sedimentary rocks ; Sedimentation ; Sedimentation rates ; Sheet silicates ; Silicates ; Spectra ; Terrestrial environment ; Transport ; Weathering
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 36
    Publikationsdatum: 2022-10-20
    Beschreibung: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Water Resources Research 57(7), (2021): e2020WR028727, https://doi.org/10.1029/2020WR028727.
    Beschreibung: Numerous wetlands in the prairies of Canada provide important ecosystem services, yet are threatened by climate and land-use changes. Understanding the impacts of climate change on prairie wetlands is critical to effective conservation planning. In this study, we construct a wetland model with surface water balance and ecoregions to project future distribution of wetlands. The climatic conditions downscaled from the Weather Research and Forecasting model were used to drive the Noah-MP land surface model to obtain surface water balance. The climate change perturbation is derived from an ensemble of general circulation models using the pseudo global warming method, under the RCP8.5 emission scenario by the end of 21st century. The results show that climate change impacts on wetland extent are spatiotemporally heterogenous. Future wetter climate in the western Prairies will favor increased wetland abundance in both spring and summer. In the eastern Prairies, particularly in the mixed grassland and mid-boreal upland, wetland areas will increase in spring but experience enhanced declines in summer due to strong evapotranspiration. When these effects of climate change are considered in light of historical drainage, they suggest a need for diverse conservation and restoration strategies. For the mixed grassland in the western Canadian Prairies, wetland restoration will be favorable, while the highly drained eastern Prairies will be challenged by the intensified hydrological cycle. The outcomes of this study will be useful to conservation agencies to ensure that current investments will continue to provide good conservation returns in the future.
    Beschreibung: Z. Zhang was funded by a Mitacs Accelerate Fellowship funded by Ducks Unlimited Canada's Institute for Wetland and Waterfowl Research. Z. Zhang, Z. Li, and Y. Li acknowledge the financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant, and Global Water Futures Program, Canada First Research Excellence Fund. This project was supported by grants from Wildlife Habitat Canada, Bass Pro Shops Cabela’s Outdoor Fund, and the Alberta NAWMP Partnership.
    Beschreibung: 2021-12-21
    Schlagwort(e): Wetland ; Hydrology ; Climate change ; Prairie Pothole Region ; Waterfowl ; Conservation
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 37
    facet.materialart.
    Unbekannt
    Oceanography Society
    Publikationsdatum: 2022-05-27
    Beschreibung: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Lima, I.D., Rheuban, J.E. Gender differences in NSF ocean sciences awards. Oceanography 34(4), (2021), https://doi.org/10.5670/oceanog.2021.401.
    Beschreibung: In this study, we examine how women’s representation in National Science Foundation Ocean Sciences (NSF-OCE) awards changed between 1987 and 2019 and how it varied across different programs, research topics, and award types. Women’s participation in NSF-OCE awards increased at a rate of approximately 0.6% per year from about 10% in 1987 to 30% in 2019, and the strong similarity between the temporal trends in the NSF-OCE awards and the academic workforce suggests that there was no gender bias in NSF funding throughout the 33-year study period. The programs, topics, and award types related to education showed the strongest growth, achieving and surpassing parity with men, while those related to the acquisition of shared instrumentation and equipment for research vessels had the lowest women’s representation and showed relatively little change over time. Despite being vastly outnumbered by men, women principal investigators (PIs) tended to do more collaborative work and had a more diversified “portfolio” of research and research-related activities than men. We also found no evidence of gender bias in the amount awarded to men and women PIs during the study period. These results show that, despite significant increases in women’s participation in oceanography over the past three decades, women have still not reached parity with men. Although there appears to be no gender bias in funding decisions or amount awarded, there are significant differences between women’s participation in specific research subject areas that may reflect overall systemic biases in oceanography and academia more broadly. These results highlight areas where further investment is needed to improve women’s representation.
    Schlagwort(e): Ocean acidification ; Gulf of Maine ; Projection ; Regional simulations ; Species sensitivity ; Warming
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 38
    facet.materialart.
    Unbekannt
    American Meteorological Society
    Publikationsdatum: 2022-05-26
    Beschreibung: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(12),(2020): 3623-3639, https://doi.org/10.1175/JPO-D-20-0173.1
    Beschreibung: Sea level rise over the last deglaciation is dominated by the mass of freshwater added to the oceans by the melting of the great ice sheets. While the steric effect of changing seawater density is secondary over the last 20 000 years, processes connected to deglacial warming, the redistribution of salt, and the pressure load of meltwater all influence sea level rise by more than a meter. Here we develop a diagnostic for steric effects that is valid when oceanic mass is changing. This diagnostic accounts for seawater compression due to the added overlying pressure of glacial meltwater, which is here defined to be a barosteric effect. Analysis of three-dimensional global seawater reconstructions of the last deglaciation indicates that thermosteric height change (1.0–1.5 m) is counteracted by barosteric (−1.9 m) and halosteric (from −0.4 to 0.0 m) effects. The total deglacial steric effect from −0.7 to −1.1 m has the opposite sign of analyses that assume that thermosteric expansion is dominant. Despite the vertical oceanic structure not being well constrained during the Last Glacial Maximum, net seawater contraction appears robust as it occurs in four reconstructions that were produced using different paleoceanographic datasets. Calculations that do not account for changes in ocean pressure give the misleading impression that steric effects enhanced deglacial sea level rise.
    Beschreibung: GG is supported by NSF OCE-1536380 and OCE-1760878.
    Beschreibung: 2021-06-01
    Schlagwort(e): Abyssal circulation ; Sea level ; Water masses/storage ; Climate change ; Glaciation ; Water budget/balance
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 39
    Publikationsdatum: 2022-05-26
    Beschreibung: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 33(22), (2020): 9883-9903, https://doi.org/10.1175/JCLI-D-20-0004.1.
    Beschreibung: Machine-learning-based methods that identify drought in three-dimensional space–time are applied to climate model simulations and tree-ring-based reconstructions of hydroclimate over the Northern Hemisphere extratropics for the past 1000 years, as well as twenty-first-century projections. Analyzing reconstructed and simulated drought in this context provides a paleoclimate constraint on the spatiotemporal characteristics of simulated droughts. Climate models project that there will be large increases in the persistence and severity of droughts over the coming century, but with little change in their spatial extent. Nevertheless, climate models exhibit biases in the spatiotemporal characteristics of persistent and severe droughts over parts of the Northern Hemisphere. We use the paleoclimate record and results from a linear inverse modeling-based framework to conclude that climate models underestimate the range of potential future hydroclimate states. Complicating this picture, however, are divergent changes in the characteristics of persistent and severe droughts when quantified using different hydroclimate metrics. Collectively our results imply that these divergent responses and the aforementioned biases must be better understood if we are to increase confidence in future hydroclimate projections. Importantly, the novel framework presented herein can be applied to other climate features to robustly describe their spatiotemporal characteristics and provide constraints on future changes to those characteristics.
    Beschreibung: This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement 1852977. JAF was also supported by the Regional and Global Model Analysis (RGMA) component of the Earth and Environmental System Modeling Program of the U.S. Department of Energy's Office of Biological & Environmental Research (BER) via National Science Foundation IA 1844590. JS was supported in part by the U.S. National Science Foundation through Grants AGS-1602920 and AGS-1805490, and by the National Oceanic and Atmospheric Administration by Grant NA20OAR4310425. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups (listed in Table 1) for producing and making available their model output. For CMIP, the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portal. We thank the editor and two reviewers for comments that greatly improved the quality of this manuscript. This is SOEST Publication No. 11116 and LDEO Publication No. 8450.
    Beschreibung: 2021-04-15
    Schlagwort(e): Drought ; Climate change ; Paleoclimate ; Climate models ; Climate variability ; Other artificial intelligence/machine learning
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 40
    Publikationsdatum: 2022-10-26
    Beschreibung: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Day, J., Goodman, R., Chen, Z., Hunter, R., Giosan, L., & Wang, Y. Deltas in arid environments. Water, 13(12), (2021): 1677, https://doi.org/10.3390/w13121677.
    Beschreibung: Due to increasing water use, diversion and salinization, along with subsidence and sea-level rise, deltas in arid regions are shrinking worldwide. Some of the most ecologically important arid deltas include the Colorado, Indus, Nile, and Tigris-Euphrates. The primary stressors vary globally, but these deltas are threatened by increased salinization, water storage and diversion, eutrophication, and wetland loss. In order to make these deltas sustainable over time, some water flow, including seasonal flooding, needs to be re-established. Positive impacts have been seen in the Colorado River delta after flows to the delta were increased. In addition to increasing freshwater flow, collaboration among stakeholders and active management are necessary. For the Nile River, cooperation among different nations in the Nile drainage basin is important. River flow into the Tigris-Euphrates River delta has been affected by politics and civil strife in the Middle East, but some flow has been re-allocated to the delta. Studies commissioned for the Indus River delta recommended re-establishment of some monthly water flow to maintain the river channel and to fight saltwater intrusion. However, accelerating climate impacts, socio-political conflicts, and growing populations suggest a dire future for arid deltas.
    Beschreibung: This research received no external funding.
    Schlagwort(e): Salinization ; Climate change ; Colorado river ; Tigris-Euphrates river ; Nile river ; Indus river
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 41
    Publikationsdatum: 2022-10-26
    Beschreibung: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bernhard, J. M., Wit, J. C., Starczak, V. R., Beaudoin, D. J., Phalen, W. G., & McCorkle, D. C. Impacts of multiple stressors on a benthic foraminiferal community: a long-term experiment assessing response to ocean acidification, hypoxia and warming. Frontiers in Marine Science, 8, (2021): 643339, https://doi.org/10.3389/fmars.2021.643339.
    Beschreibung: Ocean chemistry is changing as a result of human activities. Atmospheric carbon dioxide (CO2) concentrations are increasing, causing an increase in oceanic pCO2 that drives a decrease in oceanic pH, a process called ocean acidification (OA). Higher CO2 concentrations are also linked to rising global temperatures that can result in more stratified surface waters, reducing the exchange between surface and deep waters; this stronger stratification, along with nutrient pollution, contributes to an expansion of oxygen-depleted zones (so called hypoxia or deoxygenation). Determining the response of marine organisms to environmental changes is important for assessments of future ecosystem functioning. While many studies have assessed the impact of individual or paired stressors, fewer studies have assessed the combined impact of pCO2, O2, and temperature. A long-term experiment (∼10 months) with different treatments of these three stressors was conducted to determine their sole or combined impact on the abundance and survival of a benthic foraminiferal community collected from a continental-shelf site. Foraminifera are well suited to such study because of their small size, relatively rapid growth, varied mineralogies and physiologies. Inoculation materials were collected from a ∼77-m deep site south of Woods Hole, MA. Very fine sediments (〈53 μm) were used as inoculum, to allow the entire community to respond. Thirty-eight morphologically identified taxa grew during the experiment. Multivariate statistical analysis indicates that hypoxia was the major driving factor distinguishing the yields, while warming was secondary. Species responses were not consistent, with different species being most abundant in different treatments. Some taxa grew in all of the triple-stressor samples. Results from the experiment suggest that foraminiferal species’ responses will vary considerably, with some being negatively impacted by predicted environmental changes, while other taxa will tolerate, and perhaps even benefit, from deoxygenation, warming and OA.
    Beschreibung: This work was supported by the US NSF SEES-OA grant OCE-1219948 to JB and the Investment in Science Program at WHOI. DM also received support from the NSF Independent Research and Development Program.
    Schlagwort(e): Deoxygenation ; Ocean acidification ; Benthic communities ; Benthic foraminifera ; Climate change ; Propagule bank ; Global warming
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 42
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Hahn, L. C., Storelvmo, T., Hofer, S., Parfitt, R., & Ummenhofer, C. C. Importance of Orography for Greenland cloud and melt response to atmospheric blocking. Journal of Climate, 33(10), (2020): 4187-4206, doi:10.1175/JCLI-D-19-0527.1.
    Beschreibung: More frequent high pressure conditions associated with atmospheric blocking episodes over Greenland in recent decades have been suggested to enhance melt through large-scale subsidence and cloud dissipation, which allows more solar radiation to reach the ice sheet surface. Here we investigate mechanisms linking high pressure circulation anomalies to Greenland cloud changes and resulting cloud radiative effects, with a focus on the previously neglected role of topography. Using reanalysis and satellite data in addition to a regional climate model, we show that anticyclonic circulation anomalies over Greenland during recent extreme blocking summers produce cloud changes dependent on orographic lift and descent. The resulting increased cloud cover over northern Greenland promotes surface longwave warming, while reduced cloud cover in southern and marginal Greenland favors surface shortwave warming. Comparison with an idealized model simulation with flattened topography reveals that orographic effects were necessary to produce area-averaged decreasing cloud cover since the mid-1990s and the extreme melt observed in the summer of 2012. This demonstrates a key role for Greenland topography in mediating the cloud and melt response to large-scale circulation variability. These results suggest that future melt will depend on the pattern of circulation anomalies as well as the shape of the Greenland Ice Sheet.
    Beschreibung: This research was supported by the Woods Hole Oceanographic Institution Summer Student Fellow program, by the U.S. National Science Foundation under AGS-1355339 to C.C.U., and by the European Research Council through Grant 758005.
    Schlagwort(e): Ice sheets ; Blocking ; Cloud cover ; Topographic effects ; Climate change ; Climate variability
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 43
    Publikationsdatum: 2022-10-27
    Beschreibung: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scalpone, C. R., Jarvis, J. C., Vasslides, J. M., Testa, J. M., & Ganju, N. K. Simulated estuary-wide response of seagrass (Zostera marina) to future scenarios of temperature and sea level. Frontiers in Marine Science, 7, (2020): 539946, doi:10.3389/fmars.2020.539946.
    Beschreibung: Seagrass communities are a vital component of estuarine ecosystems, but are threatened by projected sea level rise (SLR) and temperature increases with climate change. To understand these potential effects, we developed a spatially explicit model that represents seagrass (Zostera marina) habitat and estuary-wide productivity for Barnegat Bay-Little Egg Harbor (BB-LEH) in New Jersey, United States. Our modeling approach included an offline coupling of a numerical seagrass biomass model with the spatially variable environmental conditions from a hydrodynamic model to calculate above and belowground biomass at each grid cell of the hydrodynamic model domain. Once calibrated to represent present day seagrass habitat and estuary-wide annual productivity, we applied combinations of increasing air temperature and sea level following regionally specific climate change projections, enabling analysis of the individual and combined impacts of these variables on seagrass biomass and spatial coverage. Under the SLR scenarios, the current model domain boundaries were maintained, as the land surrounding BB-LEH is unlikely to shift significantly in the future. SLR caused habitat extent to decrease dramatically, pushing seagrass beds toward the coastline with increasing depth, with a 100% loss of habitat by the maximum SLR scenario. The dramatic loss of seagrass habitat under SLR was in part due to the assumption that surrounding land would not be inundated, as the model did not allow for habitat expansion outside the current boundaries of the bay. Temperature increases slightly elevated the rate of summer die-off and decreased habitat area only under the highest temperature increase scenarios. In combined scenarios, the effects of SLR far outweighed the effects of temperature increase. Sensitivity analysis of the model revealed the greatest sensitivity to changes in parameters affecting light limitation and seagrass mortality, but no sensitivity to changes in nutrient limitation constants. The high vulnerability of seagrass in the bay to SLR exceeded that demonstrated for other systems, highlighting the importance of site- and region-specific assessments of estuaries under climate change.
    Beschreibung: This research was supported by the National Science Foundation Research Experience for Undergraduates Program (OCE-1659463), the Woods Hole Oceanographic Institution Summer Student Fellowship Program, the Barnegat Bay Partnership (through a US EPA Clean Water Act grant to Ocean County College; CE98212313), and the USGS Coastal and Marine Hazards/Resources Program. Although this project has been funded in part by the United States Environmental Protection Agency pursuant to a grant agreement with Ocean County College, it has not gone through the Agency’s publications review process and may not necessarily reflect the views of the Agency; therefore, no official endorsement should be assumed. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.
    Schlagwort(e): Seagrass (Zostera) ; Climate change ; Spatial model ; Sea level rise ; Temperature ; North American Atlantic Coast ; Regional ; Eelgrass (Zostera marina)
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 44
    facet.materialart.
    Unbekannt
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publikationsdatum: 2022-10-31
    Beschreibung: Dataset: Carpenter 2018: carbonate chemistry
    Beschreibung: For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/754694
    Beschreibung: NSF Division of Ocean Sciences (NSF OCE) OCE-1415268
    Schlagwort(e): OA ; Ocean acidification ; Coral reefs ; Coral community ; Moorea
    Repository-Name: Woods Hole Open Access Server
    Materialart: Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 45
    facet.materialart.
    Unbekannt
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publikationsdatum: 2022-10-31
    Beschreibung: Dataset: Edmunds et al. 2019b: Sizes of organisms not fixed to flume floor
    Beschreibung: These data describe the mobile fauna in the flumes that were not fixed to the bottom of the flume. These data are results of an experiment incubating a back reef community from Moorea, French Polynesia, for one year at high pCO2 (published in Edmunds et al. 2019) from Nov of 2015 to Nov of 2016. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/793628
    Beschreibung: NSF Division of Ocean Sciences (NSF OCE) OCE-1415268
    Schlagwort(e): Ocean acidification ; OA ; Flume ; LTER ; Coral reefs ; Moorea ; Moorea Coral Reef LTER ; Coral community
    Repository-Name: Woods Hole Open Access Server
    Materialart: Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 46
    facet.materialart.
    Unbekannt
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publikationsdatum: 2022-10-31
    Beschreibung: Dataset: Ehux growth rates under thermal variation
    Beschreibung: This dataset includes the growth rates under low and high temperatures for E. huxleyi in constant and fluctuating thermal environments. Global warming will be combined with predicted increases in thermal variability in the future surface ocean, but how temperature dynamics will affect phytoplankton biology and biogeochemistry is largely unknown. Here, we examine the responses of the globally important marine coccolithophore Emiliania huxleyi to thermal variations at two frequencies (1 d and 2 d) at low (18.5 °C) and high (25.5 °C) mean temperatures. Elevated temperature and thermal variation decreased growth, calcification and physiological rates, both individually and interactively. The 1 d thermal variation frequencies were less inhibitory than 2 d variations under high temperatures, indicating that high-frequency thermal fluctuations may reduce heat-induced mortality and mitigate some impacts of extreme high-temperature events. Cellular elemental composition and calcification was significantly affected by both thermal variation treatments relative to each other and to the constant temperature controls. The negative effects of thermal variation on E. huxleyi growth rate and physiology are especially pronounced at high temperatures. These responses of the key marine calcifier E. huxleyi to warmer, more variable temperature regimes have potentially large implications for ocean productivity and marine biogeochemical cycles under a future changing climate. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/782888
    Beschreibung: NSF Division of Ocean Sciences (NSF OCE) OCE-1538525
    Schlagwort(e): Thermal Performance Curves ; Growth Rates ; Emiliania huxleyi ; Climate change ; Calcification ; Elemental quotas
    Repository-Name: Woods Hole Open Access Server
    Materialart: Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 47
    facet.materialart.
    Unbekannt
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publikationsdatum: 2022-10-31
    Beschreibung: Dataset: Series 3A: pH
    Beschreibung: The experiments were designed to test the combined effects of three CO2 concentrations, four temperatures, and three light intensities on growth and photophysiology of the diatom T. pseudonana CCMP1014 in a multifactorial design. This dataset contains measurements of pH made over the course of the experiments. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/771304
    Beschreibung: NSF Division of Ocean Sciences (NSF OCE) OCE-1538602
    Schlagwort(e): Phytoplankton ; Diatoms ; Ocean acidification ; Multiple stressors ; Photosynthesis ; Biogenic silica
    Repository-Name: Woods Hole Open Access Server
    Materialart: Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 48
    Publikationsdatum: 2022-10-31
    Beschreibung: Dataset: Surface Irradiance
    Beschreibung: Surface irradiance measured on the roof of the Monterey Bay Aquarium (36.62 °N, 121.90 °W) from June to October 2018. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/822517
    Beschreibung: NSF Division of Ocean Sciences (NSF OCE) OCE-1737096, NSF Division of Ocean Sciences (NSF OCE) OCE-1737176
    Schlagwort(e): Ocean acidification ; Kelp forest ; Biogeochemistry ; Spatiotemporal variability ; Upwelling ; Surface irradiance
    Repository-Name: Woods Hole Open Access Server
    Materialart: Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 49
    facet.materialart.
    Unbekannt
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publikationsdatum: 2022-10-31
    Beschreibung: Dataset: Series 3A: Nutrients
    Beschreibung: The experiments were designed to test the combined effects of three CO2 concentrations, four temperatures, and three light intensities on growth and photophysiology of the diatom T. pseudonana CCMP1014 in a multifactorial design. This dataset contains measurements of nutrients (phosphate, silicate, and nitrate plus nitrite) made over the course of the experiments. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/771370
    Beschreibung: NSF Division of Ocean Sciences (NSF OCE) OCE-1538602
    Schlagwort(e): Phytoplankton ; Diatoms ; Ocean acidification ; Multiple stressors ; Photosynthesis ; Biogenic silica
    Repository-Name: Woods Hole Open Access Server
    Materialart: Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 50
    facet.materialart.
    Unbekannt
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publikationsdatum: 2022-10-31
    Beschreibung: Dataset: Series 3A: DIC
    Beschreibung: The experiments were designed to test the combined effects of three CO2 concentrations, four temperatures, and three light intensities on growth and photophysiology of the diatom T. pseudonana CCMP1014 in a multifactorial design. This dataset contains measurements of Dissolved Inorganic Carbon (DIC) made over the course of the experiments. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/771333
    Beschreibung: NSF Division of Ocean Sciences (NSF OCE) OCE-1538602
    Schlagwort(e): Phytoplankton ; Diatoms ; Ocean acidification ; Multiple stressors ; Photosynthesis ; Biogenic silica
    Repository-Name: Woods Hole Open Access Server
    Materialart: Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 51
    facet.materialart.
    Unbekannt
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publikationsdatum: 2022-10-31
    Beschreibung: Dataset: Series 3A: cell size
    Beschreibung: The experiments were designed to test the combined effects of three CO2 concentrations, four temperatures, and three light intensities on growth of the diatom T. pseudonana CCMP1014 in a multifactorial design. This dataset contains measurements of cell size expressed as forward scatter as well as in equivalent spherical diameter (ESD) in microns. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/771448
    Beschreibung: NSF Division of Ocean Sciences (NSF OCE) OCE-1538602
    Schlagwort(e): Phytoplankton ; Diatoms ; Ocean acidification ; Multiple stressors ; Photosynthesis ; Biogenic silica
    Repository-Name: Woods Hole Open Access Server
    Materialart: Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 52
    facet.materialart.
    Unbekannt
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publikationsdatum: 2022-10-31
    Beschreibung: Dataset: Series 3A: POC, PON, Chl a
    Beschreibung: The experiments were designed to test the combined effects of CO2, temperatures, and light on growth and photophysiology of the diatom T. pseudonana CCMP1014 in a multifactorial design. This dataset contains measurements of extracted chlorophyll, particulate organic carbon (POC), and particulate organic nitrogen (PON) made over the course of the experiments. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/771594
    Beschreibung: NSF Division of Ocean Sciences (NSF OCE) OCE-1538602
    Schlagwort(e): Phytoplankton ; Diatoms ; Ocean acidification ; Multiple stressors ; Photosynthesis ; Biogenic silica
    Repository-Name: Woods Hole Open Access Server
    Materialart: Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 53
    facet.materialart.
    Unbekannt
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publikationsdatum: 2022-10-31
    Beschreibung: Dataset: Carpenter 2018: metabolism
    Beschreibung: This dataset contains coral community metabolism data from outdoor flumes at the UCB Gump Research Station Moorea, French Polynesia. These measurements were taken during an experiment designed to measure coral reef community metabolism responses to ocean acidification over a 4-month period from November 13th, 2015 to March 15th, 2016. These data were published in Carpenter et al. (2018). For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/754676
    Beschreibung: NSF Division of Ocean Sciences (NSF OCE) OCE-1415268
    Schlagwort(e): OA ; Ocean acidification ; Coral reefs ; Coral community ; Moorea
    Repository-Name: Woods Hole Open Access Server
    Materialart: Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 54
    facet.materialart.
    Unbekannt
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publikationsdatum: 2022-10-31
    Beschreibung: Dataset: Carpenter 2018: hourly metabolism
    Beschreibung: This dataset contains hourly coral community metabolism data from outdoor flumes at the UCB Gump Research Station Moorea, French Polynesia. These measurements were taken during an experiment designed to measure coral reef community metabolism responses to ocean acidification over a 4-month period from November 13th, 2015 to March 15th, 2016. These data were published in Carpenter et al. (2018). For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/754685
    Beschreibung: NSF Division of Ocean Sciences (NSF OCE) OCE-1415268
    Schlagwort(e): OA ; Ocean acidification ; Coral reefs ; Coral community ; Moorea
    Repository-Name: Woods Hole Open Access Server
    Materialart: Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 55
    facet.materialart.
    Unbekannt
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publikationsdatum: 2022-10-31
    Beschreibung: Dataset: Edmunds et al. 2019b: Sizes of organisms fixed to flume floor
    Beschreibung: These data describe the fauna that was secured to a metal grid in the bottom of the flume. These data are results of an experiment incubating a back reef community from Moorea, French Polynesia, for one year at high pCO2 (published in Edmunds et al. 2019) from Nov of 2015 to Nov of 2016. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/793674
    Beschreibung: NSF Division of Ocean Sciences (NSF OCE) OCE-1415268
    Schlagwort(e): Ocean acidification ; OA ; Flume ; LTER ; Coral reefs ; Moorea ; Moorea Coral Reef LTER ; Coral community
    Repository-Name: Woods Hole Open Access Server
    Materialart: Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 56
    Publikationsdatum: 2022-10-31
    Beschreibung: Dataset: Nighttime Surface Chlorophyll a
    Beschreibung: Nighttime surface chlorophyll-a concentrations at the MBARI OA1 Buoy (36° 37.373’ N, 121 ° 54.000’ W) from June to October 2018 For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/822494
    Beschreibung: NSF Division of Ocean Sciences (NSF OCE) OCE-1737096, NSF Division of Ocean Sciences (NSF OCE) OCE-1737176
    Schlagwort(e): Ocean acidification ; Kelp forest ; Biogeochemistry ; Spatiotemporal variability ; Upwelling ; Chlorophyll a
    Repository-Name: Woods Hole Open Access Server
    Materialart: Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 57
    facet.materialart.
    Unbekannt
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publikationsdatum: 2022-10-31
    Beschreibung: Dataset: Ehux physiology under thermal variation
    Beschreibung: Intracellular elemental quotas under low and high temperatures for E. huxleyi in constant and fluctuating thermal environments. This dataset includes the growth rates under low and high temperatures for E. huxleyi in constant and fluctuating thermal environments. Global warming will be combined with predicted increases in thermal variability in the future surface ocean, but how temperature dynamics will affect phytoplankton biology and biogeochemistry is largely unknown. Here, we examine the responses of the globally important marine coccolithophore Emiliania huxleyi to thermal variations at two frequencies (1 d and 2 d) at low (18.5 °C) and high (25.5 °C) mean temperatures. Elevated temperature and thermal variation decreased growth, calcification and physiological rates, both individually and interactively. The 1 d thermal variation frequencies were less inhibitory than 2 d variations under high temperatures, indicating that high-frequency thermal fluctuations may reduce heat-induced mortality and mitigate some impacts of extreme high-temperature events. Cellular elemental composition and calcification was significantly affected by both thermal variation treatments relative to each other and to the constant temperature controls. The negative effects of thermal variation on E. huxleyi growth rate and physiology are especially pronounced at high temperatures. These responses of the key marine calcifier E. huxleyi to warmer, more variable temperature regimes have potentially large implications for ocean productivity and marine biogeochemical cycles under a future changing climate. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/782901
    Beschreibung: NSF Division of Ocean Sciences (NSF OCE) OCE-1538525
    Schlagwort(e): Thermal Performance Curves ; Growth Rates ; Emiliania huxleyi ; Climate change ; Calcification ; Elemental quotas
    Repository-Name: Woods Hole Open Access Server
    Materialart: Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 58
    facet.materialart.
    Unbekannt
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publikationsdatum: 2022-10-31
    Beschreibung: Dataset: Edmunds et al. 2019b: Sizes of organisms used to calculate growth and for community analysis 
    Beschreibung: These data include sizes of organisms used to calculate growth and for community analysis and percent cover of each organism described from planar photographs. These data are results of an experiment incubating a back reef community from Moorea, French Polynesia, for one year at high pCO2 (published in Edmunds et al. 2019) from Nov of 2015 to Nov of 2016. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/793682
    Beschreibung: NSF Division of Ocean Sciences (NSF OCE) OCE-1415268
    Schlagwort(e): Ocean acidification ; OA ; Flume ; LTER ; Coral reefs ; Moorea ; Moorea Coral Reef LTER ; Coral community
    Repository-Name: Woods Hole Open Access Server
    Materialart: Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 59
    Publikationsdatum: 2022-10-31
    Beschreibung: Dataset: Kelp forest pumping data - pH
    Beschreibung: pH measured in situ over depth in the kelp forest (36° 37.3’ N, 121° 54.1’ W) recorded in July 2018. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/826162
    Beschreibung: NSF Division of Ocean Sciences (NSF OCE) OCE-1737096, NSF Division of Ocean Sciences (NSF OCE) OCE-1737176
    Schlagwort(e): Ocean acidification ; Kelp forest ; Biogeochemistry ; Spatiotemporal variability ; Upwelling ; In situ pumping ; PH
    Repository-Name: Woods Hole Open Access Server
    Materialart: Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 60
    Publikationsdatum: 2022-10-31
    Beschreibung: Dataset: ADCP - Inside Kelp Forest
    Beschreibung: Cross-shore and alongshore velocity inside the kelp forest at Hopkins Marine Station (36° 37.297’ N, 121° 54.102’ W) recorded between June and October, 2018. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/826431
    Beschreibung: NSF Division of Ocean Sciences (NSF OCE) OCE-1737096, NSF Division of Ocean Sciences (NSF OCE) OCE-1737176
    Schlagwort(e): Ocean acidification ; Kelp forest/outside kelp forest ; Biogeochemistry ; Spatiotemporal variability ; Upwelling ; Current velocity
    Repository-Name: Woods Hole Open Access Server
    Materialart: Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 61
    Publikationsdatum: 2022-10-31
    Beschreibung: Dataset: Kelp Forest Estimated Carbonate Parameters
    Beschreibung: Kelp forest mooring DIC, TA, pCO2, and aragonite saturation state estimations inside the kelp canopy (36° 37.297’ N, 121° 54.102’ W.) at Hopkins Marine Station, recorded between June and October 2018. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/823008
    Beschreibung: NSF Division of Ocean Sciences (NSF OCE) OCE-1737096, NSF Division of Ocean Sciences (NSF OCE) OCE-1737176
    Schlagwort(e): Ocean acidification ; Kelp forest ; Biogeochemistry ; Spatiotemporal variability ; Upwelling ; DIC ; Alkalinity ; Omega (aragonite) ; PCO2
    Repository-Name: Woods Hole Open Access Server
    Materialart: Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 62
    Publikationsdatum: 2022-10-31
    Beschreibung: Dataset: ADCP - Outside Kelp Forest
    Beschreibung: Cross-shore and alongshore velocity outside the kelp forest at Hopkins Marine Station (36° 37.342’ N, 121° 54.049’ W) recorded between June and October, 2018. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/822913
    Beschreibung: NSF Division of Ocean Sciences (NSF OCE) OCE-1737096, NSF Division of Ocean Sciences (NSF OCE) OCE-1737176
    Schlagwort(e): Ocean acidification ; Kelp forest/outside kelp forest ; Biogeochemistry ; Spatiotemporal variability ; Upwelling ; Current velocity
    Repository-Name: Woods Hole Open Access Server
    Materialart: Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 63
    Publikationsdatum: 2022-10-31
    Beschreibung: Dataset: Kelp Forest Mooring New Fronds
    Beschreibung: Number of new fronds recorded at the kelp mooring (Central CA Macrocystis pyrifera forest, 36° 37.297’ N, 121° 54.102’ W) from July to August 2018. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/822535
    Beschreibung: NSF Division of Ocean Sciences (NSF OCE) OCE-1737096, NSF Division of Ocean Sciences (NSF OCE) OCE-1737176
    Schlagwort(e): Ocean acidification ; Kelp forest ; Biogeochemistry ; Spatiotemporal variability ; Upwelling ; New kelp fronds
    Repository-Name: Woods Hole Open Access Server
    Materialart: Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 64
    facet.materialart.
    Unbekannt
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publikationsdatum: 2022-10-31
    Beschreibung: Dataset: Thalassiosira pseudonana CCMP1335 in nitrate-limited and nutrient-replete cultures
    Beschreibung: The marine diatom Thalassiosira pseudonana clone CCMP 1335 was grown in a continuous culture system on a 14:10 light-dark cycle under either nitrate-limited or nutrient-replete conditions, a photoperiod irradiance of either 50 or 300 micro-mol photons per square meter per second, partial pressures of either 400 or 1000 ppm CO2, and temperatures ranging from 5 to 32 degrees Celsius. Growth rates, photosynthetic rates, respiration rates, C:N ratios, C:Chlorophyll-a ratios, productivity indices, Fv/Fm ratios, and the initial slope and light-saturated asymptote of short-term photosynthesis-irradiance curves are reported. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/779368
    Beschreibung: NSF Division of Ocean Sciences (NSF OCE) OCE-1536581
    Schlagwort(e): Climate change ; Phytoplankton ; Light ; Temperature ; CO2 partial pressure ; Acclimation
    Repository-Name: Woods Hole Open Access Server
    Materialart: Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 65
    facet.materialart.
    Unbekannt
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publikationsdatum: 2022-10-31
    Beschreibung: Dataset: Carpenter 2018: physical data
    Beschreibung: Temperature and irradiance from outdoor flumes at the UCB Gump Research Station Moorea, French Polynesia from November of 2015 to March of 2016. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/754644
    Beschreibung: NSF Division of Ocean Sciences (NSF OCE) OCE-1415268
    Schlagwort(e): OA ; Ocean acidification ; Coral reefs ; Coral community ; Moorea
    Repository-Name: Woods Hole Open Access Server
    Materialart: Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 66
    facet.materialart.
    Unbekannt
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publikationsdatum: 2022-10-31
    Beschreibung: Dataset: Ehux growth rates for thermal response curve
    Beschreibung: This dataset presents growth rates for Emiliania huxleyi thermal response curve across 12 temperatures from 8.5-28.6C.Global warming will be combined with predicted increases in thermal variability in the future surface ocean, but how temperature dynamics will affect phytoplankton biology and biogeochemistry is largely unknown. Here, we examine the responses of the globally important marine coccolithophore Emiliania huxleyi to thermal variations at two frequencies (1 d and 2 d) at low (18.5 °C) and high (25.5 °C) mean temperatures. Elevated temperature and thermal variation decreased growth, calcification and physiological rates, both individually and interactively. The 1 d thermal variation frequencies were less inhibitory than 2 d variations under high temperatures, indicating that high-frequency thermal fluctuations may reduce heat-induced mortality and mitigate some impacts of extreme high-temperature events. Cellular elemental composition and calcification was significantly affected by both thermal variation treatments relative to each other and to the constant temperature controls. The negative effects of thermal variation on E. huxleyi growth rate and physiology are especially pronounced at high temperatures. These responses of the key marine calcifier E. huxleyi to warmer, more variable temperature regimes have potentially large implications for ocean productivity and marine biogeochemical cycles under a future changing climate. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/782911
    Beschreibung: NSF Division of Ocean Sciences (NSF OCE) OCE-1538525
    Schlagwort(e): Thermal Performance Curves ; Growth Rates ; Emiliania huxleyi ; Climate change ; Calcification ; Elemental quotas
    Repository-Name: Woods Hole Open Access Server
    Materialart: Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 67
    facet.materialart.
    Unbekannt
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publikationsdatum: 2022-10-31
    Beschreibung: Dataset: Ehux elemental composition across thermal range
    Beschreibung: This dataset includes elemental stoichiometry for Emiliania huxleyi across a range of 12 temperatures from 8.5-28.6C. Global warming will be combined with predicted increases in thermal variability in the future surface ocean, but how temperature dynamics will affect phytoplankton biology and biogeochemistry is largely unknown. Here, we examine the responses of the globally important marine coccolithophore Emiliania huxleyi to thermal variations at two frequencies (1 d and 2 d) at low (18.5 °C) and high (25.5 °C) mean temperatures. Elevated temperature and thermal variation decreased growth, calcification and physiological rates, both individually and interactively. The 1 d thermal variation frequencies were less inhibitory than 2 d variations under high temperatures, indicating that high-frequency thermal fluctuations may reduce heat-induced mortality and mitigate some impacts of extreme high-temperature events. Cellular elemental composition and calcification was significantly affected by both thermal variation treatments relative to each other and to the constant temperature controls. The negative effects of thermal variation on E. huxleyi growth rate and physiology are especially pronounced at high temperatures. These responses of the key marine calcifier E. huxleyi to warmer, more variable temperature regimes have potentially large implications for ocean productivity and marine biogeochemical cycles under a future changing climate. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/782921
    Beschreibung: NSF Division of Ocean Sciences (NSF OCE) OCE-1538525
    Schlagwort(e): Thermal Performance Curves ; Growth Rates ; Emiliania huxleyi ; Climate change ; Calcification ; Elemental quotas
    Repository-Name: Woods Hole Open Access Server
    Materialart: Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 68
    facet.materialart.
    Unbekannt
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publikationsdatum: 2022-10-31
    Beschreibung: Dataset: Gill Net Catch Data
    Beschreibung: Vertebrate caught with gill net in Sabine Lake, Galveston Bay, Matagorda Bay, San Antonio Bay, Aransas Bay, Corpus Christi Bay, Upper Laguna Madre, and Lower Laguna Madre from 1986 to 2018 (except in Sabine Lake sampling begun in 1986). For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/828794
    Beschreibung: NSF Division of Ocean Sciences (NSF OCE) OCE-1656923
    Schlagwort(e): Marine biodiversity ; Climate change ; Coastal ecosystems ; Fish diversity
    Repository-Name: Woods Hole Open Access Server
    Materialart: Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 69
    Publikationsdatum: 2022-10-31
    Beschreibung: Dataset: Discrete Seawater Samples
    Beschreibung: Discrete seawater samples collected at the surface, 1 m below the surface, and 1 m above the bottom two times a week at each mooring (Kelp and Outside) from June 12, 2018 to August 3, 2018. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/826410
    Beschreibung: NSF Division of Ocean Sciences (NSF OCE) OCE-1737096, NSF Division of Ocean Sciences (NSF OCE) OCE-1737176
    Schlagwort(e): Ocean acidification ; Kelp forest ; Biogeochemistry ; Spatiotemporal variability ; Upwelling ; DIC ; Alkalinity ; PH ; Temperature ; Salinity
    Repository-Name: Woods Hole Open Access Server
    Materialart: Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 70
    facet.materialart.
    Unbekannt
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publikationsdatum: 2022-10-31
    Beschreibung: Dataset: 2006-2017_summer_bottom_GoM
    Beschreibung: DIC, TA, calculated pH and carbonate saturation state in the summer bottom water in North Gulf of Mexico from 2006 to 2017 For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/818773
    Beschreibung: NSF Division of Ocean Sciences (NSF OCE) OCE-1559279
    Schlagwort(e): North Gulf of Mexico ; Hypoxia ; Ocean acidification ; Eutrophication
    Repository-Name: Woods Hole Open Access Server
    Materialart: Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 71
    facet.materialart.
    Unbekannt
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publikationsdatum: 2022-10-31
    Beschreibung: Dataset: Synechococcus elongatus CCMP1629 in nitrate-limited and nutrient-replete cultures
    Beschreibung: The marine cyanobacterium Synechococcus elongatus clone CCMP1629 was grown in a continuous culture system on a 14:10 light-dark cycle under either nitrate-limited or nutrient-replete conditions, a photoperiod irradiance of either 50 or 300 micro-mol photons per square meter per second, partial pressures of either 400 or 1000 ppm CO2, and temperatures ranging from 20 to 45 degrees Celsius. Growth rates, photosynthetic rates, respiration rates, C:N ratios, C:Chlorophyll-a ratios, productivity indices, Fv/Fm ratios, and the initial slope and light-saturated asymptote of short-term photosynthesis-irradiance curves are reported. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/811093
    Beschreibung: NSF Division of Ocean Sciences (NSF OCE) OCE-1536581
    Schlagwort(e): Climate change ; Phytoplankton ; Light ; Temperature ; CO2 partial pressure ; Acclimation
    Repository-Name: Woods Hole Open Access Server
    Materialart: Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 72
    facet.materialart.
    Unbekannt
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publikationsdatum: 2022-10-31
    Beschreibung: Dataset: Series 3A: cell abundance
    Beschreibung: The experiments were designed to test the combined effects of three CO2 concentrations, four temperatures, and three light intensities on growth of the diatom T. pseudonana CCMP1014 in a multifactorial design. This dataset contains measurements of cell abundances measured by forward scatter. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/771421
    Beschreibung: NSF Division of Ocean Sciences (NSF OCE) OCE-1538602
    Schlagwort(e): Phytoplankton ; Diatoms ; Ocean acidification ; Multiple stressors ; Photosynthesis ; Biogenic silica
    Repository-Name: Woods Hole Open Access Server
    Materialart: Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 73
    Publikationsdatum: 2022-10-31
    Beschreibung: Dataset: Inside and Outside Kelp Forest Mooring
    Beschreibung: Data from moored instruments (pH, dissolved oxygen, temperature, salinity, PAR, pressure) at 9 depths outside (36° 37.342’ N, 121° 54.049’ W) and inside the kelp canopy (36° 37.297’ N, 121° 54.102’ W.) at Hopkins Marine Station, recorded between June and October 2018. The tidal depth of the kelp canopy mooring ranges from 8 to 11 meter. The outside mooring is located 115m north and offshore from the kelp forest, the tidal range is 16 to 9 meters. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/822549
    Beschreibung: NSF Division of Ocean Sciences (NSF OCE) OCE-1737096, NSF Division of Ocean Sciences (NSF OCE) OCE-1737176
    Schlagwort(e): Ocean acidification ; Kelp forest ; Biogeochemistry ; Spatiotemporal variability ; Upwelling ; PH ; Oxygen ; Temperature ; Salinity ; PAR
    Repository-Name: Woods Hole Open Access Server
    Materialart: Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 74
    Publikationsdatum: 2022-10-31
    Beschreibung: Dataset: Kelp forest pumping data - DIC
    Beschreibung: Dissolved Inorganic Carbon measured in situ over depth in the kelp forest (36° 37.3’ N, 121° 54.1’ W) recorded in July 2018. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/826200
    Beschreibung: NSF Division of Ocean Sciences (NSF OCE) OCE-1737096, NSF Division of Ocean Sciences (NSF OCE) OCE-1737176
    Schlagwort(e): Ocean acidification ; Kelp forest ; Biogeochemistry ; Spatiotemporal variability ; Upwelling ; In situ pumping ; DIC
    Repository-Name: Woods Hole Open Access Server
    Materialart: Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 75
    facet.materialart.
    Unbekannt
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publikationsdatum: 2022-10-31
    Beschreibung: Dataset: Series 3A: photophysiology
    Beschreibung: The experiments were designed to test the combined effects of CO2, temperatures, and light on the growth of the diatom T. pseudonana CCMP1014 in a multifactorial design. This dataset contains measurements of photophysiology using the Light curve (LC3) protocol of the Aquapen-C AP-C 100 fluorometer. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/771461
    Beschreibung: NSF Division of Ocean Sciences (NSF OCE) OCE-1538602
    Schlagwort(e): Phytoplankton ; Diatoms ; Ocean acidification ; Multiple stressors ; Photosynthesis ; Biogenic silica
    Repository-Name: Woods Hole Open Access Server
    Materialart: Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 76
    Publikationsdatum: 2022-10-26
    Beschreibung: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Wagner, S., Schubotz, F., Kaiser, K., Hallmann, C., Waska, H., Rossel, P. E., Hansmann, R., Elvert, M., Middelburg, J. J., Engel, A., Blattmann, T. M., Catala, T. S., Lennartz, S. T., Gomez-Saez, G., V., Pantoja-Gutierrez, S., Bao, R., & Galy, V. Soothsaying DOM: A current perspective on the future of oceanic dissolved organic carbon. Frontiers in Marine Science, 7, (2020): 341, doi:10.3389/fmars.2020.00341.
    Beschreibung: The vast majority of freshly produced oceanic dissolved organic carbon (DOC) is derived from marine phytoplankton, then rapidly recycled by heterotrophic microbes. A small fraction of this DOC survives long enough to be routed to the interior ocean, which houses the largest and oldest DOC reservoir. DOC reactivity depends upon its intrinsic chemical composition and extrinsic environmental conditions. Therefore, recalcitrance is an emergent property of DOC that is analytically difficult to constrain. New isotopic techniques that track the flow of carbon through individual organic molecules show promise in unveiling specific biosynthetic or degradation pathways that control the metabolic turnover of DOC and its accumulation in the deep ocean. However, a multivariate approach is required to constrain current carbon fluxes so that we may better predict how the cycling of oceanic DOC will be altered with continued climate change. Ocean warming, acidification, and oxygen depletion may upset the balance between the primary production and heterotrophic reworking of DOC, thus modifying the amount and/or composition of recalcitrant DOC. Climate change and anthropogenic activities may enhance mobilization of terrestrial DOC and/or stimulate DOC production in coastal waters, but it is unclear how this would affect the flux of DOC to the open ocean. Here, we assess current knowledge on the oceanic DOC cycle and identify research gaps that must be addressed to successfully implement its use in global scale carbon models.
    Beschreibung: This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) project number 422798570. The Hanse-Wissenschaftskolleg and the Geochemical Society provided funding for the conference. Additional support was provided by the National Science Foundation OCE #1756812 to SW. TB acknowledges funding from ETH Zürich and JAMSTEC. JM was supported by the Netherlands Earth System Science Centre. SP-G was funded by COPAS Sur-Austral (CONICYT PIA APOYO CCTE AFB170006). GG-S acknowledges funding from DFG, DI 842/6-1.
    Schlagwort(e): Dissolved organic carbon ; Global carbon cycle ; Recalcitrance ; Isotopic probing ; Climate change
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 77
    Publikationsdatum: 2022-10-26
    Beschreibung: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Benthuysen, J. A., Oliver, E. C. J., Chen, K., & Wernberg, T. Editorial: advances in understanding marine heatwaves and their impacts. Frontiers in Marine Science, 7, (2020): 147, doi:10.3389/fmars.2020.00147.
    Beschreibung: Editorial on the Research Topic Advances in Understanding Marine Heatwaves and Their Impacts In recent years, prolonged, extremely warm water events, known as marine heatwaves, have featured prominently around the globe with their disruptive consequences for marine ecosystems. Over the past decade, marine heatwaves have occurred from the open ocean to marginal seas and coastal regions, including the unprecedented 2011 Western Australia marine heatwave (Ningaloo Niño) in the eastern Indian Ocean (e.g., Pearce et al., 2011), the 2012 northwest Atlantic marine heatwave (Chen et al., 2014), the 2012 and 2015 Mediterranean Sea marine heatwaves (Darmaraki et al., 2019), the 2013/14 western South Atlantic (Rodrigues et al., 2019) and 2017 southwestern Atlantic marine heatwave (Manta et al., 2018), the persistent 2014–2016 “Blob” in the North Pacific (Bond et al., 2015; Di Lorenzo and Mantua, 2016), the 2015/16 marine heatwave spanning the southeastern tropical Indian Ocean to the Coral Sea (Benthuysen et al., 2018), and the Tasman Sea marine heatwaves in 2015/16 (Oliver et al., 2017) and 2017/18 (Salinger et al., 2019). These events have set new records for marine heatwave intensity, the temperature anomaly exceeding a climatology, and duration, the sustained period of extreme temperatures. We have witnessed the profound consequences of these thermal disturbances from acute changes to marine life to enduring impacts on species, populations, and communities (Smale et al., 2019). These marine heatwaves have spurred a diversity of research spanning the methodology of identifying and quantifying the events (e.g., Hobday et al., 2016) and their historical trends (Oliver et al., 2018), understanding their physical mechanisms and relationships with climate modes (e.g., Holbrook et al., 2019), climate projections (Frölicher et al., 2018), and understanding the biological impacts for organisms and ecosystem function and services (e.g., Smale et al., 2019). By using sea surface temperature percentiles, temperature anomalies can be quantified based on their local variability and account for the broad range of temperature regimes in different marine environments. For temperatures exceeding a 90th-percentile threshold beyond a period of 5-days, marine heatwaves can be classified into categories based on their intensity (Hobday et al., 2018). While these recent advances have provided the framework for understanding key aspects of marine heatwaves, a challenge lies ahead for effective integration of physical and biological knowledge for prediction of marine heatwaves and their ecological impacts. This Research Topic is motivated by the need to understand the mechanisms for how marine heatwaves develop and the biological responses to thermal stress events. This Research Topic is a collection of 18 research articles and three review articles aimed at advancing our knowledge of marine heatwaves within four themes. These themes include methods for detecting marine heatwaves, understanding their physical mechanisms, seasonal forecasting and climate projections, and ecological impacts.
    Beschreibung: We thank the contributing authors, reviewers, and the editorial staff at Frontiers in Marine Science for their support in producing this issue. We thank the Marine Heatwaves Working Group (http://www.marineheatwaves.org/) for inspiration and discussions. This special issue stemmed from the session on Advances in Understanding Marine Heat Waves and Their Impacts at the 2018 Ocean Sciences meeting (Portland, USA).
    Schlagwort(e): Marine heatwaves ; Extreme events ; Ocean and atmosphere interactions ; Marine ecosystems ; Marine resources ; Climate change ; Climate variability ; Climate prediction
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 78
    Publikationsdatum: 2022-05-26
    Beschreibung: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Trathan, P. N., Wienecke, B., Barbraud, C., Jenouvrier, S., Kooyman, G., Le Bohec, C., Ainley, D. G., Ancel, A., Zitterbart, D. P., Chown, S. L., LaRue, M., Cristofari, R., Younger, J., Clucas, G., Bost, C., Brown, J. A., Gillett, H. J., & Fretwell, P. T. The emperor penguin - vulnerable to projected rates of warming and sea ice loss. Biological Conservation, 241, (2020): 108216, doi:10.1016/j.biocon.2019.108216.
    Beschreibung: We argue the need to improve climate change forecasting for ecology, and importantly, how to relate long-term projections to conservation. As an example, we discuss the need for effective management of one species, the emperor penguin, Aptenodytes forsteri. This species is unique amongst birds in that its breeding habit is critically dependent upon seasonal fast ice. Here, we review its vulnerability to ongoing and projected climate change, given that sea ice is susceptible to changes in winds and temperatures. We consider published projections of future emperor penguin population status in response to changing environments. Furthermore, we evaluate the current IUCN Red List status for the species, and recommend that its status be changed to Vulnerable, based on different modelling projections of population decrease of ≥50% over the current century, and the specific traits of the species. We conclude that current conservation measures are inadequate to protect the species under future projected scenarios. Only a reduction in anthropogenic greenhouse gas emissions will reduce threats to the emperor penguin from altered wind regimes, rising temperatures and melting sea ice; until such time, other conservation actions are necessary, including increased spatial protection at breeding sites and foraging locations. The designation of large-scale marine spatial protection across its range would benefit the species, particularly in areas that have a high probability of becoming future climate change refugia. We also recommend that the emperor penguin is listed by the Antarctic Treaty as an Antarctic Specially Protected Species, with development of a species Action Plan.
    Beschreibung: We thank Thomas J. Bracegirdle, Tony Phillips and Kevin Hughes for helpful comments on earlier drafts of this manuscript. PNT acknowledges the support of WWF-UK under GB095701 and SJ the support of NSF OPP1744794 and 1643901.
    Schlagwort(e): Antarctic ; Climate change ; Aptenodytes forsteri ; IUCN Red List threat status ; Protection ; Conservation
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 79
    facet.materialart.
    Unbekannt
    American Meteorological Society
    Publikationsdatum: 2022-05-26
    Beschreibung: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(1), (2020): 255-268, doi:10.1175/JPO-D-19-0166.1.
    Beschreibung: Regional connectivity is important to the global climate salinity response, particularly because salinity anomalies do not have a damping feedback with atmospheric freshwater fluxes and may therefore be advected over long distances by ocean circulation, resulting in nonlocal influences. Climate model intercomparison experiments such as CMIP5 exhibit large uncertainty in some aspects of the salinity response, hypothesized here to be a result of ocean dynamics. We use two types of Lagrangian particle tracking experiments to investigate pathways of exchange for salinity anomalies. The first uses forward trajectories to estimate average transport time scales between water cycle regimes. The second uses reverse trajectories and a freshwater accumulation method to quantitatively identify remote influences in the salinity response. Additionally, we compare velocity fields with both resolved and parameterized eddies to understand the impact of eddy stirring on intergyre exchange. These experiments show that surface anomalies are readily exchanged within the ocean gyres by the mean circulation, but intergyre exchange is slower and largely eddy driven. These dynamics are used to analyze the North Atlantic salinity response to climate warming and water cycle intensification, where the system is broadly forced with fresh surface anomalies in the subpolar gyre and salty surface anomalies in the subtropical gyres. Under these competing forcings, strong intergyre eddy fluxes carry anomalously salty subtropical water into the subpolar gyre which balances out much of the local freshwater input.
    Beschreibung: We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups (listed in Table 1 of this paper) for producing and making available their model output. We also thank the creators of the SODA and ECCO reanalysis products. This work was supported by NASA Headquarters under the NASA Earth and Space Science Fellowship Program Award 80NSSC17K0372, and by National Science Foundation Award OCE-1433132. The SODA outputs used here can be accessed at http://www.atmos.umd.edu/~ocean/, and the ECCO outputs at https://ecco.jpl.nasa.gov/. Data from the CMIP5 ensemble is available at https://esgf-node.llnl.gov/projects/esgf-llnl/. The particle tracking code used for these experiments can be found at https://github.com/slevang/particle-tracking.
    Beschreibung: 2020-07-20
    Schlagwort(e): North Atlantic Ocean ; Eddies ; Hydrologic cycle ; Lagrangian circulation/transport ; Transport ; Climate change
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 80
    Publikationsdatum: 2022-05-26
    Beschreibung: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 33(9), (2020): 3863-3882, doi:10.1175/JCLI-D-19-0687.1.
    Beschreibung: The direct response of the cold-season atmospheric circulation to the Arctic sea ice loss is estimated from observed sea ice concentration (SIC) and an atmospheric reanalysis, assuming that the atmospheric response to the long-term sea ice loss is the same as that to interannual pan-Arctic SIC fluctuations with identical spatial patterns. No large-scale relationship with previous interannual SIC fluctuations is found in October and November, but a negative North Atlantic Oscillation (NAO)/Arctic Oscillation follows the pan-Arctic SIC fluctuations from December to March. The signal is field significant in the stratosphere in December, and in the troposphere and tropopause thereafter. However, multiple regressions indicate that the stratospheric December signal is largely due to concomitant Siberian snow-cover anomalies. On the other hand, the tropospheric January–March NAO signals can be unambiguously attributed to SIC variability, with an Iceland high approaching 45 m at 500 hPa, a 2°C surface air warming in northeastern Canada, and a modulation of blocking activity in the North Atlantic sector. In March, a 1°C northern Europe cooling is also attributed to SIC. An SIC impact on the warm Arctic–cold Eurasia pattern is only found in February in relation to January SIC. Extrapolating the most robust results suggests that, in the absence of other forcings, the SIC loss between 1979 and 2016 would have induced a 2°–3°C decade−1 winter warming in northeastern North America and a 40–60 m decade−1 increase in the height of the Iceland high, if linearity and perpetual winter conditions could be assumed.
    Beschreibung: This research was supported by the Blue-Action project (European Union’s Horizon 2020 research and innovation program, Grant 727852) and by the National Science Foundation (OPP 1736738).
    Beschreibung: 2020-10-06
    Schlagwort(e): Atmosphere-ocean interaction ; Climate change ; Climate variability ; Ice loss/growth
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 81
    Publikationsdatum: 2022-10-26
    Beschreibung: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Proshutinsky, A., Krishfield, R., Toole, J. M., Timmermans, M-L., Williams, W. J., Zimmermann, S., Yamamoto-Kawai, M., Armitage, T. W. K., Dukhovskoy, D., Golubeva, E., Manucharyan, G. E., Platov, G., Watanabe, E., Kikuchi, T., Nishino, S., Itoh, M., Kang, S-H., Cho, K-H., Tateyama, K., & Zhao, J. Analysis of the Beaufort Gyre freshwater content in 2003-2018. Journal of Geophysical Research-Oceans, 124(12), (2019): 9658-9689, doi:10.1029/2019JC015281.
    Beschreibung: Hydrographic data collected from research cruises, bottom‐anchored moorings, drifting Ice‐Tethered Profilers, and satellite altimetry in the Beaufort Gyre region of the Arctic Ocean document an increase of more than 6,400 km3 of liquid freshwater content from 2003 to 2018: a 40% growth relative to the climatology of the 1970s. This fresh water accumulation is shown to result from persistent anticyclonic atmospheric wind forcing (1997–2018) accompanied by sea ice melt, a wind‐forced redirection of Mackenzie River discharge from predominantly eastward to westward flow, and a contribution of low salinity waters of Pacific Ocean origin via Bering Strait. Despite significant uncertainties in the different observations, this study has demonstrated the synergistic value of having multiple diverse datasets to obtain a more comprehensive understanding of Beaufort Gyre freshwater content variability. For example, Beaufort Gyre Observational System (BGOS) surveys clearly show the interannual increase in freshwater content, but without satellite or Ice‐Tethered Profiler measurements, it is not possible to resolve the seasonal cycle of freshwater content, which in fact is larger than the year‐to‐year variability, or the more subtle interannual variations.
    Beschreibung: National Science Foundation. Grant Numbers: PLR‐1302884,OPP‐1719280, and OPP‐1845877, PLR‐1303644 and OPP‐1756100, OPP‐1756100, PLR‐1303644, OPP‐1845877, OPP‐1719280, PLR‐1302884 Key Program of National Natural Science Foundation of China. Grant Number: 41330960 Global Change Research Program of China. Grant Number: 2015CB953900 Ministry of Education, Korea Japan Aerospace Exploration Agency (JAXA) /Earth Observation Research Center (EORC) Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT) Stanback Postdoctoral Fellowship Russian Foundation for Basic Research. Grant Number: 17‐05‐00382 Presidium of Russian Academy of Sciences HYCOM NOPP. Grant Number: N00014‐15‐1‐2594 DOE. Grant Number: DE‐SC0014378 National Aeronautics and Space Administration Tokyo University of Marine Science and Technology Department of Fisheries and Oceans Canada Woods Hole Oceanographic Institution
    Schlagwort(e): Beaufort Gyre ; Arctic Ocean ; Freshwater balance ; Circulation ; Modeling ; Climate change
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 82
    Publikationsdatum: 2022-10-26
    Beschreibung: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 46(16), (2019): 9851-9860, doi:10.1029/2019GL083726.
    Beschreibung: Coral reef calcification is expected to decline due to climate change stressors such as ocean acidification and warming. Projections of future coral reef health are based on our understanding of the environmental drivers that affect calcification and dissolution. One such driver that may impact coral reef health is heterotrophy of oceanic‐sourced particulate organic matter, but its link to calcification has not been directly investigated in the field. In this study, we estimated net ecosystem calcification and oceanic particulate organic carbon (POCoc) uptake across the Kāne'ohe Bay barrier reef in Hawai'i. We show that higher rates of POCoc uptake correspond to greater net ecosystem calcification rates, even under low aragonite saturation states (Ωar). Hence, reductions in offshore productivity may negatively impact coral reefs by decreasing the food supply required to sustain calcification. Alternatively, coral reefs that receive ample inputs of POCoc may maintain higher calcification rates, despite a global decline in Ωar.
    Beschreibung: Data needed for calculations are available in the supporting information. Additional data can be provided upon request directly from the corresponding author or accessed by links provided in the supporting information. The authors declare no competing financial interests. We thank Texas Sea Grant for providing partial funding for this project to A. Kealoha through the Grants‐In‐Aid of Graduate Research Program. We also thank the NOAA Nancy Foster Scholarship for PhD program funding to A. Kealoha and Texas A&M University for funds awarded to Shamberger that supported this work. This research was also supported by funding from National Science Foundation Grant OCE‐1538628 to Rappé. The Hawaii Institute of Marine Biology (particularly the Rappé Lab and Jason Jones), NOAA's Coral Reef Ecosystem Program, Connie Previti, Serena Smith, and Chris Maupin were instrumental in sample collection and data analysis.
    Beschreibung: 2020-02-22
    Schlagwort(e): Coral reefs ; Ocean acidification ; Climate change ; Heterotrophy
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 83
    Publikationsdatum: 2022-10-21
    Beschreibung: These data files and MATLAB scripts reproduce the model data and figures as published in Bramante et al. (in prep) Modeling the impacts of a changing climate on cross-shore sediment transport: Kwajalein Atoll, Marshall Islands.
    Beschreibung: Atoll reef islands primarily consist of unconsolidated sediment, and their ocean-facing shorelines are maintained by sediment produced and transported across their reefs. Changes in incident waves can alter cross-shore sediment exchange and thus affect the sediment budget and morphology of atoll reef islands. Here we investigate the influence of sea-level rise and projected wave climate change on wave characteristics and cross-shore sediment transport across an atoll reef at Kwajalein Island, Republic of the Marshall Islands. Using a phase-resolving model, we quantify the influence on sediment transport of quantities not well-captured by wave-averaged models, namely wave asymmetry and skewness and flow acceleration. Model results suggest that for current reef geometry, sea level, and wave climate, potential bedload transport is directed onshore, decreases from the fore reef to the beach, and is sensitive to the influence of flow acceleration. We find that a projected 12% decrease in annual wave energy by 2100 CE has negligible influence on reef flat hydrodynamics. However, 0.5-2.0 m of sea-level rise increases wave heights, skewness, and shear stress on the reef flat, and decreases wave skewness and shear stress on the fore reef. These hydrodynamic changes decrease potential sediment inputs onshore from the fore reef where coral production is greatest, but increase potential cross-reef sediment transport from the outer reef flat to the beach. Assuming sediment production on the fore reef remains constant or decreases due to increasing ocean temperatures and acidification, these processes have the potential to decrease net sediment delivery to atoll islands, causing erosion.
    Beschreibung: This project was supported by the Strategic Environmental Research and Development Program through awards SERDP RC-2334 and RC-2336.
    Schlagwort(e): Climate change ; Sediment transport ; Wave model ; Fringing reef
    Repository-Name: Woods Hole Open Access Server
    Materialart: Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...