ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ASTROPHYSICS  (6,235)
  • GEOPHYSICS  (3,293)
  • 1990-1994  (9,528)
  • 1
    Publication Date: 2004-12-03
    Description: The thinning and intensification of the cross tail current sheet during the substorm growth phase are analyzed during the CDAW 6 substorm (22 Mar. 1979) using two complementary methods. The magnetic field and current sheet development are determined using data from two spacecraft and a global magnetic field model with several free parameters. These results are compared with the local calculation of the current sheet location and structure previously done by McPherron et al. Both methods lead to the conclusion that an extremely thin current sheet existed prior to the substorm onset, and the thicknesses estimated by the two methods at substorm onset agree relatively well. The plasma data from the ISEE 1 spacecraft at 13 R(sub E) show an anisotropy in the low energy electrons during the growth phase which disappears just before the substorm onset. The global magnetic model results suggest that the field is sufficiently stretched to scatter such low energy electrons. The strong stretching may improve the conditions for the growth of the ion tearing instability in the near Earth tail at substorm onset.
    Keywords: GEOPHYSICS
    Type: ESA, Substorms 1; p 131-135
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-12-03
    Description: An approach to the study of the solar wind-magnetosphere interaction by signal type, that is, by examining the effect in the magnetosphere of well defined interplanetary structures, is presented. Focus is on the response of the magnetosphere to interplanetary magnetic clouds. Among their properties are: the slow and smooth variation of the magnetic field vector, with fluctuation level well below common interplanetary values; the similarly well behaved bulk flow; the wide range of field and flow parameters; and the longevity of passage (1 to 2 days). If the magnetic cloud is oriented such that a long period of uninterruptedly northward pointing field is followed by a long interval of continuously southward pointing field, then the transition of the magnetosphere from a quiescent state (the 'ground state') to a very active state can be studied, the latter being sustained by continued forcing from the magnetic cloud. A synopsis of the main findings of a recent study in such an interaction is given, concentrating on the substorm activity attending the second part of cloud passage.
    Keywords: GEOPHYSICS
    Type: ESA, Substorms 1; p 371-376
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-12-03
    Description: Millisecond pulsars are galactic objects that exhibit a very stable spinning period. Several tens of these celestial clocks have now been discovered, which opens the possibility that an average time scale may be deduced through a long-term stability algorithm. Such an ensemble average makes it possible to reduce the level of the instabilities originating from the pulsars or from other sources of noise, which are unknown but independent. The basis for such an algorithm is presented and applied to real pulsar data. It is shown that pulsar time could shortly become more stable than the present atomic time, for averaging times of a few years. Pulsar time can also be used as a flywheel to maintain the accuracy of atomic time in case of temporary failure of the primary standards, or to transfer the improved accuracy of future standards back to the present.
    Keywords: ASTROPHYSICS
    Type: NASA. Goddard Space Flight Center, The 24th Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting; p 73-86
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: The stability of the geomagnetic tail is investigated on the basis of three dimensional resistive magnetohydrodynamic simulations, using different dynamic constraints and different initial equilibria. Different forms of the energy equation for isotropic pressure are found to have no significant effect on the dynamic growth of a resistive tearing instability, which is responsible for near Earth reconnection, plasmoid formation and ejection, and the generation of fast plasma flows. The constraints of a modified double adiabatic approach, however, can quench the tearing instability through the development of large, mirror type, anisotropies in the boundary regions of the plasma sheet, unless isotropization occurs on fast, nearly Alfvenic, time scales. The presence of a net cross tail magnetic field component B(sub yN) can reduce the growth of the instability without complete stabilization. An increase of B(sub z) from midnight toward the tail flanks, however, by more than a factor of about 3, apparently completely stabilizes the tearing mode. Stabilization and destabilization thus may depend on properties and constraints (and their release) in regions other than the neutral sheet where reconnection is initiated.
    Keywords: GEOPHYSICS
    Type: ESA, Substorms 1; p 225-230
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2004-12-03
    Description: Issues concerning the 'driven' versus 'unloading' nature of substorms are presented. The original concepts attendant to this debate are presented and substorms are concluded to inextricably combine aspects that are driven with aspects that represent a loading-unloading system. For isolated substorms, the magnetosphere-ionosphere system is shown to exhibit a bimodal response to solar wind changes. A 20 min response characteristic is associated with the driven aspect of substorms, while a 1 hr response time is associated with unloading. It is found that for strong solar wind input conditions, the magnetospheric response becomes more nearly unimodal. This is interpreted in terms of a nonlinear dynamical evolution of the system. Simple analog models are described which capture the essence of the nonlinear magnetospheric behavior. These models exhibit chaotic transitions for strong driving conditions: this may explain the observed behavior of the magnetosphere during strong geomagnetic activity.
    Keywords: GEOPHYSICS
    Type: ESA, Substorms 1; p 185-191
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2004-12-03
    Description: A pseudobreakup is a phenomenon similar to the substorm expansive phase onset, including an activation of an auroral arc, a burst of Pi2 micropulsations, and enhancement of the westward electrojet. However, these effects are weak and a pseudobreak is generally assumed to be very localized. The pseudobreakups are discussed based on simultaneous observations made in space and on the ground during the substorm growth phase. In the events studied the main features listed above are found, but the significance of the localization is unclear. The optical pseudobreakup, with associated magnetic perturbations, is highly localized, but simultaneously a wide local time sector of the auroral oval may be activated. The major differences between pseudobreakups and substorm expansive phase onsets are concluded to be the intensity and the development that follows. Careful study of pseudobreakups may help to determine phase initiation, and the role of the ionosphere-magnetosphere coupling in the substorm process.
    Keywords: GEOPHYSICS
    Type: ESA, Substorms 1; p 111-116
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-08-24
    Description: We study the transfer of momentum from photons to dust grains to (molecular) gas in the outflow around cool giants (carbon-stars, Mira variables and OH/IR stars) beyond the radius where the dust grains condense. The problem is circular: radiation pressure determines the outflow velocity of the dust and thus also the dust density; on the other hand the dust density determines, via radiative transfer effects, the spectrum of the photons and thus the effective radiation pressure. This circular problem is solved by a rapidly converging iterative procedure. We compare our predictions with observed properties of a large sample of OH/IR stars and of Miras and find a good qualitative and quantitative agreement. We confirm a conclusion by Wood et al. (1993) that very luminous OH/IR stars in the Large Magellanic Cloud (LMC) owe their low outflow velocity to the low dust-to-gas ratio, a consequence of the low metallicity of the LMC. Similarly we consider a sample of about 100 OH/IR stars within 200 pc from the galactic center that has an average asymptotic giant branch (AGB) luminosity and an uncommonly high value of v(sub out); we conclude that these stars are probably very metal rich, perhaps even more than the stars in the Baade window studied by Rich (1990).
    Keywords: ASTROPHYSICS
    Type: Astronomy and Astrophysics (ISSN 0004-6361); 286; 2; p. 523-534
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-08-24
    Description: A 54.95-MHz coherent backscatter radar, an ionosonde and the magnetometer located at Trivandrum in India (8.5 deg N, 77 deg E, 0.5 deg N dip angle) recorded large-amplitude ionospheric fluctuations and magnetic field fluctuations associated with a Pc5 micropulsation event, which occurred during an intense magnetic storm on 24 March 1991 (A(sub p) = 161). Simultaneous 100-n T-level fluctuations are also observed in the H-component at Brorfelde, Denmark (55.6 deg N gm) and at Narsarsuaq, Greenland (70.6 deg N gm). Our study of the above observations shows that the E-W electric field fluctuations in the E- and F-regions and the magnetic field fluctuations at Thumba are dominated by a near-sinusoidal oscillation of 10 min during 1730-1900 IST (1200-1330 UT), the amplitude of the electric field oscillation in the equatorial electrojet (EEJ) is 0.1-0.25 mV/m and it increases with height, while it is about 1.0 mV/m in the F-region, the ground-level H-component oscillation can be accounted for by the ionospheric current oscillation generated by the observed electric field oscillation in the EEJ and the H-component oscillations at Trivandrum and Brofelde are in phase with each other. The observations are interpreted in terms of a compressional cavity mode resonance in the inner magnetosphere and the assoicated ionospheric electric field penetrating from high latitudes to the magnetic equator.
    Keywords: GEOPHYSICS
    Type: Annales Geophysicae (ISSN 0992-7689); 12; 6; p. 565-573
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-08-24
    Description: The Coast Ranges of the Cascadia margin are overriding the subducted Juan de Fuca/Gorda plate. We investigate the extent to which the latitudinal change in attributes related to the subduction process. These attributes include the varibale age of the subducted slab that underlies the Coast Ranges and average vertical crustal velocities of the western margin of the Coast Rnages for two markedly different time periods, the last 45 years and the last 100 kyr. These vertical crustal velocities are computed from the resurveying of highway bech marks and from the present elevation of shore platforms that have been uplifted in the late Quaternary, respectively. Topogarphy of the Coast Ranges is in part a function of the age and bouyancy of the underlying subducted plate. This is evident in the fact that the two highest topographic elements of the Coast Rnages, the Klamath Mountains and the Olympic Mountains, are underlain by youngest subducted oceanic crust. The subducted Blanco Fracture Zone in southernmost Oregon is responsible for an age discontinuity of subducted crust under the Klamath Mountains. The norhtern terminus of hte topographically higher Klamaths is offset to the north relative to the position of the underlying Blanco Fracture Zone, teh offset being in the direction of migration of the farcture zone, as dictated by relative plate motions. Vertical crustal velocities at the coast, derived from becnh mark surveys, are as much as an order of magnitude greater than vertical crustal velocities derived from uplifted shore platforms. This uplift rate discrepancy indicates that strain is accumulating on the plate margin, to be released during the next interplate earthquake. In a latitudinal sense, average Coast Rnage topography is relatively high where bench mark-derived, short-term vertical crustal velocities are highest. Becuase the shore platform vertical crustal velocities reflect longer-term, premanent uplift, we infer that a small percentage of the interseismic strain that accumulates as rapid short-term uplift is not recovered by subduction earthquakes but rather contributes to rock uplift of the Coast Ranges. The conjecture that permanent rock uplift is related to interseismic uplift is consistent with the observation that those segments of the subduction zone subject to greater interseismic uplift rates are at approximately the same latitudes as those segments of the Coast Ranges that have higher magnitudes of rock uplift over the long term.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; B6; p. 12,245-12,255
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-08-24
    Description: Magnetic field data measured by the MAGMA instrument in the Martian magnetotail lobes are compared with the ram pressure of the upstream solar wind observed by the TAUS instrument in the circular orbits of the Phobos 2 spacecraft. High correlation was found between the magnetic field intensity in the Martian magnetotail lobes and the solar wind ram pressure. From this relationship the average flaring angle of the Martian magnetotail was determined as approximately 13 deg, and the average magnetosonic Mach number was estimated as approximately 5. The observed relationship between the Martian magnetotail magnetic field intensity and the solar wind magnetic field reflects the correlation of the solar wind magnetic field to the ram pressure providing a value of approximately 7 for the average Alfvenic Mach number. The flaring angle obtained for the Martian magnetotail was found to be an intermediate value between the flaring angle of the magnetotail of the Earth and that of Venus at comparable distances.
    Keywords: ASTROPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; A9; p. 17,199-17,204
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...