ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Fluid Mechanics and Heat Transfer  (8)
  • 1955-1959  (8)
  • 1958  (8)
  • 1
    Publication Date: 2019-08-17
    Description: To aid in assessing effects of cross-sectional shape on body aerodynamics, the forces and moments have been measured for bodies with circular, elliptic, square, and triangular cross sections at Mach numbers 1.98 and 3.88. Results for bodies with noncircular cross sections have been compared with results for bodies of revolution having the same axial distribution of cross-sectional area (and, thus, the same equivalent fineness ratio). Comparisons have been made for bodies of fineness ratios 6 and 10 at angles of attack from 0 deg to about 20 deg and for Reynolds numbers, based on body length, of 4.0 x 10(exp 6) and 6.7 x 10(exp 6). The results of this investigation show that distinct aerodynamic advantages can be obtained by using bodies with noncircular cross sections. At certain angles of bank, bodies with elliptic, square, and triangular cross sections develop considerably greater lift and lift-drag ratios than equivalent bodies of revolution. For bodies with elliptic cross sections, lift and pitching-moment coefficients can be correlated with corresponding coefficients for equivalent circular bodies. It has been found that the ratios of lift and pitching-moment coefficients for an elliptic body to those for an equivalent circular body are practically constant with change in both angle of attack and Mach number. These lift and moment ratios are given very accurately by slender-body theory. As a result of this agreement, the method of NACA Rep. 1048 for computing forces and moments for bodies of revolution has been simply extended to bodies with elliptic cross sections. For the cases considered (elliptic bodies of fineness ratios 6 and 10 having cross-sectional axis ratios of 1.5 and 2), agreement of theory with experiment is very good. As a supplement to the force and moment results, visual studies of the flow over bodies have been made by use of the vapor-screen, sublimation, and white-lead techniques. Photographs from these studies are included in the report.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA-MEMO-10-3-58A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-16
    Description: Superposition techniques are used to calculate the rate of heat transfer from a flat plate to a turbulent incompressible boundary layer for several cases of variable surface temperature. The predictions of a number of these calculations are compared with experimental heat- transfer rates, and good agreement is obtained. A simple computing procedure for determining the heat-transfer rates from surfaces with arbitrary wall-temperature distributions is presented and illustrated by two examples. The inverse problem of determining the temperature distribution from an arbitrarily prescribed heat flux is also treated, both experimentally and analytically.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: MEMO-12-3-58W , CF-1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-15
    Description: Superposition techniques are used to calculate the rate of heat transfer from a flat plate to a turbulent incompressible boundary layer for several cases of variable surface temperature. The predictions of a number of these calculations are compared with experimental heat-transfer rates, and good agreement is obtained. A simple computing procedure for determining the heat-transfer rates from surfaces with arbitrary wall-temperature distributions is presented and illustrated by two examples. The inverse problem of determining the temperature distribution from an arbitrarily prescribed heat flux is also treated, both experimentally and analytically.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA-MEMO-12-3-58W
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-15
    Description: A heat-transfer investigation has been made on a blunt cone-cylinder model at a Mach number of 1.98 at yaw angles from 0 deg to 9 deg. The results indicate that, except for the hemispherical nose, the heat-transfer coefficient increased on the windward side and decreased on the leeward side as yaw angle was increased. In general, the increase in heat transfer on the windward side was higher than the corresponding decrease on the leeward side. A comparison with theory (NACA Technical Note 4208) yielded agreement which was, in general, within 10 percent on the cone at all test conditions and on the cylinder at an angle of yaw of 0 deg.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA-MEMO-10-8-58L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-15
    Description: The aerodynamic heat transfer to a hemispherical concave nose has been measured in free flight at Mach numbers from 3.5 to 6.6 with corresponding Reynolds numbers based on nose diameter from 7.4 x 10(exp 6) to 14 x 10(exp 6). Over the test Mach number range the heating on the cup nose, expressed as a ratio to the theoretical stagnation-point heating on a hemisphere nose of the same diameter, varied from 0.05 to 0.13 at the stagnation point of the cup, was approximately 0.1 at other locations within 40 deg of the stagnation point, and varied from 0.6 to 0.8 just inside the lip where the highest heating rates occurred. At a Mach number of 5 the total heat input integrated over the surface of the cup nose including the lip was 0.55 times the theoretical value for a hemisphere nose with laminar boundary layer and 0.76 times that for a flat face. The heating at the stagnation point was approximately 1/5 as great as steady-flow tunnel results. Extremely high heating rates at the stagnation point (on the order of 30 times the stagnation-point values of the present test), which have occurred in conjunction with unsteady oscillatory flow around cup noses in wind-tunnel tests at Mach and Reynolds numbers within the present test range, were not observed.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA-MEMO-10-21-58L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-16
    Description: Heat-transfer rates, velocity profiles, and temperature profiles for the turbulent incompressible flow of air over a flat plate with a constant surface temperature have been measured at Reynolds numbers up to 3.5 x lO(exp 6). The turbulent heat-transfer measurements agree well with the von Karman analogy, and the velocity profiles agree with the data of previous investigators. The temperature profiles are similar to the velocity profiles, both being adequately described by power formulas.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA-MEMO-12-1-58W/PT1 , Rept-4995/PT1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-15
    Description: Heat-transfer rates and temperature profiles for the turbulent incompressible flow of air over a flat plate with a stepwise temperature distribution (unheated starting length) were measured for a variety of step positions at Reynolds numbers up to 3.5 x 10(exp 6). Comparison of the data with existing heat-transfer analyses indicates that an improved analysis is needed. An integral analysis is made that agrees very well with the data and allows a simple correction for the unheated starting length. In addition, a differential analysis is made that allows prediction of the temperature profiles from the velocity profiles, and good agreement with experimental profiles is obtained.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA-MEMO-12-2-58W/PT2 , Rept-4995/PT2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-15
    Description: Heat-transfer and pressure measurements were obtained from a flight test of a 1/18-scale model of the Titan intercontinental ballistic missile up to a Mach number of 3.86 and Reynolds number per foot of 23.5 x 10(exp 6) and are compared with the data of two previously tested 1/18-scale models. Boundary-layer transition was observed on the nose of the model. Van Driest's theory predicted heat-transfer coefficients reasonably well for the fully laminar flow but predictions made by Van Driest's theory for turbulent flow were considerably higher than the measurements when the skin was being heated. Comparison with the flight test of two similar models shows fair repeatability of the measurements for fully laminar or turbulent flow.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA-MEMO-11-1-58L , AF-AM-70
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...