ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Fluid Mechanics and Thermodynamics  (16)
  • FLUID MECHANICS AND HEAT TRANSFER  (10)
  • 1950-1954  (26)
  • 1953  (12)
  • 1950  (14)
Collection
Years
  • 1950-1954  (26)
Year
  • 1
    Publication Date: 2019-06-28
    Description: The condensation pressure of air was determined over the range of temperature from 60 to 85 K. The experimental results were slightly higher than the calculated values based on the ideal solution law. Heat of vaporization of oxygen was determined at four temperatures ranging from about 68 to 91 K and of nitrogen similarly at four temperatures ranging from 62 to 78 K.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-TN-2969
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: The heat requirements for the icing protection of two radome configurations have been studied over a range of design icing conditions. Both the protection limits of a typical thermal protection system and the relative effects of the various icing variables have been determined. For full evaporation of all impinging water, an effective heat density of 14 watts per square inch was required. When a combination of the evaporation and running wet surface systems was employed, a heat requirement of 5 watts per square inch provided protection at severe icing and operating conditions.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-RM-E53A22
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: An analysis of combined heat and mass transfer from a flat plate has been made in terms of Prandtl t s simplified physical concept of the turbulent boundary layer. The results of the analysis show that for conditions of reasonably small heat and mass transfer, the ratio of the mass-and heat-transfer coefficients is dependent on the Reynolds number of the boundary layer, the Prandtl number of the medium of diffusion, and the Schmidt number of the diffusing fluid in the medium of diffusion. For the particular case of water evaporating into air, the ratio of mass-transfer coefficient to heat-transfer coefficient is found to be slightly greater than unity.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NACA-TN-3045
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NACA-TN-2904
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NACA-TN-2903
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: Convective heat-transfer coefficients in dry air were obtained for an ellipsoidal spinner of 30-inch maximum diameter for both stationary and rotating operation over a range of conditions including airspeeds up to 275 miles per hour, rotational speeds up to 1200 rpm, and angles of attack of zero and 40 The results are presented in terms of Nusselt numbers, Reynolds numbers, and convective heat-transfer coefficients. The studies included both uniform heating densities over the spinner and uniform surface temperatures.. In general, the results showed that rotation will increase the convective heat transfer from a spinner, especially in the turbulent-flow regions. Rotation of the spinner at 1200 rpm and at a free-stream velocity of 275 miles per hour increased the Nusselt number parameter in the turbulent-flow region by 32 percent over that obtained with a stationary spinner; whereas in the nose region, where the flow was laminar, an increase of only 18 percent was observed. Transition from laminar to turbulent flow occurred over a large range of Reynolds numbers primarily because of surface roughness of the spinner. Operation at an angle of attack of 40 had only small effects on the local convective heat transfer for the model studied.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NACA-RM-E53F02
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: The effects of existing frictional heating were analyzed to determine the conditions under which ice formations on aircraft surfaces can be prevented. A method is presented for rapidly determining by means of charts the combination of-Mach number, altitude, and stream temperature which will maintain an ice-free surface in an icing cloud. The method can be applied to both subsonic and supersonic flow. The charts presented are for Mach numbers up to 1.8 and pressure altitudes from sea level to 45,000 feet.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NACA-TN-2914
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Description: The general effect of wing sweep on cloud-droplet trajectories about swept wings of high aspect ratio moving at subsonic speeds is discussed. A method of computing droplet trajectories about yawed cylinders and swept wings is presented, and illustrative droplet trajectories are computed. A method of extending two-dimensional calculations of droplet impingement on nonswept wings to swept wings is presented. It is shown that the extent of impingement of cloud droplets on an airfoil surface, the total rate of collection of water, and the local rate of impingement per unit area of airfoil surface can be found for a swept wing from two-dimensional data for a nonswept wing. The impingement on a swept wing is obtained from impingement data for a nonswept airfoil section which is the same as the section in the normal plane of the swept wing by calculating all dimensionless parameters with respect to flow conditions in the normal plane of the swept wing.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NACA-TN-2931
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-28
    Description: Trajectories were determined for droplets in air flowing through 90 deg elbows especially designed for two-dimensional potential motion with low pressure losses. The elbows were established by selecting as walls of each elbow two streamlines of the flow field produced by a complex potential function that establishes a two-dimensional flow around a 90 deg bend. An unlimited number of elbows with slightly different shapes can be established by selecting different pairs of streamlines as walls. The elbows produced by the complex potential function selected are suitable for use in aircraft air-intake ducts. The droplet impingement data derived from the trajectories are presented along with equations in such a manner that the collection efficiency, the area, the rate, and the distribution of droplet impingement can be determined for any elbow defined by any pair of streamlines within a portion of the flow field established by the complex potential function. Coordinates for some typical streamlines of the flow field and velocity components for several points along these streamlines are presented in tabular form.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NACA-TN-2999
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-28
    Description: The trajectories of droplets in the air flowing past an NACA 65A004 a irfoil at an angle of attack of 4 deg were determined. The amount of water in droplet form impinging on the airfoil, the area of droplet impingement, and the rate of droplet impingement per unit area on the airfoil surface were calculated from the trajectories and presented to cover a large range of flight and atmospheric conditions. The effect of a change in airfoil thickness from 12 to 4 percent at 4 deg angle of attack is presented by comparing the impingement calculations for the NACA 65A004 airfoil with those for the NACA 65(sub 1)-208 and 65(sub 1)-212 airfoils. The rearward limit of impingement on the upper surface decreases as the airfoil thickness decreases. The rearward limit of impingement on the lower surface increases with a decrease in airfoil t hickness. The total water intercepted decreases as the airfoil thickness is decreased.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NACA-TN-3047
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-06-28
    Description: The trajectories of droplets in the air flowing past NACA 65(1)-208 airfoil and an NACA 65(1)-212 airfoil, both at an angle of attack of 4 degrees, were determined. The amount of water in droplet form impinging on the airfoils, the area of droplet impingement, and the rate of droplet impingement per unit area on the airfoil surface affected were calculated from the trajectories and are presented. The amount, extent, and rate of impingement of the NACA 65(1)-208 airfoil are compared with the results for the NACA 65(1)1-212 airfoil. Under similar conditions of operation, the NACA 65(1)-208 airfoil collects less water than the NACA 65(1)-212 airfoil. The extent of impingement on the upper surface of the NACA 65(1)-208 airfoil is much less than on the upper surface of the NACA 65(1)-212 airfoil, but on the lower surface the extents of impingement are about the same.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-TN-2952
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-12
    Description: The present status of available information relative to the prediction of shock-induced boundary-layer separation is discussed. Experimental results showing the effects of Reynolds number and Mach number on the separation of both laminar and turbulent boundary layer are given and compared with available methods for predicting separation. The flow phenomena associated with separation caused by forward-facing steps, wedges, and incident shock waves are discussed. Applications of the flat-plate data to problems of separation on spoilers, diffusers, and scoop inlets are indicated for turbulent boundary layers.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-RM-L53I16a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-06-28
    Description: Numerical solutions of the differential equation obtained from the momentum theorem for the development of a turbulent boundary layer along a thermally insulated surface in two-dimensional and in radial shock-free flow are presented in tabular form for a range of Mach numbers from 0.100 to 10. The solution can be used in a step-wise procedure with any given distribution of favorable pressure gradients and for zero pressure gradients. Solutions are also given for use with moderate adverse pressure gradients. The mean velocity in the boundary layer is approximated by a power-law profile. In view of the stepwise integration methods to be used, the exponent designated the profile shape can be varied along the surface between the integral fraction limits 1/5 and 1/11 through interpolation. Agreement obtained between theoretical and experimental boundary-layer development in a supersonic nozzle at a nominal Mach number of 2 indicates the general validity of the approximations used in the analysis - in particular, the method of extrapolating low-speed skin-friction relations to high Mach number flows. The extrapolation method used assumes that the skin-friction coefficient depend primarily on Reynolds number, provided that the density and the kinematic viscosity are evaluated at surface conditions.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-TN-2045
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-06-28
    Description: An experimental investigation was conducted to determine the penetration of air jets d.irected perpendicularlY to an air stream. Jets Issuing from circular, square, and. elliptical orifices were investigated. and. the jet penetration at a position downstream of the orifice was determined- as a function of jet density, jet velocity, air-stream d.enaity, air-stream velocity, effective jet diameter, and. orifice flow coeffIcient. The jet penetrations were determined for nearly constant values of air-stream density at three tunnel-air velocities arid for a large range of Jet velocities and. densities. The results were correlated in terms of dimensionless parameters and the penetrations of the various shapes were compared. Greater penetration was obtained. with the square orifices and the elliptical orifices having an axis ratio of 4:1 at low tunnel-air velocities and low jet pressures than for the other orifices investigated. The square orifices gave the best penetrations at the higher values of tunnel-air velocity and jet total pressure.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NACA-TN-2019
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-06-28
    Description: An investigation was conducted to determine the electric power requirements necessary for ice protection of inlet guide vanes by continuous heating and by cyclical de-icing. Data are presented to show the effect of ambient-air temperature, liquid-water content, air velocity, heat-on period, and cycle times on the power requirements for these two methods of ice protection. The results showed that for a hypothetical engine using 28 inlet guide vanes under similar icing conditions, cyclical de-icing can provide a total power saving as high as 79 percent over that required for continuous heating. Heat-on periods in the order of 10 seconds with a cycle ratio of about 1:7 resulted in the best over-all performance with respect to total power requirements and aerodynamic losses during the heat-off period. Power requirements reported herein may be reduced by as much as 25 percent by achieving a more uniform surface-temperature distribution. A parameter in terms of engine mass flow, vane size, vane surface temperature, and the icing conditions ahead of the inlet guide vanes.was developed by which an extension of the experimental data to icing conditions and inlet guide vanes, other than those investigated was possible.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NACA-RM-E50H29
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-06-27
    Description: No abstract available
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-RM-E50I29A , REPT-2003
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-06-27
    Description: No abstract available
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-RM-E50I29A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-07-12
    Description: Tests of a 1/5 scale model of a proposed 153-foot high-speed submarine have been conducted in the Langley full-scale tunnel at the request of the Bureau of Ships, Department of the Navy. The test program included: (1) force tests to determine the drag, control effectiveness, and static stability characteristics for a number of model configurations, both in pitch and in yaw, (2) pressure measurements to determine the boundary-layer conditions and flow characteristics in the region of the propeller, and (3) an investigation of the effects of propeller operation on the model aerodynamic characteristics. In response to oral requests from the Bureau of Ships representatives t hat the basic data obtained in these tests be made available to them as rapidly as possible, this data report has been prepared to present some of the more pertinent results. All test results given in the present paper are for the propeller-removed condition and were obtained at a Reynolds number of approximately 22,300,000 based on model length.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-RM-SL50E09a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-07-11
    Description: Investigations were conducted of a 12 degree 21-inch conical diffuser of 2:l area ratio to determine the interrelation of boundary layer growth and performance characteristics. surveys were made of inlet and exit from, longitudinal static pressures were recorded, and velocity profiles were obtained through an inlet Reynolds number range, determined From mass flows and based on inlet diameter of 1.45 x 10(exp 6) to 7.45 x 10(exp 6) and a Mach number range of 0.11 to approximately choking. These investigations were made to two thicknesses of inlet boundary layer. The mean value, over the entire range of inlet velocities, of the displacement thickness of the thinner inlet boundary layer was approximately 0.035 inch and that of the thicker inlet boundary layer was approximately six times this value. The loss coefficient in the case of the thinner inlet boundary layer had a value between 2 to 3 percent of the inlet impact pressure over most of the air-flow range. The loss coefficient with the thicker inlet boundary layer was of the order of twice that of the thinner inlet boundary layer at low speeds and approximately three times at high speeds. In both cases the values were substantially less than those given in the literature for fully developed pipe flow. The static-pressure rise for the thinner inlet boundary layer was of the order of 95 percent of that theoretically possible over the entire speed range. For the thicker inlet boundary layer the static pressure rise, as a percentage of that theoretically possible, ranged from 82 percent at low speeds to 68 percent at high speeds.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-RM-L9H10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-11
    Description: Performance and boundary-layer data were taken in a 12 degree 10-inch inlet-diameter conical diffuser of 2:1 exit- to inlet-area ratio. These data were taken for two inlet-boundary-layer conditions. The first condition was that of a thinner inlet boundary later (boundary-layer displacement thickness, delta* approximately equal to 0.034) produced by an inlet section approximately 1 inlet diameter in length between the entrance bell and the diffuser. The second condition was a thicker inlet boundary layer (delta* approximately equal to 0.120) produced by an additional inlet section length of approximately 6 diameters. Longitudinal static-pressure distributions were measured fro wall static orifices. Transverse total- and static-pressure surveys were made at the inlet and exit stations. Boundary-layer velocity distributions were measured at seven stations between the inlet and exit. These data were obtained for a Reynolds number (based on inlet diameter) range of 1 x 10(exp 6) to 3.9 x 10(exp 6). The corresponding Mach number range was from M = 0.2 to choking. At the maximum-power-available condition supersonic flow was obtained as far as 4.5 inches downstream from the diffuser inlet with a maximum Mach number of M approximately equal to 1.5. The total-pressure loss through the diffuser in percentage of inlet dynamic pressure was approximately 2.5 percent for the thinner inlet boundary later and 5.5 percent for the thicker inlet boundary later over the lower subsonic range. These valued increased with increasing flow rate- the values for the thicker inlet boundary later more than those for the thinner inlet boundary layer. The diffuser effectiveness, expressed as the ratio of the actual static-pressure rise to the ideal static-pressure rise, was about 85 percent for the thinner inlet boundary layer and about 67 percent for the thicker inlet boundary later in the lower subsonic range. These values decrease with increasing flow rate. Separated flow was observed for both inlet-boundary-layer conditions in the region of adverse pressure gradient just downstream of the transition curvature from inlet section to diffuser. The flow for the thinner-inlet-boundary-layer condition did not fully re-establish itself along the diffuser walls. The thicker inlet-boundary-layer flow, while not completely re-establishing the normal flow pattern downstream of the separated region, did re-establish more successfully than the thinner inlet boundary layer.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-RM-L50C02a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: This document presents equations for the two-dimensional stationary problem of gas dynamics, and uses them to derive other equations, including equations for vorticity.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-TM-1260 , Prikladnaya Matematika I Mekhanica; 11; 193-198
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: The vortices forming in flowing water behind solid bodies are not represented correctly by the solution of the potential theory nor by Helmholtz's jets. Potential theory is unable to satisfy the condition that the water adheres at the wetted bodies, and its solutions of the fundamental hydrodynamic equations are at variance with the observation that the flow separates from the body at a certain point and sends forth a highly turbulent boundary layer into the free flow. Helmholtz's theory attempts to imitate the latter effect in such a way that it joins two potential flows, jet and still water, nonanalytical along a stream curve. The admissibility of this method is based on the fact that, at zero pressure, which is to prevail at the cited stream curve, the connection of the fluid, and with it the effect of adjacent parts on each other, is canceled. In reality, however, the pressure at these boundaries is definitely not zero, but can even be varied arbitrarily. Besides, Helmholtz's theory with its potential flows does not satisfy the condition of adherence nor explain the origin of the vortices, for in all of these problems, the friction must be taken into account on principle, according to the vortex theorem.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-TM-1256 , Zeitschrift fuer Mathematik und Physik; 56; 1; 1-37
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-07-13
    Description: The use of the linearized equations of Chaplygin to calculate the subsonic flow of a gas permits solving the problem of the flow about a wing profile for absence and presence of circulation. The solution is obtained in a practical convenient form that permits finding all the required magnitudes for the gas flow (lift, lift moment velocity distribution over the profile, and critical Mach number). This solution is not expressed in simple closed form; for a certain simplifying assumption, however, the equations of Chaplygin can be reduced to equations with constant coefficients, and solutions are obtained by using only the mathematical apparatus of the theory of functions of a complex variable. The method for simplifying the equations was pointed out by Chaplygin himself. These applied similar equations to the solution of the flow problem and obtained a solution for the case of the absence of circulation.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-TM-1250 , Prikladnaya Matematika I Mekhanika; 11; 1; 105-118
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-07-13
    Description: In the flow about a body with large subsonic velocity if the velocity of the approaching flow is sufficiently large, regions of local supersonic velocities are formed about the body. It is known from experiment that these regions downstream of the flow are always bounded by shock waves; a continuous transition of the supersonic velocity to the subsonic under the conditions indicated has never been observed. A similar phenomenon occurs in pipes. If at two cross sections of the pipe the velocity is subsonic and between these sections regions of local supersonic velocity are formed without completely occupying a single cross section, these regions are always bounded by shock waves.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-TM-1251 , Prikladnaya Matematika I Mekhanika; 11; 190-202
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-07-11
    Description: The two-dimensional motion of an incompressible fluid about a closed contour with a definite velocity in magnitude and direction at infinity is considered. If, without changing the direction of the velocity at infinity, the magnitude is increased, the configuration of the streamlines remains unchanged and only the numbering of the stream function changes. There exists only one family of curves that can serve as streamlines in the incompressible flow about a given contour (at a given angle of attack); for example, the contour of an airplane wing. The case is quite different with a compressible fluid.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-TM-1252 , Izvestia Akademii Nauk, SSSR, No. 3; 153-259; Rept-3
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-07-12
    Description: An investigation of the nature of the flow field behind a rectangular circular-arc wing has been conducted in the Langley 9-inch supersonic tunnel. Pitot- and static-pressure surveys covering a region of flow behind the wing have been made together with detailed pitot surveys throughout the region of the wake. In addition, the flow direction has been measured using a weathercocking vane measurements. Theoretical calculations of the variation of both downwash and sidewash with angle of attack using Lagerstrom's superposition method have been made. In addition the effect of the wing thickness on the sidewash with the wing at 0 angle of attack has been evaluated. Near an angle of attack of 0, agreement between theory and experiment is good, particularly for the downwash results, except in the plane of the wing, inboard of the tip. In this region the proximity of the shed vortex sheet and the departure of the spanwise distribution of vorticity from theory would account for the disagreement. At higher angles of attack prediction of downwash depends on a knowledge of the location of the trailing vortex sheet, in order that the downwash may be corrected for its displacement and distortion. The theoretical location of the trailing vortex sheet, based on the theoretical downwash values integrated downstream from the wing trailing edge, is shown to differ widely from the experimental case. The rolling-up of the trailing vortex sheet behind the wing tip is evidenced by both the wake surveys and the flow-angle measurements.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-RM-L50G12 , NACA Rept 1340
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...