ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Computational Methods, Massively Parallel (Deep) Sequencing, Genomics  (31)
  • Oxford University Press  (31)
  • American Meteorological Society
  • MDPI Publishing
  • 2010-2014  (31)
Collection
Publisher
  • Oxford University Press  (31)
  • American Meteorological Society
  • MDPI Publishing
Years
Year
  • 1
    Publication Date: 2014-03-13
    Description: Genetic disorders can be detected by prenatal diagnosis using Chorionic Villus Sampling, but the 1:100 chance to result in miscarriage restricts the use to fetuses that are suspected to have an aberration. Detection of trisomy 21 cases noninvasively is now possible owing to the upswing of next-generation sequencing (NGS) because a small percentage of fetal DNA is present in maternal plasma. However, detecting other trisomies and smaller aberrations can only be realized using high-coverage NGS, making it too expensive for routine practice. We present a method, WISECONDOR (WIthin-SamplE COpy Number aberration DetectOR), which detects small aberrations using low-coverage NGS. The increased detection resolution was achieved by comparing read counts within the tested sample of each genomic region with regions on other chromosomes that behave similarly in control samples. This within-sample comparison avoids the need to re-sequence control samples. WISECONDOR correctly identified all T13, T18 and T21 cases while coverages were as low as 0.15–1.66. No false positives were identified. Moreover, WISECONDOR also identified smaller aberrations, down to 20 Mb, such as del(13)(q12.3q14.3), +i(12)(p10) and i(18)(q10). This shows that prevalent fetal copy number aberrations can be detected accurately and affordably by shallow sequencing maternal plasma. WISECONDOR is available at bioinformatics.tudelft.nl/wisecondor.
    Keywords: Computational Methods, Massively Parallel (Deep) Sequencing, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-05-01
    Description: Alternative splicing is the main mechanism governing protein diversity. The recent developments in RNA-Seq technology have enabled the study of the global impact and regulation of this biological process. However, the lack of standardized protocols constitutes a major bottleneck in the analysis of alternative splicing. This is particularly important for the identification of exon–exon junctions, which is a critical step in any analysis workflow. Here we performed a systematic benchmarking of alignment tools to dissect the impact of design and method on the mapping, detection and quantification of splice junctions from multi-exon reads. Accordingly, we devised a novel pipeline based on TopHat2 combined with a splice junction detection algorithm, which we have named FineSplice. FineSplice allows effective elimination of spurious junction hits arising from artefactual alignments, achieving up to 99% precision in both real and simulated data sets and yielding superior F 1 scores under most tested conditions. The proposed strategy conjugates an efficient mapping solution with a semi-supervised anomaly detection scheme to filter out false positives and allows reliable estimation of expressed junctions from the alignment output. Ultimately this provides more accurate information to identify meaningful splicing patterns. FineSplice is freely available at https://sourceforge.net/p/finesplice/ .
    Keywords: Computational Methods, Massively Parallel (Deep) Sequencing, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-02-28
    Description: Combinatorial interactions among transcription factors (TFs) are critical for integrating diverse intrinsic and extrinsic signals, fine-tuning regulatory output and increasing the robustness and plasticity of regulatory systems. Current knowledge about combinatorial regulation is rather limited due to the lack of suitable experimental technologies and bioinformatics tools. The rapid accumulation of ChIP-Seq data has provided genome-wide occupancy maps for a large number of TFs and chromatin modification marks for identifying enhancers without knowing individual TF binding sites. Integration of the two data types has not been researched extensively, resulting in underused data and missed opportunities. We describe a novel method for discovering frequent combinatorial occupancy patterns by multiple TFs at enhancers. Our method is based on probabilistic item set mining and takes into account uncertainty in both types of ChIP-Seq data. By joint analysis of 108 TFs in four human cell types, we found that cell–type-specific interactions among TFs are abundant and that the majority of enhancers have flexible architecture. We show that several families of transposable elements disproportionally overlap with enhancers with combinatorial patterns, suggesting that these transposable element families play an important role in the evolution of combinatorial regulation.
    Keywords: Computational Methods, Massively Parallel (Deep) Sequencing, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-04-03
    Description: Recent advances in high-throughput sequencing (HTS) technologies and computing capacity have produced unprecedented amounts of genomic data that have unraveled the genetics of phenotypic variability in several species. However, operating and integrating current software tools for data analysis still require important investments in highly skilled personnel. Developing accurate, efficient and user-friendly software packages for HTS data analysis will lead to a more rapid discovery of genomic elements relevant to medical, agricultural and industrial applications. We therefore developed Next-Generation Sequencing Eclipse Plug-in (NGSEP), a new software tool for integrated, efficient and user-friendly detection of single nucleotide variants (SNVs), indels and copy number variants (CNVs). NGSEP includes modules for read alignment, sorting, merging, functional annotation of variants, filtering and quality statistics. Analysis of sequencing experiments in yeast, rice and human samples shows that NGSEP has superior accuracy and efficiency, compared with currently available packages for variants detection. We also show that only a comprehensive and accurate identification of repeat regions and CNVs allows researchers to properly separate SNVs from differences between copies of repeat elements. We expect that NGSEP will become a strong support tool to empower the analysis of sequencing data in a wide range of research projects on different species.
    Keywords: Computational Methods, Massively Parallel (Deep) Sequencing, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-09-02
    Description: Conventionally, overall gene expressions from microarrays are used to infer gene networks, but it is challenging to account splicing isoforms. High-throughput RNA Sequencing has made splice variant profiling practical. However, its true merit in quantifying splicing isoforms and isoform-specific exon expressions is not well explored in inferring gene networks. This study demonstrates SpliceNet, a method to infer isoform-specific co-expression networks from exon-level RNA-Seq data, using large dimensional trace. It goes beyond differentially expressed genes and infers splicing isoform network changes between normal and diseased samples. It eases the sample size bottleneck; evaluations on simulated data and lung cancer-specific ERBB2 and MAPK signaling pathways, with varying number of samples, evince the merit in handling high exon to sample size ratio datasets. Inferred network rewiring of well established Bcl-x and EGFR centered networks from lung adenocarcinoma expression data is in good agreement with literature. Gene level evaluations demonstrate a substantial performance of SpliceNet over canonical correlation analysis, a method that is currently applied to exon level RNA-Seq data. SpliceNet can also be applied to exon array data. SpliceNet is distributed as an R package available at http://www.jjwanglab.org/SpliceNet .
    Keywords: Computational Methods, Massively Parallel (Deep) Sequencing, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-09-02
    Description: We present a new approach to automatic training of a eukaryotic ab initio gene finding algorithm. With the advent of Next-Generation Sequencing, automatic training has become paramount, allowing genome annotation pipelines to keep pace with the speed of genome sequencing. Earlier we developed GeneMark-ES, currently the only gene finding algorithm for eukaryotic genomes that performs automatic training in unsupervised ab initio mode. The new algorithm, GeneMark-ET augments GeneMark-ES with a novel method that integrates RNA-Seq read alignments into the self-training procedure. Use of ‘assembled’ RNA-Seq transcripts is far from trivial; significant error rate of assembly was revealed in recent assessments. We demonstrated in computational experiments that the proposed method of incorporation of ‘unassembled’ RNA-Seq reads improves the accuracy of gene prediction; particularly, for the 1.3 GB genome of Aedes aegypti the mean value of prediction Sensitivity and Specificity at the gene level increased over GeneMark-ES by 24.5%. In the current surge of genomic data when the need for accurate sequence annotation is higher than ever, GeneMark-ET will be a valuable addition to the narrow arsenal of automatic gene prediction tools.
    Keywords: Computational Methods, Massively Parallel (Deep) Sequencing, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-08-15
    Description: Next-generation sequencing (NGS) technologies enable new insights into the diversity of virus populations within their hosts. Diversity estimation is currently restricted to single-nucleotide variants or to local fragments of no more than a few hundred nucleotides defined by the length of sequence reads. To study complex heterogeneous virus populations comprehensively, novel methods are required that allow for complete reconstruction of the individual viral haplotypes. Here, we show that assembly of whole viral genomes of ~8600 nucleotides length is feasible from mixtures of heterogeneous HIV-1 strains derived from defined combinations of cloned virus strains and from clinical samples of an HIV-1 superinfected individual. Haplotype reconstruction was achieved using optimized experimental protocols and computational methods for amplification, sequencing and assembly. We comparatively assessed the performance of the three NGS platforms 454 Life Sciences/Roche, Illumina and Pacific Biosciences for this task. Our results prove and delineate the feasibility of NGS-based full-length viral haplotype reconstruction and provide new tools for studying evolution and pathogenesis of viruses.
    Keywords: Computational Methods, Massively Parallel (Deep) Sequencing, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-08-01
    Description: The challenge presented by high-throughput sequencing necessitates the development of novel tools for accurate alignment of reads to reference sequences. Current approaches focus on using heuristics to map reads quickly to large genomes, rather than generating highly accurate alignments in coding regions. Such approaches are, thus, unsuited for applications such as amplicon-based analysis and the realignment phase of exome sequencing and RNA-seq, where accurate and biologically relevant alignment of coding regions is critical. To facilitate such analyses, we have developed a novel tool, RAMICS, that is tailored to mapping large numbers of sequence reads to short lengths (〈10 000 bp) of coding DNA. RAMICS utilizes profile hidden Markov models to discover the open reading frame of each sequence and aligns to the reference sequence in a biologically relevant manner, distinguishing between genuine codon-sized indels and frameshift mutations. This approach facilitates the generation of highly accurate alignments, accounting for the error biases of the sequencing machine used to generate reads, particularly at homopolymer regions. Performance improvements are gained through the use of graphics processing units, which increase the speed of mapping through parallelization. RAMICS substantially outperforms all other mapping approaches tested in terms of alignment quality while maintaining highly competitive speed performance.
    Keywords: Computational Methods, Massively Parallel (Deep) Sequencing, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-02-11
    Description: The advances of high-throughput sequencing offer an unprecedented opportunity to study genetic variation. This is challenged by the difficulty of resolving variant calls in repetitive DNA regions. We present a Bayesian method to estimate repeat-length variation from paired-end sequence read data. The method makes variant calls based on deviations in sequence fragment sizes, allowing the analysis of repeats at lengths of relevance to a range of phenotypes. We demonstrate the method’s ability to detect and quantify changes in repeat lengths from short read genomic sequence data across genotypes. We use the method to estimate repeat variation among 12 strains of Arabidopsis thaliana and demonstrate experimentally that our method compares favourably against existing methods. Using this method, we have identified all repeats across the genome, which are likely to be polymorphic. In addition, our predicted polymorphic repeats also included the only known repeat expansion in A. thaliana , suggesting an ability to discover potential unstable repeats.
    Keywords: Computational Methods, Massively Parallel (Deep) Sequencing, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-05-29
    Description: Deep transcriptome sequencing (RNA-Seq) has become a vital tool for studying the state of cells in the context of varying environments, genotypes and other factors. RNA-Seq profiling data enable identification of novel isoforms, quantification of known isoforms and detection of changes in transcriptional or RNA-processing activity. Existing approaches to detect differential isoform abundance between samples either require a complete isoform annotation or fall short in providing statistically robust and calibrated significance estimates. Here, we propose a suite of statistical tests to address these open needs: a parametric test that uses known isoform annotations to detect changes in relative isoform abundance and a non-parametric test that detects differential read coverages and can be applied when isoform annotations are not available. Both methods account for the discrete nature of read counts and the inherent biological variability. We demonstrate that these tests compare favorably to previous methods, both in terms of accuracy and statistical calibrations. We use these techniques to analyze RNA-Seq libraries from Arabidopsis thaliana and Drosophila melanogaster. The identified differential RNA processing events were consistent with RT–qPCR measurements and previous studies. The proposed toolkit is available from http://bioweb.me/rdiff and enables in-depth analyses of transcriptomes, with or without available isoform annotation.
    Keywords: Computational Methods, Massively Parallel (Deep) Sequencing, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2013-11-21
    Description: The absence of a quality control (QC) system is a major weakness for the comparative analysis of genome-wide profiles generated by next-generation sequencing (NGS). This concerns particularly genome binding/occupancy profiling assays like chromatin immunoprecipitation (ChIP-seq) but also related enrichment-based studies like methylated DNA immunoprecipitation/methylated DNA binding domain sequencing, global run on sequencing or RNA-seq. Importantly, QC assessment may significantly improve multidimensional comparisons that have great promise for extracting information from combinatorial analyses of the global profiles established for chromatin modifications, the bindings of epigenetic and chromatin-modifying enzymes/machineries, RNA polymerases and transcription factors and total, nascent or ribosome-bound RNAs. Here we present an approach that associates global and local QC indicators to ChIP-seq data sets as well as to a variety of enrichment-based studies by NGS. This QC system was used to certify 〉5600 publicly available data sets, hosted in a database for data mining and comparative QC analyses.
    Keywords: Computational Methods, Massively Parallel (Deep) Sequencing, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2013-10-19
    Description: Identifying variants using high-throughput sequencing data is currently a challenge because true biological variants can be indistinguishable from technical artifacts. One source of technical artifact results from incorrectly aligning experimentally observed sequences to their true genomic origin (‘mismapping’) and inferring differences in mismapped sequences to be true variants. We developed BlackOPs, an open-source tool that simulates experimental RNA-seq and DNA whole exome sequences derived from the reference genome, aligns these sequences by custom parameters, detects variants and outputs a blacklist of positions and alleles caused by mismapping. Blacklists contain thousands of artifact variants that are indistinguishable from true variants and, for a given sample, are expected to be almost completely false positives. We show that these blacklist positions are specific to the alignment algorithm and read length used, and BlackOPs allows users to generate a blacklist specific to their experimental setup. We queried the dbSNP and COSMIC variant databases and found numerous variants indistinguishable from mapping errors. We demonstrate how filtering against blacklist positions reduces the number of potential false variants using an RNA-seq glioblastoma cell line data set. In summary, accounting for mapping-caused variants tuned to experimental setups reduces false positives and, therefore, improves genome characterization by high-throughput sequencing.
    Keywords: Computational Methods, Massively Parallel (Deep) Sequencing, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2013-10-19
    Description: The 3D chromatin structure modeling by chromatin interactions derived from Hi-C experiments is significantly challenged by the intrinsic sequencing biases in these experiments. Conventional modeling methods only focus on the bias among different chromatin regions within the same experiment but neglect the bias arising from different experimental sequencing depth. We now show that the regional interaction bias is tightly coupled with the sequencing depth, and we further identify a chromatin structure parameter as the inherent characteristics of Hi-C derived data for chromatin regions. Then we present an approach for chromatin structure prediction capable of relaxing both kinds of sequencing biases by using this identified parameter. This method is validated by intra and inter cell-line comparisons among various chromatin regions for four human cell-lines (K562, GM12878, IMR90 and H1hESC), which shows that the openness of chromatin region is well correlated with chromatin function. This method has been executed by an automatic pipeline (AutoChrom3D) and thus can be conveniently used.
    Keywords: Computational Methods, Massively Parallel (Deep) Sequencing, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2012-10-10
    Description: Several bioinformatics methods have been proposed for the detection and characterization of genomic structural variation (SV) from ultra high-throughput genome resequencing data. Recent surveys show that comprehensive detection of SV events of different types between an individual resequenced genome and a reference sequence is best achieved through the combination of methods based on different principles (split mapping, reassembly, read depth, insert size, etc.). The improvement of individual predictors is thus an important objective. In this study, we propose a new method that combines deviations from expected library insert sizes and additional information from local patterns of read mapping and uses supervised learning to predict the position and nature of structural variants. We show that our approach provides greatly increased sensitivity with respect to other tools based on paired end read mapping at no cost in specificity, and it makes reliable predictions of very short insertions and deletions in repetitive and low-complexity genomic contexts that can confound tools based on split mapping of reads.
    Keywords: Computational Methods, Massively Parallel (Deep) Sequencing, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2012-04-15
    Description: Exome sequencing strategy is promising for finding novel mutations of human monogenic disorders. However, pinpointing the casual mutation in a small number of samples is still a big challenge. Here, we propose a three-level filtration and prioritization framework to identify the casual mutation(s) in exome sequencing studies. This efficient and comprehensive framework successfully narrowed down whole exome variants to very small numbers of candidate variants in the proof-of-concept examples. The proposed framework, implemented in a user-friendly software package, named KGGSeq ( http://statgenpro.psychiatry.hku.hk/kggseq ), will play a very useful role in exome sequencing-based discovery of human Mendelian disease genes.
    Keywords: Computational Methods, Massively Parallel (Deep) Sequencing, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2012-07-22
    Description: Small RNAs (sRNAs) are a class of short (20–25 nt) non-coding RNAs that play important regulatory roles in gene expression. An essential first step in understanding their function is to confidently identify sRNA targets. In plants, several classes of sRNAs such as microRNAs (miRNAs) and trans-acting small interfering RNAs have been shown to bind with near-perfect complementarity to their messenger RNA (mRNA) targets, generally leading to cleavage of the mRNA. Recently, a high-throughput technique known as Parallel Analysis of RNA Ends (PARE) has made it possible to sequence mRNA cleavage products on a large-scale. Computational methods now exist to use these data to find targets of conserved and newly identified miRNAs. Due to speed limitations such methods rely on the user knowing which sRNA sequences are likely to target a transcript. By limiting the search to a tiny subset of sRNAs it is likely that many other sRNA/mRNA interactions will be missed. Here, we describe a new software tool called PAREsnip that allows users to search for potential targets of all sRNAs obtained from high-throughput sequencing experiments. By searching for targets of a complete ‘sRNAome’ we can facilitate large-scale identification of sRNA targets, allowing us to discover regulatory interaction networks.
    Keywords: Computational Methods, Massively Parallel (Deep) Sequencing, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2012-09-13
    Description: Gene fusions are common driver events in leukaemias and solid tumours; here we present FusionAnalyser, a tool dedicated to the identification of driver fusion rearrangements in human cancer through the analysis of paired-end high-throughput transcriptome sequencing data. We initially tested FusionAnalyser by using a set of in silico randomly generated sequencing data from 20 known human translocations occurring in cancer and subsequently using transcriptome data from three chronic and three acute myeloid leukaemia samples. in all the cases our tool was invariably able to detect the presence of the correct driver fusion event(s) with high specificity. In one of the acute myeloid leukaemia samples, FusionAnalyser identified a novel, cryptic, in-frame ETS2–ERG fusion. A fully event-driven graphical interface and a flexible filtering system allow complex analyses to be run in the absence of any a priori programming or scripting knowledge. Therefore, we propose FusionAnalyser as an efficient and robust graphical tool for the identification of functional rearrangements in the context of high-throughput transcriptome sequencing data.
    Keywords: Computational Methods, Massively Parallel (Deep) Sequencing, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2012-09-13
    Description: The use of a priori knowledge in the alignment of targeted sequencing data is investigated using computational experiments. Adapting a Needleman–Wunsch algorithm to incorporate the genomic position information from the targeted capture, we demonstrate that alignment can be done to just the target region of interest. When in addition use is made of direct string comparison, an improvement of up to a factor of 8 in alignment speed compared to the fastest conventional aligner (Bowtie) is obtained. This results in a total alignment time in targeted sequencing of around 7 min for aligning approximately 56 million captured reads. For conventional aligners such as Bowtie, BWA or MAQ, alignment to just the target region is not feasible as experiments show that this leads to an additional 88% SNP calls, the vast majority of which are false positives (~92%).
    Keywords: Computational Methods, Massively Parallel (Deep) Sequencing, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2012-06-28
    Description: We introduce Grinder ( http://sourceforge.net/projects/biogrinder/ ), an open-source bioinformatic tool to simulate amplicon and shotgun (genomic, metagenomic, transcriptomic and metatranscriptomic) datasets from reference sequences. This is the first tool to simulate amplicon datasets (e.g. 16S rRNA) widely used by microbial ecologists. Grinder can create sequence libraries with a specific community structure, α and β diversities and experimental biases (e.g. chimeras, gene copy number variation) for commonly used sequencing platforms. This versatility allows the creation of simple to complex read datasets necessary for hypothesis testing when developing bioinformatic software, benchmarking existing tools or designing sequence-based experiments. Grinder is particularly useful for simulating clinical or environmental microbial communities and complements the use of in vitro mock communities.
    Keywords: Computational Methods, Massively Parallel (Deep) Sequencing, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2012-06-06
    Description: The most crucial step in data processing from high-throughput sequencing applications is the accurate and sensitive alignment of the sequencing reads to reference genomes or transcriptomes. The accurate detection of insertions and deletions (indels) and errors introduced by the sequencing platform or by misreading of modified nucleotides is essential for the quantitative processing of the RNA-based sequencing (RNA-Seq) datasets and for the identification of genetic variations and modification patterns. We developed a new, fast and accurate algorithm for nucleic acid sequence analysis, FANSe, with adjustable mismatch allowance settings and ability to handle indels to accurately and quantitatively map millions of reads to small or large reference genomes. It is a seed-based algorithm which uses the whole read information for mapping and high sensitivity and low ambiguity are achieved by using short and non-overlapping reads. Furthermore, FANSe uses hotspot score to prioritize the processing of highly possible matches and implements modified Smith–Watermann refinement with reduced scoring matrix to accelerate the calculation without compromising its sensitivity. The FANSe algorithm stably processes datasets from various sequencing platforms, masked or unmasked and small or large genomes. It shows a remarkable coverage of low-abundance mRNAs which is important for quantitative processing of RNA-Seq datasets.
    Keywords: Computational Methods, Massively Parallel (Deep) Sequencing, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2012-04-24
    Description: Ultra-deep RNA sequencing has become a powerful approach for genome-wide analysis of pre-mRNA alternative splicing. We develop MATS (multivariate analysis of transcript splicing), a Bayesian statistical framework for flexible hypothesis testing of differential alternative splicing patterns on RNA-Seq data. MATS uses a multivariate uniform prior to model the between-sample correlation in exon splicing patterns, and a Markov chain Monte Carlo (MCMC) method coupled with a simulation-based adaptive sampling procedure to calculate the P -value and false discovery rate (FDR) of differential alternative splicing. Importantly, the MATS approach is applicable to almost any type of null hypotheses of interest, providing the flexibility to identify differential alternative splicing events that match a given user-defined pattern. We evaluated the performance of MATS using simulated and real RNA-Seq data sets. In the RNA-Seq analysis of alternative splicing events regulated by the epithelial-specific splicing factor ESRP1, we obtained a high RT–PCR validation rate of 86% for differential exon skipping events with a MATS FDR of 〈10%. Additionally, over the full list of RT–PCR tested exons, the MATS FDR estimates matched well with the experimental validation rate. Our results demonstrate that MATS is an effective and flexible approach for detecting differential alternative splicing from RNA-Seq data.
    Keywords: Computational Methods, Massively Parallel (Deep) Sequencing, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2012-05-13
    Description: Numerous algorithms have been developed to analyze ChIP-Seq data. However, the complexity of analyzing diverse patterns of ChIP-Seq signals, especially for epigenetic marks, still calls for the development of new algorithms and objective comparisons of existing methods. We developed Qeseq, an algorithm to detect regions of increased ChIP read density relative to background. Qeseq employs critical novel elements, such as iterative recalibration and neighbor joining of reads to identify enriched regions of any length. To objectively assess its performance relative to other 14 ChIP-Seq peak finders, we designed a novel protocol based on Validation Discriminant Analysis (VDA) to optimally select validation sites and generated two validation datasets, which are the most comprehensive to date for algorithmic benchmarking of key epigenetic marks. In addition, we systematically explored a total of 315 diverse parameter configurations from these algorithms and found that typically optimal parameters in one dataset do not generalize to other datasets. Nevertheless, default parameters show the most stable performance, suggesting that they should be used. This study also provides a reproducible and generalizable methodology for unbiased comparative analysis of high-throughput sequencing tools that can facilitate future algorithmic development.
    Keywords: Computational Methods, Massively Parallel (Deep) Sequencing, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2012-05-13
    Description: The informational content of RNA sequencing is currently far from being completely explored. Most of the analyses focus on processing tables of counts or finding isoform deconvolution via exon junctions. This article presents a comparison of several techniques that can be used to estimate differential expression of exons or small genomic regions of expression, based on their coverage function shapes. The problem is defined as finding the differentially expressed exons between two samples using local expression profile normalization and statistical measures to spot the differences between two profile shapes. Initial experiments have been done using synthetic data, and real data modified with synthetically created differential patterns. Then, 160 pipelines (5 types of generator x 4 normalizations x 8 difference measures) are compared. As a result, the best analysis pipelines are selected based on linearity of the differential expression estimation and the area under the ROC curve. These platform-independent techniques have been implemented in the Bioconductor package rnaSeqMap. They point out the exons with differential expression or internal splicing, even if the counts of reads may not show this. The areas of application include significant difference searches, splicing identification algorithms and finding suitable regions for QPCR primers.
    Keywords: Computational Methods, Massively Parallel (Deep) Sequencing, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2012-05-13
    Description: The rapid expansion in the quantity and quality of RNA-Seq data requires the development of sophisticated high-performance bioinformatics tools capable of rapidly transforming this data into meaningful information that is easily interpretable by biologists. Currently available analysis tools are often not easily installed by the general biologist and most of them lack inherent parallel processing capabilities widely recognized as an essential feature of next-generation bioinformatics tools. We present here a user-friendly and fully automated R NA- S eq a nalysis p ipeline (R-SAP) with built-in multi-threading capability to analyze and quantitate high-throughput RNA-Seq datasets. R-SAP follows a hierarchical decision making procedure to accurately characterize various classes of transcripts and achieves a near linear decrease in data processing time as a result of increased multi-threading. In addition, RNA expression level estimates obtained using R-SAP display high concordance with levels measured by microarrays.
    Keywords: Computational Methods, Massively Parallel (Deep) Sequencing, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2012-05-23
    Description: Deciphering the structure of gene regulatory networks across the tree of life remains one of the major challenges in postgenomic biology. We present a novel ChIP-seq workflow for the archaea using the model organism Halobacterium salinarum sp. NRC-1 and demonstrate its application for mapping the genome-wide binding sites of natively expressed transcription factors. This end-to-end pipeline is the first protocol for ChIP-seq in archaea, with methods and tools for each stage from gene tagging to data analysis and biological discovery. Genome-wide binding sites for transcription factors with many binding sites (TfbD) are identified with sensitivity, while retaining specificity in the identification the smaller regulons (bacteriorhodopsin-activator protein). Chromosomal tagging of target proteins with a compact epitope facilitates a standardized and cost-effective workflow that is compatible with high-throughput immunoprecipitation of natively expressed transcription factors. The Pique package, an open-source bioinformatics method, is presented for identification of binding events. Relative to ChIP-Chip and qPCR, this workflow offers a robust catalog of protein–DNA binding events with improved spatial resolution and significantly decreased cost. While this study focuses on the application of ChIP-seq in H. salinarum sp. NRC-1, our workflow can also be adapted for use in other archaea and bacteria with basic genetic tools.
    Keywords: Computational Methods, Massively Parallel (Deep) Sequencing, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2012-05-23
    Description: A flexible statistical framework is developed for the analysis of read counts from RNA-Seq gene expression studies. It provides the ability to analyse complex experiments involving multiple treatment conditions and blocking variables while still taking full account of biological variation. Biological variation between RNA samples is estimated separately from the technical variation associated with sequencing technologies. Novel empirical Bayes methods allow each gene to have its own specific variability, even when there are relatively few biological replicates from which to estimate such variability. The pipeline is implemented in the edgeR package of the Bioconductor project. A case study analysis of carcinoma data demonstrates the ability of generalized linear model methods (GLMs) to detect differential expression in a paired design, and even to detect tumour-specific expression changes. The case study demonstrates the need to allow for gene-specific variability, rather than assuming a common dispersion across genes or a fixed relationship between abundance and variability. Genewise dispersions de-prioritize genes with inconsistent results and allow the main analysis to focus on changes that are consistent between biological replicates. Parallel computational approaches are developed to make non-linear model fitting faster and more reliable, making the application of GLMs to genomic data more convenient and practical. Simulations demonstrate the ability of adjusted profile likelihood estimators to return accurate estimators of biological variability in complex situations. When variation is gene-specific, empirical Bayes estimators provide an advantageous compromise between the extremes of assuming common dispersion or separate genewise dispersion. The methods developed here can also be applied to count data arising from DNA-Seq applications, including ChIP-Seq for epigenetic marks and DNA methylation analyses.
    Keywords: Computational Methods, Massively Parallel (Deep) Sequencing, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2012-02-28
    Description: ChIP-seq is increasingly used to characterize transcription factor binding and chromatin marks at a genomic scale. Various tools are now available to extract binding motifs from peak data sets. However, most approaches are only available as command-line programs, or via a website but with size restrictions. We present peak-motifs , a computational pipeline that discovers motifs in peak sequences, compares them with databases, exports putative binding sites for visualization in the UCSC genome browser and generates an extensive report suited for both naive and expert users. It relies on time- and memory-efficient algorithms enabling the treatment of several thousand peaks within minutes. Regarding time efficiency, peak-motifs outperforms all comparable tools by several orders of magnitude. We demonstrate its accuracy by analyzing data sets ranging from 4000 to 1 28 000 peaks for 12 embryonic stem cell-specific transcription factors. In all cases, the program finds the expected motifs and returns additional motifs potentially bound by cofactors. We further apply peak-motifs to discover tissue-specific motifs in peak collections for the p300 transcriptional co-activator. To our knowledge, peak-motifs is the only tool that performs a complete motif analysis and offers a user-friendly web interface without any restriction on sequence size or number of peaks.
    Keywords: Computational Methods, Massively Parallel (Deep) Sequencing, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2012-03-29
    Description: Next-generation sequencing (NGS) technologies-based transcriptomic profiling method often called RNA-seq has been widely used to study global gene expression, alternative exon usage, new exon discovery, novel transcriptional isoforms and genomic sequence variations. However, this technique also poses many biological and informatics challenges to extracting meaningful biological information. The RNA-seq data analysis is built on the foundation of high quality initial genome localization and alignment information for RNA-seq sequences. Toward this goal, we have developed RNASEQR to accurately and effectively map millions of RNA-seq sequences. We have systematically compared RNASEQR with four of the most widely used tools using a simulated data set created from the Consensus CDS project and two experimental RNA-seq data sets generated from a human glioblastoma patient. Our results showed that RNASEQR yields more accurate estimates for gene expression, complete gene structures and new transcript isoforms, as well as more accurate detection of single nucleotide variants (SNVs). RNASEQR analyzes raw data from RNA-seq experiments effectively and outputs results in a manner that is compatible with a wide variety of specialized downstream analyses on desktop computers.
    Keywords: Computational Methods, Massively Parallel (Deep) Sequencing, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2012-12-14
    Description: Insertion sequences (ISs) are simple transposable elements present in most bacterial and archaeal genomes and play an important role in genomic evolution. The recent expansion of sequenced genomes offers the opportunity to study ISs comprehensively, but this requires efficient and accurate tools for IS annotation. We have developed an open-source program called OASIS, or Optimized Annotation System for Insertion Sequences, which automatically annotates ISs within sequenced genomes. OASIS annotations of 1737 bacterial and archaeal genomes offered an unprecedented opportunity to examine IS evolution. At a broad scale, we found that most IS families are quite widespread; however, they are not present randomly across taxa. This may indicate differential loss, barriers to exchange and/or insufficient time to equilibrate across clades. The number of ISs increases with genome length, but there is both tremendous variation and no increase in IS density for genomes 〉2 Mb. At the finer scale of recently diverged genomes, the proportion of shared IS content falls sharply, suggesting loss and/or emergence of barriers to successful cross-infection occurs rapidly. Surprisingly, even after controlling for 16S rRNA sequence divergence, the same ISs were more likely to be shared between genomes labeled as the same species rather than as different species.
    Keywords: Computational Methods, Massively Parallel (Deep) Sequencing, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2012-12-14
    Description: The study of cell-population heterogeneity in a range of biological systems, from viruses to bacterial isolates to tumor samples, has been transformed by recent advances in sequencing throughput. While the high-coverage afforded can be used, in principle, to identify very rare variants in a population, existing ad hoc approaches frequently fail to distinguish true variants from sequencing errors. We report a method (LoFreq) that models sequencing run-specific error rates to accurately call variants occurring in 〈0.05% of a population. Using simulated and real datasets (viral, bacterial and human), we show that LoFreq has near-perfect specificity, with significantly improved sensitivity compared with existing methods and can efficiently analyze deep Illumina sequencing datasets without resorting to approximations or heuristics. We also present experimental validation for LoFreq on two different platforms (Fluidigm and Sequenom) and its application to call rare somatic variants from exome sequencing datasets for gastric cancer. Source code and executables for LoFreq are freely available at http://sourceforge.net/projects/lofreq/ .
    Keywords: Computational Methods, Massively Parallel (Deep) Sequencing, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2012-08-08
    Description: Determining the taxonomic lineage of DNA sequences is an important step in metagenomic analysis. Short DNA fragments from next-generation sequencing projects and microbes that lack close relatives in reference sequenced genome databases pose significant problems to taxonomic attribution methods. Our new classification algorithm, RITA (Rapid Identification of Taxonomic Assignments), uses the agreement between composition and homology to accurately classify sequences as short as 50 nt in length by assigning them to different classification groups with varying degrees of confidence. RITA is much faster than the hybrid PhymmBL approach when comparable homology search algorithms are used, and achieves slightly better accuracy than PhymmBL on an artificial metagenome. RITA can also incorporate prior knowledge about taxonomic distributions to increase the accuracy of assignments in data sets with varying degrees of taxonomic novelty, and classified sequences with higher precision than the current best rank-flexible classifier. The accuracy on short reads can be increased by exploiting paired-end information, if available, which we demonstrate on a recently published bovine rumen data set. Finally, we develop a variant of RITA that incorporates accelerated homology search techniques, and generate predictions on a set of human gut metagenomes that were previously assigned to different ‘enterotypes’. RITA is freely available in Web server and standalone versions.
    Keywords: Computational Methods, Massively Parallel (Deep) Sequencing, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...