ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-06
    Description: We present new models for illuminated accretion disks, their structure and reprocessed emission. We consider the effects of incident X-rays on the surface of an accretion disk by solving simultaneously the equations of radiative transfer, energy balance and ionization equilibrium over a large range of column densities. We assume plane-parallel geometry and azimuthal symmetry, such that each calculation corresponds to a ring at a given distance from the central object. Our models include recent and complete atomic data for K-shell of the iron and oxygen isonuclear sequences. We examine the effect on the spectrum of fluorescent Ka line emission and absorption in the emitted spectrum. We also explore the dependence of the spectrum on the strength of the incident X-rays and other input parameters, and discuss the importance of Comptonization on the emitted spectrum.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-06
    Description: Eta Car, with its historical outbursts, visible ejecta and massive, variable winds, continues to challenge both observers and modelers. In just the past five years over 100 papers have been published on this fascinating object. We now know it to be a massive binary system with a 5.54-year period. In January 2009, Car underwent one of its periodic low-states, associated with periastron passage of the two massive stars. This event was monitored by an intensive multi-wavelength campaign ranging from -rays to radio. A large amount of data was collected to test a number of evolving models including 3-D models of the massive interacting winds. August 2009 was an excellent time for observers and theorists to come together and review the accumulated studies, as have occurred in four meetings since 1998 devoted to Eta Car. Indeed, Car behaved both predictably and unpredictably during this most recent periastron, spurring timely discussions. Coincidently, WR140 also passed through periastron in early 2009. It, too, is a intensively studied massive interacting binary. Comparison of its properties, as well as the properties of other massive stars, with those of Eta Car is very instructive. These well-known examples of evolved massive binary systems provide many clues as to the fate of the most massive stars. What are the effects of the interacting winds, of individual stellar rotation, and of the circumstellar material on what we see as hypernovae/supernovae? We hope to learn. Topics discussed in this 1.5 day Joint Discussion were: Car: the 2009.0 event: Monitoring campaigns in X-rays, optical, radio, interferometry WR140 and HD5980: similarities and differences to Car LBVs and Eta Carinae: What is the relationship? Massive binary systems, wind interactions and 3-D modeling Shapes of the Homunculus & Little Homunculus: what do we learn about mass ejection? Massive stars: the connection to supernovae, hypernovae and gamma ray bursters Where do we go from here? (future directions) The Science Organizing Committee: Co-chairs: Augusto Damineli (Brazil) & Theodore R. Gull (USA). Members: D. John Hillier (USA), Gloria Koenigsberger (Mexico), Georges Meynet (Switzerland), Nidia Morrell (Chile), Atsuo T. Okazaki (Japan), Stanley P. Owocki (USA), Andy M.T. Pol- lock (Spain), Nathan Smith (USA), Christiaan L. Sterken (Belgium), Nicole St Louis (Canada), Karel A. van der Hucht (Netherlands), Roberto Viotti (Italy) and GerdWeigelt (Germany)
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-06
    Description: The radiation chemistry, thermal stability, and vapor pressure of solid-phase carbonic acid (H2CO3) have been studied with mid-infrared spectroscopy. A new procedure for measuring this molecule's radiation stability has been used to obtain intrinsic IR band strengths and half-lives for radiolytic destruction. Results are compared to literature values. We report, for the first time, measurements of carbonic acid's vapor pressure and its heat of sublimation. We also report the first observation of a chemical reaction involving solid-phase carbonic acid. Possible applications of these findings are discussed, with an emphasis on the outer Solar System.
    Keywords: Space Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-06
    Description: We report the discovery with XMM-Newton of correlated spectral and timing behavior in the ultraluminous X-ray source (ULX) NGC 5408 X-1. An approx. 100 ksec pointing with XMM/Newton obtained in January, 2008 reveals a strong 10 mHz QPO in the 〉 1 keV flux, as well as flat-topped, band limited noise breaking to a power law. The energy spectrum is again dominated by two components, a 0.16 keV thermal disk and a power-law with an index of approx. 2.5. These new measurements, combined with results from our previous January 2006 pointing in which we first detected QPOs, show for the first time in a ULX a pattern of spectral and temporal correlations strongly analogous to that seen in Galactic black hole sources, but at much higher X-ray luminosity and longer characteristic time-scales. We find that the QPO frequency is proportional to the inferred disk flux, while the QPO and broad-band noise amplitude (root mean squared, rms) are inversely proportional to the disk flux. Assuming that QPO frequency scales inversely with black hole mass at a given power-law spectral index we derive mass estimates using the observed QPO frequency - spectral index relations from five stellar-mass black hole systems with dynamical mass constraints. The results from all sources are consistent with a mass range for NGC 5408 X-1 from 1000 - 9000 Stellar mass. We argue that these are conservative limits, and a more likely range is from 2000 - 5000 Stellar mass. Moreover, the recent relation from Gierlinski et al. that relates black hole mass to the strength of variability at high frequencies (above the break in the power spectrum), and the variability plane results of McHardy et al. and Koerding et al., are also suggestive of such a. high mass for NGC 5408 X-1. Importantly, none of the above estimates appears consistent with a black hole mass less than approx. 1000 Stellar mass for NGC 5408 X-1. We argue that these new findings strongly support the conclusion that NGC 5408 X-1 harbors an intermediate mass black hole.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-06
    Description: The James Webb Space Telescope (JWST) is the infrared successor to the Hubble Space Telescope. It is a cryogenic infrared space observatory with a 25 sq. m aperture (6 m telescope yielding diffraction limited angular resolution at a wavelength of 2 micron. The science instrument payload includes three passively cooled near-infrared instruments providing broad- and narrow-band imagery, coronagraphy, as well as multi object and integral-field spectroscopy over the 0.6 〈 0 〈 5.0 micron spectrum. An actively cooled mid-infrared instrument provides broad-band imagery, coronagraphy, and integral-field spectroscopy over the 5.0 〈 0 〈 29 micron spectrum. The JWST is being developed by NASA, in partnership with the European and Canadian Space Agencies, as a general user facility with science observations to be proposed by the international astronomical community in a manner similar to the Hubble Space Telescope. Technology development and mission design are complete, and construction is underway in all areas of the program. The JWST is on schedule to reach launch readiness during 2014.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-06
    Description: One of the most prominent, yet controversial associations derived from the ensemble of prompt-phase observations of gamma-ray bursts (GRBs) is the apparent correlation in the source frame between the peak energy (E(sub peak)) of the nuF(nu) spectrum and the isotropic radiated energy, E(sub iso). Since most gamma-ray bursts (GRBs) have E(sub peak) above the energy range (15-150 keV) of the Burst Alert Telescope (BAT) on Swift, determining accurate E(sub peak) values for large numbers of Swift bursts has been difficult. However, by combining data from Swift/BAT and the Suzaku Wide-band All-Sky Monitor (WAM), which covers the energy range from 50-5000 keV, for bursts which are simultaneously detected ; one can accurately fit E(sub peak) and E(sub iso) and test the relationship between them for the Swift sample. Between the launch of Suzaku in July 2005 and the end of March 2009, there were 45 gamma-ray bursts (GRBs) which triggered both Swift/BAT and WAM and an additional 47 bursts which triggered Swift and were detected by WAM, but did not trigger. A BAT-WAM team has cross-calibrated the two instruments using GRBs, and we are now able to perform joint fits on these bursts to determine spectral parameters. For those bursts with spectroscopic redshifts.. we can also calculate the isotropic energy. Here we present the results of joint Swift/BAT-Suzaku/WAM spectral fits for 86 of the bursts detected by the two instruments. We show that the distribution of spectral fit parameters is consistent with distributions from earlier missions and confirm that Swift, bursts are consistent with earlier reported relationships between Epeak and isotropic energy. We show through time-resolved spectroscopy that individual burst pulses are also consistent with this relationship.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-11
    Description: No abstract available
    Keywords: Astronomy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-06
    Description: The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) onboard the Mars Reconnaissance Orbiter (MRO) spacecraft began taking observations in September 2006 and has now collected more than a full Martian year of data. Retrievals performed using the near-infrared spectra obtained by CRISM are used to characterize the seasonal and spatial variation of the column abundance of water vapor and the column-averaged mixing ratio of carbon monoxide. CRISM retrievals show nominal behavior in water vapor during northern hemisphere spring and summer with maximum abundance reaching 50 precipitable micrometers. Water vapor abundance during the southern hemisphere spring and summer appears significantly reduced compared to observations by other instruments taken during previous years. The CRISM retrievals show the seasonally and globally averaged carbon monoxide mixing ratio to be 700 ppm, but with strong seasonal variations at high latitudes. The summertime near-polar carbon monoxide mixing ratio falls to 200 ppm in the south and 400 ppm in the north as carbon dioxide sublimates from the seasonal polar ice caps and dilutes noncondensable species including carbon monoxide. At low latitudes, the carbon monoxide mixing ratio varies in response to the mean seasonal cycle of surface pressure.
    Keywords: Astronomy
    Type: Journal of Geophysical Research; Volume 114
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-06-06
    Description: This is the second of two papers examining Spitzer Infrared Spectrograph (IRS) observations of the ultraluminous X-ray source (ULX) in Holmberg II. Here we perform detailed photoionization modeling of the infrared lines. Our analysis suggests that the luminosity and morphology of the [O IV] 25.89 micron emission line is consistent with photoionization by the soft X-ray and far ultraviolet (FUV) radiation from the accretion disk of the binary system and inconsistent with narrow beaming. We show that the emission nebula is matter-bounded both in the line of sight direction and to the east, and probably radiation-bounded to the west. A bolometric luminosity in excess of 10(exp 40) erg/s would be needed to produce the measured [O IV] flux. We use modeling and previously published studies to conclude that shocks likely contribute very little, if at all, to the high-excitation line fluxes observed in the Holmberg II ULX. Additionally, we find that the spectral type of the companion star has a surprisingly strong effect on the predicted strength of the [O IV] emission. This finding could explain the origin of [O IV] in some starburst systems containing black hole binaries.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-06-06
    Description: A particular periodic orbit in the Earth-Sun circular restricted three body problem is shown to have the characteristics needed for a ballistic lunar capture transfer. An injection from a circular parking orbit into the periodic orbit serves as an initial guess for a targeting algorithm. By targeting appropriate parameters incrementally in increasingly complicated force models and using precise derivatives calculated from the state transition matrix, a reliable algorithm is produced. Ballistic lunar capture trajectories in restricted four body systems are shown to be able to be produced in a systematic way.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: Astronomers study distant galaxies by taking long exposures in deep survey fields. They choose fields that are empty of known sources, so that they are statistically representative of the Universe as a whole. Astronomers can compare the distribution of the detected galaxies in brightness, color, morphology and redshift to theoretical models, in order to puzzle out the processes of galaxy evolution. In 2004, the Hubble Space Telescope was pointed at a small, deep-survey field in the southern constellation Fornax for more than 500 hours of exposure time. The resulting Hubble Ultra-Deep Field could see the faintest and most distant galaxies that the telescope is capable of viewing. These galaxies emitted their light less than 1 billion years after the Big Bang. From the Ultra Deep Field and other galaxy surveys, astronomers have built up a history of star formation in the universe. the peak occurred about7 billion years ago, about half of the age of the current universe, then the number of stars that were forming was about 15 time the rate today. Going backward in time to when the very first starts and galaxies formed, the average star-formation rate should drop to zero. but when looking at the most distant galaxies in the Ultra Deep field, the star formation rate is still higher than it is today. The faintest galaxies seen by Hubble are not the first galaxies that formed in the early universe. To detect these galaxies NASA is planning the James Webb Space Telescope for launch in 2013. Webb will have a 6.5-meter diameter primary mirror, much bigger than Hubble's 2.4-meter primary, and will be optimized for infrared observations to see the highly redshifted galaxies.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: An overview of the Fermi Gamma-ray Space Telescope's first 6 months in operation is provided. The Fermi Gamma-ray Space Telescope, formerly called GLAST, is a mission to measure the cosmic gamma-ray flux in the energy rage 20 MeV to more than 300 GeV, with supporting measurements for gamma-ray bursts from 8 keV to 30 MeV. It contains a Large Area Telescope capable of viewing the entire sky every 3 hours and a Gamma-ray Burst Monitor for viewing the entire unocculted sky. Since its launch on June 11, 2008 Fermi has provided information on pulsars, gamma ray bursts, relativistic jets, the active galactic nucleus, and a globular star cluster. This presentation describes Fermi's development, mission, instruments and recent findings.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2018-06-06
    Description: GRB 090417B was an unusually long burst with a T(sub 90) duration of at least 2130 s and a multi-peaked light curve at energies of 15-150 keV. It was optically dark and has been convincingly associated with a bright star-forming galaxy at a redshift of 0.345 that is broadly similar to the Milky Way. This is one of the few cases where a host galaxy has been clearly identified for a dark gamma-ray burst and thus an ideal candidate for studying the origin of dark bursts. We find that the dark nature of GRB 090417B can not be explained by high redshift, incomplete observations, or unusual physics in the production of the afterglow. The Swift/XRT X-ray data are consistent with the afterglow being obscured by a dense, localized sheet of dust approximately 30-80 pc from the burst along the line of sight. Assuming the standard relativistic fireball model for the afterglow we find that the optical flux is at least 2.5 mag fainter than predicted by the X -ray flux. We are able to explain the lack of an optical afterglow, and the evolution of the X -ray spectrum, by assuming that there is a sheet of dust along the line of sight approximately 30-80 pc from the progenitor. Our results suggest that this dust sheet imparts an extinction of A(sub v)〉 or = 12 mag, which is sufficient to explain the missing optical flux. GRB 090417B is an example of a gamma-ray burst that is dark due to the localized dust structure in its host galaxy.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2018-06-06
    Description: ISS SSP 50184 HRDL optical fiber communication subsystem, has system level requirements that were changed to accommodate large loss optical fiber links previously installed. SSQ22680 design is difficult to implement, no metal shell over socket/pin combination to protect the weak part of the pin. Additions to ISS are planned for the future. AVIM still used for interconnection in space flight applications without incident. Thermal cycling resulted in less than 0.25 dB max change in Insertion Loss for all types during cycling, nominal as compared to the AVIM. Vibration testing results conclusion; no significant changes, nominal as compared to AVIM.
    Keywords: Space Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2018-06-06
    Description: We presen the first Spitzer Infrared Spectrograph (IRS) observations of the [O IV] 25.89 um emission line detected from the ultraluminous X-ray source (ULX) in Holmberg II. This line is a well established signature of high excitation usually associated with AGN. Its detection suggests that the ULX has a strong impact on the surrounding gas. A Spitzer high resolution spectral map shows that the [O IV] is coincident with the X-ray position of the ULX. The ratios of the [O IV] to lower ionization lines are similar to those observed in AGN, suggesting that a strong UV and X-ray source is responsible for the, photoionization. The best XMM-Newton data is used to model the X-ray band which is then extrapolated into the UV. We perform infrared and ultraviolet photometry, and use its previously published optical and radio data to construct the full SED for the ULX and its companion. The preferred model to describe the SED includes an accretion disk which dominates the soft X-rays but contributes little at UV and optical wavelengths. The optical counterpart is consistent with a B supergiant as previously suggested in other studies. The bolometric luminosity of the ULX suggests the presence of an intermediate-mass black hole with mass 〉85 M for sub-Eddington accretion or, alternatively, a stellar-mass black hole that is accreting at super-Eddington rates. In a follow-up second paper we perform detailed photoionization modeling of the infrared lines in order to constrain the bolometric luminosity of the ULX.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2018-06-06
    Description: This is the second of two papers examining Spitzer Infrared Spectrograph (IRS) observations of the ultraluminous X-ray source (ULX) in Holmberg II. Here we perform detailed photoionization modeling of they infrared lines. Our analysis suggests that the luminosity and morphology of the [O IV] 25.89 micron emission line is consistent with photoionization by the soft X-ray and far ultraviolet (FUV) radiation from the accretion disk of the binary system and inconsistent with narrow beaming. We show that the emission nebula is matter-bounded both in the line of sight direction and to the east, and probably radiation-bounded to the west. A bolometric luminosity in excess of 1040 erg per second would be needed to produce the measured [O IV] flux. We use modeling and previously published studies to conclude that shacks likely contribute very little, if at all, to the high excitation line fluxes observed in the Holmberg II ULX. Additionally, we find that the spectral type of the companion star has a surprisingly strong effect on they predicted strength of the [O IV] emission. This finding could explain the origin of [O IV] hi some starburst systems containing black hole binaries.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2018-06-06
    Description: We investigated variations in the sensitivity of surface ozone formation in summer to precursor species concentrations of volatile organic compounds (VOCs) and nitrogen oxides (NO(x)) as inferred from the ratio of tropospheric columns of formaldehyde and nitrogen dioxide from the Aura Ozone Monitoring Instrument (OMI). The data indicate that ozone formation became: 1. more sensitive to NO(x) over most of the U.S, from 2005 to 2007 because of substantial decreases in NO(x) emissions primarily from stationary sources, and 2. more sensitive to NO(x) with increasing temperature, in part because emissions of highly reactive, biogenic isoprene increase with temperature, thus increasing the total VOC reactivity. Based on our interpretation of the data, current strategies implemented to reduce unhealthy levels of surface ozone should focus more on reducing NO(x) emissions, except in some downtown areas which have historically benefited from reductions in VOC emissions.
    Keywords: Space Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-07-19
    Description: The transition of space weather models or of information derived from space weather models to space weather forecasting is the last step of the chain from model development to model deployment in forecasting operations. As such, it is an extremely important element of the quest to increase our national capability to forecast and mitigate space weather hazards. It involves establishing customer requirements, and analyses of available models, which are, in principle, capable of delivering the required product. Models will have to be verified and validated prior to a selection of the best performing model. Further considerations include operational hardware, and the availability of data streams to drive the model. The final steps include the education of forecasters, and the implementation on gateway hardware prior to operational use. This presentation will provide a discussion of opportunities for rapid progress from the viewpoint of the Community Coordinated Modeling Center.
    Keywords: Space Sciences (General)
    Type: 2009 AGU Fall Meeting; Dec 14, 2009 - Dec 18, 2009; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: Kepler is a Discovery-class mission designed to determine the frequency of Earth-size planets in and near the habitable zone of solar-like stars. The instrument consists of a 0.95 m aperture photometer designed to obtain high precision photometric measurement of 〉 100,000 stars to search for patterns of transits. The focal plane of the Schmidt-telescope contains 42 CCDs with at total of 95 mega pixels that cover 116 square degrees of sky. The photometer was launched into an Earth-trailing heliocentric orbit on March 6, 2009, finished its commissioning on May 12, and is now in the science operations mode. During the commissioning of the Kepler photometer, data were obtained at a 30 minute cadence for 53,000 stars for 9.7 days. Although the data have not yet been corrected for the presence of systematic errors and artifacts, the data show the presence of hundreds of eclipsing binary stars and variable stars of amazing variety. To provide some estimate of the capability of the photometer, a quick analysis of the photometric precision was made. Analysis of the commissioning data also show transits, occultations and light emitted from the known exoplanet HAT-P7b. The data show a smooth rise and fall of light: from the planet as it orbits its star, punctuated by a drop of 130 +/- 11 ppm in flux when the planet passes behind its star. We interpret this as the phase variation of the dayside thermal emission plus reflected light from the planet as it orbits its star and is occulted. The depth of the occultation is similar in amplitude to that expected from a transiting Earth-size planet and demonstrates that the Mission has the precision necessary to detect such planets.
    Keywords: Astronomy
    Type: ARC-E-DAA-TN937
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: We review our Suzaku observations of Broad-Line Radio Galaxies (BLRGs). The continuum above 2 approx.keV in BLRGs is dominated by emission from an accretion flow, with little or no trace of a jet, which is instead expected to emerge at GeV energies and be detected by Fermi. Concerning the physical conditions of the accretion disk, BLRGs are a mixed bag. In some sources the data suggest relatively high disk ionization, in others obscuration of the innermost regions, perhaps by the jet base. While at hard X-rays the distinction between BLRGs and Seyferts appears blurry, one of the cleanest observational differences between the two classes is at soft X-rays, where Seyferts exhibit warm absorbers related to disk winds while BLRGs do not. We discuss the possibility that jet formation inhibits disk winds, and thus is related to the remarkable dearth of absorption features at soft X-rays in BLRGs and other radio-loud AGN.
    Keywords: Astronomy
    Type: Accretion and Ejection in AGN: A Global View; Jun 22, 2009 - Jun 26, 2009; Como; Italy|The Energetic Cosmos: from Suzaku to Astro-H; Jun 29, 2009 - Jul 02, 2009; Otaru; Japan
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: At redshifts, z〉l, the rest-frame mid-UV is brought into view of large, ground-based telescopes. Here, we report on a study of the potential of the rest-frame UV spectrum for deriving the age since the last major episode of star formation in a galaxy. We base this investigation on wide-band (0.2-1.0 microns), low-resolution (R-1000) spectra of single stars in Hubble's Next Generation Spectral Library (NGSL). We find that a combination of mid-UV spectral indices and colors can indeed yield the age of a stellar population, but only if light from the stellar population is unreddened.
    Keywords: Astronomy
    Type: International Astronomical Union (IAU) XXVII; Aug 03, 2009 - Aug 14, 2009; Rio de Janeiro; Brazil|VIIth Marseille International Cosmology Conference. Harvesting the Desrt: The Universe betrween Redshifts 1 and 3; Jun 29, 2009 - Jul 03, 2009; Marseille; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: The International X-Ray Observatory, a joint NASA-ESA-JAXA effort, is a next generation X-ray telescope that will answer many fundamental questions in contemporary astrophysics such as how do supermassive black holes influence galaxy evolution and how do galaxy clusters evolve (and how does this constrain dark energy and dark matter)? As a powerful astronomical observatory, IXO will also address questions ranging from the neutron star equation of state to the distribution and dynamical state of intergalactic material. X-ray spectroscopy, polarimetry, and timing studies provided by IXO's instruments will give detailed measures of abundances, temperatures, densities, magnetic fields and gravitational potentials. These measurements will be complementary to the next generation of observatories such as ALMA, JWST, and future ground-based optical-NIR telescopes. This mission will be ready for launch in the 2020-2021 timeframe and will launch on an Atlas V or Ariane V launch vehicle to L2. It employs a deployable optical bench to achieve the 20 meter focal length and a suite of five instruments. This talk will describe the motivating science for this mission as well as the spacecraft, instruments and optics
    Keywords: Astronomy
    Type: Steward Colloquium; Apr 15, 2009 - Apr 17, 2009; Arizona; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: This talk will focus on simulations of binary black hole mergers and the gravitational wave signals they produce. Applications to gravitational wave detection with LISA, and electro~nagnetic counterparts, will be highlighted.
    Keywords: Astronomy
    Type: Observational Signatures of Black Hole Mergers Meeting; Mar 30, 2009 - Apr 01, 2009; Maryland; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-07-19
    Description: The Laser Interferometer Space Antenna (LISA) is expected to detect gravitational radiation from the inspiral and merger of massive black hole binaries at high redshifts with large signal-to-noise ratios (SNRs). These high-SNR observations will make it possible to extract physical parameters such as hole masses and spins, luminosity distance, and sky position from the observed waveforms. LISA'S effectiveness as a tool for astrophysics will be influenced by the precision with which these parameters can be measured. In addition, the practicality of coordinated observations with other instruments will be affected by the temporal evolution of parameter errors such as sky position. We present estimates of parameter errors for the special case of non-spinning black holes. Our focus is on the contribution of the late inspiral and merger portions of the waveform, a regime which typically dominates the SNR but has not been extensively studied due to the historic lack of a precise description of the waveform. Advances in numerical relativity have recently made such studies possible. Initial results suggest that the portion of the waveform beyond the Schwarzchild inner-most stable circular orbit can reduce parameter uncertainties by up to a factor of two.
    Keywords: Astronomy
    Type: 2009 Meeting of the American Physical Society; May 02, 2009 - May 05, 2009; Colorado; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: The author presents the current status of the RXTE/PCA Calibration, with emphasis on recent updates to the energy scale and the background subtraction. A new treatment of the Xenon K-escape line removes the largest remaining residual in the previously distributed matrices. Observations of Sco X-1 made simultaneously with Swift XRT, expressly for the purpose of cross calibrating the response to bright sources, are presented.
    Keywords: Astronomy
    Type: 4th International Astronomical Consortium for High Energy Calibration; Apr 25, 2009 - Apr 30, 2009; Tokyo; Japan
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: The James Webb Space Telescope is the successor to Hubble and will be launched into space in 2013. It is not only bigger than Hubble, but is cooled to 225 degrees below zero Centigrade in order to detect the infrared light, or heat radiation, from distant stars and galaxies. I will discuss how Webb's scientific discoveries will take us beyond Hubble, and describe some of the recent progress we have made in its construction.
    Keywords: Astronomy
    Type: Museum of Natural History: Exhibit; Jan 30, 2009 - Jan 31, 2009; Michigan; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: The Fermi Gamma-ray Space Telescope, formerly called GLAST, is a mission to measure the cosmic gamma-ray flux in the energy range 20 MeV to 〉300 GeV, with supporting measurements for gamma-ray bursts from 8 keV to 30 MeV. In addition to breakthrough capabilities in energy coverage and localization, the very large field of view enables observations of 20% of the sky at any instant, and the entire sky on a timescale of a few hours. With its recent launch on 11 June 2008, Fermi now opens a new and important window on a wide variety of phenomena, including pulsars, black holes and active galactic nuclei, gamma-ray bursts, the origin of cosmic rays and supernova remnants, and searches for hypothetical new phenomena such as supersymmetric dark matter annihilations. In addition to early results and the science opportunities, this talk includes a description of the instruments and the mission status and plans.
    Keywords: Astronomy
    Type: Optical Fabrication and Testing; Jan 14, 2009; Pennsylvania; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-07-19
    Description: Thermal radiation from the surface of Titan reaches space through a spectral window of low opacity at 19-microns wavelength. This radiance gives a measure of the brightness temperature of the surface. Composite Infrared Spectrometer' (CIRS) observations from Cassini during its first four years at Saturn have permitted latitude mapping of zonally averaged surface temperatures. The measurements are corrected for atmospheric opacity using the dependence of radiance on emission angle. With the more complete latitude coverage and much larger dataset of CIRS we have improved upon the original results from Voyager IRIS. CIRS measures the equatorial surface brightness temperature to be 93.7+/-0.6 K, the same as the temperature measured at the Huygens landing site. The surface brightness temperature decreases by 2 K toward the south pole and by 3 K toward the north pole. The drop in surface temperature between equator and north pole implies a 50% decrease in methane saturation vapor pressure and relative humidity; this may help explain the large northern lakes. The H2 mole fraction is derived as a by-product of our analysis and agrees with previous results. Evidence of seasonal variation in surface and atmospheric temperatures is emerging from CIRS measurements over the Cassini mission.
    Keywords: Astronomy
    Type: Third Workshop on Titan Chemistry - Observations, Experiments, Computations, and Modeling; Feb 26, 2009 - Feb 28, 2009; San Juan; Puerto Rico
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-07-19
    Description: Spitzer has been used to monitor the mid-IR evolution of SN 1987A over a 5 year period as it develops into a supernova remnant through interaction with its surrounding environment. This interaction is dominated by the collision of the ejecta with the pre-existing equatorial ring. The mid-IR continuum indicates an increasing mass of shock-heated silicate dust, but without any significant change in temperature of the dust grains. Comparison of the IR and X-ray evolution of the remnant can be used to infer plasma conditions and the processing of the dust in the shock-heated X-ray emitting gas.
    Keywords: Astronomy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: An extrasolar planet sculpts the famous debris dish around Fomalhaut; probably ma ny other debris disks contain planets that we could locate if only we could better recognize their signatures in the dust that surrounds them. But the interaction between planets and debris disks involves both orbital resonances and collisions among grains and rocks in the disks --- difficult processes to model simultanemus]y. I will describe new 3-D models of debris disk dynamics that incorporate both collisions and resonant trapping of dust for the first time, allowing us to decode debris disk images and read the signatures of the planets they contain.
    Keywords: Astronomy
    Type: Satellite Workshop: Dynamics of Outer Planetary Systems; Nov 09, 2009 - Nov 11, 2009; Edinburgh, Scotland; United Kingdom
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-07-19
    Description: Inspired by a recent paper (Kirsch et al. 2005) on possible use of the Crab Nebula as a standard candle for calibrating X-ray response func tions, we examine possible consequences of intrinsic departures from a single (absorbed) power law upon such calibrations. We limited our analyses to three more modern X-ray instruments -- the ROSAT/PSPC, th e RXTE/PCA, and the XMM-Newton/EPIC-pn. The results are unexpected an d indicate a need to refine two of the three response functions studi ed. The implications for Chandra will be discussed.
    Keywords: Astronomy
    Type: M09-0752 , Chandra Calibration Workshop; Sep 21, 2009; Boston, MA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-07-19
    Description: NASA s Desert Research and Technology Studies (D-RATS) field test is a demonstration that combines operations development, technology advances and science in analog planetary surface conditions. The focus is testing preliminary operational concepts for extravehicular activity (EVA) systems by providing hands-on experience with simulated surface operations and EVA hardware and procedures. The DRATS activities also develop technical skills and experience for the engineers, scientists, technicians, and astronauts responsible for realizing the goals of the Lunar Surface Systems Program. The 2009 test is the twelfth for the D-RATS team.
    Keywords: Space Sciences (General)
    Type: JSC-CN-19066 , Lunar Exploration Analysis Group Annual Meeting; Nov 16, 2009 - Nov 19, 2009; Houston, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-07-19
    Description: Orbital debris represents a significant and increasing risk to operational spacecraft. Here we report on photometric observations made in standard BVRI filters at the Cerro Tololo Inter-American Observatory (CTIO) in an effort to determine the physical characteristics of optically faint debris at geosynchronous Earth orbit (GEO). Our sample is taken from GEO objects discovered in a survey with the University of Michigan s 0.6-m Curtis-Schmidt telescope (known as MODEST, for Michigan Orbital DEbris Survey Telescope), and then followed up in real-time with the CTIO/SMARTS 0.9-m for orbits and photometry. For a sample of 50 objects, calibrated sequences in RB- V-I-R filters have been obtained with the CTIO/SMARTS 0.9-m. For objects that do not show large brightness variations, the colors are largely redder than solar in both B-R and R-I. The width of the color distribution may be intrinsic to the nature of the surfaces, but also could imply that we are seeing irregularly shaped objects and measuring the colors at different times with just one telescope. For irregularly shaped objects tumbling at unknown orientations and rates, such sequential filter measurements using one telescope are subject to large errors for interpretation. If all observations in all filters in a particular sequence are of the same surface at the same solar and viewing angles, then the colors are meaningful. Where this is not the case, interpretation of the observed colors is impossible. For a smaller sample of objects we have observed with synchronized CCD cameras on the two telescopes. The CTIO/SMARTS 0.9-m observes in B, and the Schmidt in R. The CCD cameras are electronically linked together so that the start time and duration of observations are both the same to better than 50 milliseconds. Now the observed B-R color is a true measure of the scattered illuminated area of the debris piece for that observation.
    Keywords: Space Sciences (General)
    Type: JSC-CN-19019 , American Astronomical Society Meeting; Jan 03, 2010 - Jan 07, 2010; Washington, DC; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-13
    Description: Measurement of the microgravity acceleration environment on the International Space Station has been accomplished by two accelerometer systems since 2001. The Microgravity Acceleration Measurement System records the quasi-steady microgravity environment, including the influences of aerodynamic drag, vehicle rotation, and venting effects. Measurement of the vibratory/transient regime, comprised of vehicle, crew, and equipment disturbances, has been accomplished by the Space Acceleration Measurement System-II. Until the arrival of the Columbus Orbital Facility and the Japanese Experiment Module, the location of these sensors, and therefore, the measurement of the microgravity acceleration environment, has been limited to within the United States Laboratory. Japanese Aerospace Exploration Agency has developed a vibratory acceleration measurement system called the Microgravity Measurement Apparatus which will be deployed within the Japanese Experiment Module to make distributed measurements of the Japanese Experiment Module's vibratory acceleration environment. Two Space Acceleration Measurement System sensors from the United States Laboratory will be re-deployed to support vibratory acceleration data measurement within the Columbus Orbital Facility. The additional measurement opportunities resulting from the arrival of these new laboratories allows Principal Investigators with facilities located in these International Space Station research laboratories to obtain microgravity acceleration data in support of their sensitive experiments. The Principal Investigator Microgravity Services project, at NASA Glenn Research Center, in Cleveland, Ohio, has supported acceleration measurement systems and the microgravity scientific community through the processing, characterization, distribution, and archival of the microgravity acceleration data obtained from the International Space Station acceleration measurement systems. This paper summarizes the PIMS capabilities available to the International Space Station scientific community, introduces plans for extending microgravity analysis results to the newly arrived scientific laboratories, and provides summary information for known microgravity environment disturbers.
    Keywords: Space Sciences (General)
    Type: AIAA Paper 2009-0957 , E-18314 , 47th Aerospace Science Meeting; Jan 05, 2012 - Jan 08, 2012; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-07-13
    Description: We report the detection of several molecular gas-phase and ice absorption features in three photometrically-selected young stellar object (YSO) candidates in the central 280 pc of the Milky Way. Our spectra, obtained with the Infrared Spectrograph (IRS) onboard the Spitzer Space Telescope, reveal gas-phase absorption from CO2 (15.0 microns), C2H2 (13.7 microns) and HCN (14.0 microns). We attribute this absorption to warm, dense gas in massive YSOs. We also detect strong and broad 15 microns CO2 ice absorption features, with a remarkable double-peaked structure. The prominent long-wavelength peak is due to CH3OH-rich ice grains, and is similar to those found in other known massive YSOs. Our IRS observa.tions demonstra.te the youth of these objects, and provide the first spectroscopic identification of massive YSOs in the Galactic Center.
    Keywords: Astronomy
    Type: GSFC.CP.4828.2011 , The Galactic Center: A Window to the Nuclear Environment of Disk Galaxies; Oct 19, 2009 - Oct 23, 2009; Shanghai; China|ASP Conference Series; 439; 115-118
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-07-13
    Description: The Community Coordinated Modeling Center (CCMC) is a US inter-agency activity aiming at research in support of the generation of advanced space weather models. As one of its main functions, the CCMC provides to researchers the use of space science models, even if they are not model owners themselves. The second CCMC activity is to support Space Weather forecasting at national Space Weather Forecasting Centers. This second activity involved model evaluations, model transitions to operations, and the development of draft Space Weather forecasting tools. This presentation will focus on the latter element. Specifically, we will discuss the process of transition research models, or information generated by research models, to Space Weather Forecasting organizations. We will analyze successes as well as obstacles to further progress, and we will suggest avenues for increased transitioning success.
    Keywords: Space Sciences (General)
    Type: American Geophysical Union (AGU) 2009 Joint Assembly; May 25, 2009 - May 28, 2009; Toronto; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-07-13
    Description: In order to accomplish the full Vision for Space Exploration announced by former President George W. Bush in 2004, NASA will have to develop a new space transportation system and supporting infrastructure. The main portion of this supporting infrastructure will reside at the Kennedy Space Center (KSC) in Florida and will either be newly developed or a modification of existing vehicle processing and launch facilities, including Ground Support Equipment (GSE). This type of large-scale launch site development is unprecedented since the time of the Apollo Program. In order to accomplish this successfully within the limited budget and schedule constraints a combination of traditional and innovative strategies for Verification and Validation (V&V) have been developed. The core of these strategies consists of a building-block approach to V&V, starting with component V&V and ending with a comprehensive end-to-end validation test of the complete launch site, called a Ground Element Integration Test (GEIT). This paper will outline these strategies and provide the high level planning for meeting the challenges of implementing V&V on a large-scale development program. KEY WORDS: Systems, Elements, Subsystem, Integration Test, Ground Systems, Ground Support Equipment, Component, End Item, Test and Verification Requirements (TVR), Verification Requirements (VR)
    Keywords: Space Sciences (General)
    Type: KSC-2009-209 , 25th Aerospace Testing Seminar; Oct 12, 2009 - Oct 15, 2009; Manhattan Beach, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Space Sciences (General)
    Type: KSC-2009-273 , 4th Annual UK Space Biomedicine Conference 2009; Nov 07, 2009; Cambridge; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-07-13
    Description: A normal outburst of the Be/X-ray binary system A0535+26 has taken place in August 2009. It is the fourth in a series of normal outbursts that have occurred around the periastron passage of the source. but is unusual by starting at an earlier orbital phase and by presenting a peculiar double-peaked light curve. A first "flare" (lasting about 9 days from M.ID 55043 on) reached a flux of 440 mCrab. The flux then decreased to less than 220 mCrab. and increased again reaching 440 mCrab around the periastron at MJD 55057. Target of Opportunity observations have been performed with INTEGRAL. RXTE and Suzaku. First results of these observations are presented. with special emphasis on the cyclotron lines present in the X-ray spectrum of the source. as well as in the pulse period and energy dependent pulse profiles of the source
    Keywords: Astronomy
    Type: The Extreme Sky: Sampling the Universe above 10 keV; Oct 13, 2009 - Oct 17, 2009; Otranto; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-07-13
    Description: We present new results of Cassini s T9 flyby with complementary observations from T18. Based on Cassini plasma spectrometer (CAPS) and Cassini magnetometer (MAG), compositional evidence shows the upstream flow for both T9 and T18 appears composed of light ions (H+ and H2+), with external pressures approx.30 times lower than that for the earlier TA flyby where heavy ions dominated the magnetospheric plasma. When describing the plasma heating and sputtering of Titan s atmosphere, T9 and T18 can be considered interactions of low magnetospheric energy input. On the other hand, T5, when heavy ion fluxes are observed to be higher than typical (i.e., TA), represents the limiting case of high magnetospheric energy input to Titan s upper atmosphere. Beyond this distance the corona forms a neutral torus that surrounds Saturn. The T9 flyby unexpectedly resulted in observation of two wake crossings referred to as Events 1 and 2. Event 2 was evidently caused by draped magnetosphere field lines, which are scavenging pickup ions from Titan s induced magnetopause boundary with outward flux approx.2 x 10(exp 6) ions/sq cm/s. The composition of this out flow is dominated by H2+ and H+ ions. Ionospheric flow away from Titan with ion flux approx7 x 10(exp 6) ion/sq cm/s is observed for Event 1. In between Events 1 and 2 are high energy field aligned flows of magnetosphere protons that may have been accelerated by the convective electric field across Titan s topside ionosphere. T18 observations are much closer to Titan than T9, allowing one to probe this type of interaction down to altitudes approx.950 km. Comparisons with previously reported hybrid simulations are made.
    Keywords: Astronomy
    Type: Planetary and Space Science; 58; 3; 327-350
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-07-12
    Description: If it is one thing that Florida has in abundance, it is sunshine and with that sunshine heat and humidity. For workers at the Kennedy Space Center that have to work outside in the heat and humidity, heat exhaustion/stroke is a real possibility. It might help people to know that Kennedy's Biomedical Laboratory has been testing some new Koolvests(Trademark) that can be worn underneath SCAPE suits. They have also been working on how to block out high noise levels; in fact, Don Doerr, chief of the Biomedical Lab, says, "The most enjoyable aspect is knowing that the Biomedical Lab and the skills of its employees have been used to support safe space flight, not only for the astronaut flight crew, but just as important for the ground processing personnel as well." The NASA Biomedical Laboratory has existed in the John F. Kennedy's Operations and Checkout Building since the Apollo Program. The primary mission of this laboratory has been the biomedical support to major, manned space programs that have included Apollo, Apollo-Soyuz, Skylab, and Shuttle. In this mission, the laboratory has been responsible in accomplishing much of the technical design, planning, provision, fabrication, and maintenance of flight and ground biomedical monitoring instrumentation. This includes the electronics in the launch flight suit and similar instrumentation systems in the spacecraft. (Note: The Lab checked out the system for STS-128 at Pad A using Firing room 4 and ground support equipment in the lab.) During Apollo, there were six engineers and ten technicians in the facility. This has evolved today to two NASA engineers and two NASA technicians, a Life Science Support contract physiologist and part-time support from an LSSC nurse and physician. Over the years, the lab has enjoyed collaboration with outside agencies and investigators. These have included on-site support to the Ames Research Center bed rest studies (seven years) and the European Space Agency studies in Toulouse, France (two years). The lab has also actively collaborated with the US Army Institute for Surgical Research, the USAF School of Aerospace Medicine, and the USN Naval Experimental Diving Unit. Because the lab often evaluates various forms of commercial-off-the-shelf life support equipment, the laboratory works closely with private companies, both domestic and foreign. The European companies seem to be more proactive and participatory with the advancement of personal protective equipment. Because these companies have viewed the space program's unique need for advanced forms of personal protective equipment, some have responded with new designs based on the prediction that these advances will soon find markets in the commercial sector. Using much of the same skills and equipment, the laboratory also addresses physiological testing of humans by supporting flight experiments and personnel involved with ground processing. While Johnson Space Center is primarily responsible for flight experiments, the Kennedy's Biomedical Lab provides the local support. However, as stated above, there are many challenges facing KSC workers that gain the attention of this lab in the measurement of the problem and the selection and testing of countermeasures. These include respiratory protection, whole body suits, hearing protection and heat stress, among many others.
    Keywords: Space Sciences (General)
    Type: KSC-2009-200
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-07-12
    Description: The Constellation Program is the medium by which we will maintain a presence in low Earth orbit, return to the moon for further exploration and develop procedures for Mars exploration. The foundation for its presence and success is built by the many individuals that have given of their time, talent and even lives to help propel the mission and objectives of NASA. The Exploration Systems Mission Directorate (ESMD) Faculty Fellows Program is a direct contributor to the success of directorate and Constellation Program objectives. It is through programs such as the ESMD Space Grant program that students are inspired and challenged to achieve the technological heights that will propel us to meet the goals and objectives of ESMD and the Constellation Program. It is through ESMD Space Grant programs that future NASA scientists, engineers, and mathematicians begin to dream of taking America to newer heights of space exploration. The ESMD Space Grant program is to be commended for taking the initiative to develop and implement programs that help solidify the mission of NASA. With the concerted efforts of the Kennedy Space Center educational staff, the 2009 ESMD Space Grant Summer Faculty Fellows Program allowed faculty to become more involved with NASA personnel relating to exploration topics for the senior design projects. The 2009 Project was specifically directed towards NASA's Strategic Educational Outcome 1. In-situ placement of Faculty Fellows at the NASA field Centers was essential; this allowed personal interactions with NASA scientists and engineers. In particular, this was critical to better understanding the NASA problems and begin developing a senior design effort to solve the problems. The Faculty Fellows are pleased that the ESMD Space Grant program is taking interest in developing the Senior Design courses at the university level. These courses are needed to help develop the NASA engineers and scientists of the very near future. It has been a pleasure to be part of the evaluation process to help ensure that these courses are developed in such a way that the students' educational objectives are maximized. Ultimately, with NASA-related content used as projects in the course, students will be exposed to space exploration concepts and issues while still in college. This will help to produce NASA engineers and scientists that are knowledgeable of space exploration. By the concerted efforts of these five senior design projects, NASA's ESMD Space Grant Project is making great strides at helping to develop talented engineers and scientists that will continue our exploration into space.
    Keywords: Space Sciences (General)
    Type: KSC-2009-193
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-07-12
    Description: We present new HST far-UV spectroscopy of two dozen hot evolved stars in NGC 2808, a massive globular cluster with a large population of "blue-hook" stars. The blue-hook stars are found in ultraviolet color-magnitude diagrams of the most massive globular clusters, where they fall at luminosities immediately below the hot end of the horizontal branch (HB), in a region of the HR diagram unexplained by canonical stellar evolution theory. Using new theoretical evolutionary and atmospheric models, we have shown that these subluminous HB stars are very likely the progeny of stars that undergo extensive internal mixing during a late He-core flash on the white dwarf cooling curve. This flash mixing leads to hotter temperatures and an enormous enhancement of the surface He and C abundances; the hotter temperatures and associated decrease in the hydrogen opacity shortward of the Lyman limit makes the stars brighter in the extreme UV but appear sub luminous in the UV and optical. Our far-UV spectroscopy demonstrates that, relative to normal HB stars at the same color, the blue-hook stars of NGC 2808 are hotter and greatly enhanced in He and C, thus providing unambiguous evidence of flash mixing in the subluminous population. Although the C abundance in the blue-hook stars is orders of magnitude larger than that in the normal HB stars, the atmospheric C abundance in both the blue-hook and normal HB stars appears to be affected by gravitational settling. The abundance variations seen in C, Si, and the Fe-peak elements indicate that atmospheric diffusion is at play in our sample, with all of our hot subdwarfs at 25,000 K to 50,000 K exhibiting large enhancements of the iron-peak elements. The hottest subdwarfs in our blue-hook sample may be pulsators, given that they fall in the temperature range of newly-discovered pulsating subdwarfs in omega Cen.
    Keywords: Astronomy
    Type: GSFC.JA.5514.2011
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-07-19
    Description: Life as we know it requires water with a chemical activity (alpha) 〉or approx.0.6 and sources of nutrients and useful energy. Some biota can survive even if favorable conditions occur only intermittently, but the minimum required frequency of occurrences is poorly understood. Recent discoveries have vindicated the Mars exploration strategy to follow the water. Mars Global Surveyor s Thermal Emission Spectrometer (TES) found coarse-grained hematite at Meridiani Planum. Opportunity rover confirmed this and also found evidence of ancient sulfate-rich playa lakes and near-surface groundwater. Elsewhere, TES found evidence of evaporitic halides in topographic depressions. But alpha might not have approached 0.6 in these evaporitic sulfate- and halide-bearing waters. Mars Express (MEX) and Mars Reconnaissance Orbiter (MRO) found extensive sulfate evaporites in Meridiani and Valles Marineris. MEX found phyllosilicates at several sites, most notably Mawrth Valles and Nili Fossae. MRO's CRISM near-IR mapper extended the known diversity and geographic distribution of phyllosilicates to include numerous Noachian craters. Phyllosilicates typically occur at the base of exposed ancient rock sections or in sediments in early Hesperian craters. It is uncertain whether the phyllosilicates developed in surface or subsurface aqueous environments and how long aqueous conditions persisted. Spirit rover found remarkably pure ferric sulfate, indicating oxidation and transport of Fe and S, perhaps in fumaroles or hot springs. Spirit also found opaline silica, consistent with hydrothermal activity. CRISM mapped extensive silica deposits in the Valles Marineris region, consistent with aqueous weathering and deposition. CRISM also found ultramafic rocks and magnesite at Nili Fossae, consistent with serpentinization, a process that can sustain habitable environments on Earth. The report of atmospheric methane implies subsurface aqueous conditions. A working hypothesis is that aqueous environments persisted in the near-subsurface for hundreds of millions of years and might exist even today. Studies of Mars-analog environments must better understand subsurface nonphotosynthetic ecosystems and their biosignatures in mafic and ultramafic terranes. Studies must determine minimum needs for water activity and energy and also establish survival limits when conditions that support active metabolism and propagation become progressively less frequent over time.
    Keywords: Space Sciences (General)
    Type: ARC-E-DAA-TN632 , Goldschmidt Conference; Jun 21, 2009; Davos; Switzerland
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-19
    Description: The Moderate Resolution Imaging Spectroradiometer (MODIS) is a key instrument for NASA's EOS missions. Two nearly identical copies have flown on the Terra and Aqua spacecraft for more than 9 years and 6 years since their launch in December 1999 and May 2002, respectively. MODIS observations and associated data products have been widely used by the science community and users worldwide for studies of Earth's system of land, oceans, and atmosphere. MODIS was developed based on the desire of the science community to extend and enhance heritage sensors' data records. It was designed with enhancements made over its heritage sensors in terms of its spectral, spatial, and radiometric characteristics. It is a cross-track scanning radiometer, that uses a two-sided scan mirror, collecting data in 36 spectral bands covering spectral regions of visible (VIS), near-infrared (NIR), short-wave infrared (SWIR), mid-wave infrared (MWIR), and long-wave infrared (LWIR). The VIS, NIR, and SWIR bands (bands 1-19 and 26), which make measurements of daytime surface reflected radiances, are referred to as the reflective solar bands (RSB). The MWIR and LWIR bands (20-25 and 27-36), which measure both the daytime and nighttime scene emissive radiances, are thus referred to as the thermal emissive bands (TEB). In this paper, we provide an overview of MODIS instrument calibration and characterization methodologies, activities, and results from pre-launch to post launch, with emphasis on the lessons learned from its design to on-orbit operation. Currently, both instruments are operated normally and all the on-orbit calibration activities are performed on a regular basis with some at slightly reduced frequencies. The TEB responses have been extremely stable with less than 0.3% change per year. For the RSB, the changes are wavelength and scan angle dependent with the largest changes in the VIS spectral bands. As both Terra and Aqua MODIS continue to operate beyond their prime missions, constant effort is still needed to maintain instrument and calibration and data product quality. This paper shows that the lessons from Terra MODIS design, test, and operation, have greatly benefitted Aqua MODIS. Because of this, Aqua MODIS overall performance is better than Terra MODIS. It is not surprising that lessons from MODIS calibration and characterization, from methodologies to on-orbit implementation, have also provided valuable information for the design and development of future earth observing missions/sensors, such as VHRS on the NPP and NPOESS, ABI on GOES-R, OLI on LDCM, and the reflective solar sensor on CLARREO.
    Keywords: Astronomy
    Type: 2009 IEEE International Geoscience and Remote Sensing Symposium (IGARSS); Jul 12, 2009 - Jul 17, 2009; Cape Town; South Africa
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-07-19
    Description: More than 140 gas-phase molecules have been detected in the interstellar (IS) medium or in circumstellar environments including inorganics, organics, ions, and radicals. The significant abundance of large, complex organic molecules, and families of isomers in these regions makes the origin and formation history of these species the subject of debate. Observationally determined condensed-phase species are H2O, CO, CO2, NH3 and CH30H, with CH4, HCOOH, OCS, OCN-, H2CO and NH4(+) present at trace levels. These ices can undergo energetic processing with cosmic rays or far-UV photons to form larger complex organics with abundance levels that make them undetectable in icy mantles. Once warmed, however, it is likely that these complex species would enter the gas-phase where they might be detected by Herschel or Alma. Understanding the role of radiation chemistry and thermal processing of ices and identifying new products are the goals of our laboratory research. In the Cosmic lee Laboratory at NASA Goddard Space Plight Center, we can study both the photo-and radiation chemistries of ices from 8 -- 300 K. Using dear- and mid-IR spectroscopy we can follow the destruction of primary molecules and the formation of radicals and secondary products as a function of energetic processing. During warming we can monitor the trapping of species and the results of any thermal chemistry. An overview of recent and past work will focus on complex secondary radiation products from small condensed-phase IS species. Likely reactions include dimerization, isomerization, H-addition and H-elimination. Another focus of our work is the development of reaction schemes for the formation of complex molecules and the use of such schemes to predict new molecules awaiting detection by Herschel and Alma.
    Keywords: Space Sciences (General)
    Type: American Astronomical Society (AAS); Jun 07, 2009 - Jun 11, 2009; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-07-19
    Description: We present deep GALEX ultraviolet (135 - 280 nm) images of the Northern Middle Lobe (NML) of the nearby radio galaxy Centaurus A. We find that the ultraviolet emission appears to have a complex interaction with soft X-ray, H-alpha emission, and radio emission, which should help constrain various models of energy transport in the NML. We also present new 90cm VLA images of the NML. The radio morphology at this wavelength is indicative of a more complex system than either a straightforward flaring jet (Morganti et al. 1999) or a bubble with trailing stem (Saxton et al. 2001). New limits are placed on the lack of radio emission from any corresponding southern counterpart to the NML.
    Keywords: Astronomy
    Type: GALEX Helpdesk and GI Program - Inquiries 24/7 Worldwide Conference; Jun 22, 2009 - Jul 06, 2009; Sydney; Australia
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: Band-limited masks have become the baseline design for what is now called "classical TPF" and also the N|RCamcomnagraphonJW8 .This technology remains one of the most promising paths for direct detection ofmxop|anedm and disks. I'll describe some of the latest progress in the implementation of this technique and what we have learned about where it can and can not be effectively applied.
    Keywords: Astronomy
    Type: New Technologies of Probing the Diversity of Brown Dwarfs and Exoplanets; Jul 19, 2009 - Jul 24, 2009; Shanghai; China
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-19
    Description: Assembly of the International Space Station is nearing completion in fall of 2010. Although assembly has been the primary objective of its first 11 years of operation, early science returns from the ISS have been growing at a steady pace. Laboratory facilities outfitting has increased dramatically 2008-2009 with the European Space Agency s Columbus and Japanese Aerospace Exploration Agency s Kibo scientific laboratories joining NASA s Destiny laboratory in orbit. In May 2009, the ISS Program met a major milestone with an increase in crew size from 3 to 6 crewmembers, thus greatly increasing the time available to perform on-orbit research. NASA will launch its remaining research facilities to occupy all 3 laboratories in fall 2009 and winter 2010. To date, early utilization of the US Operating Segment of the ISS has fielded nearly 200 experiments for hundreds of ground-based investigators supporting international and US partner research. With a specific focus on life sciences research, this paper will summarize the science accomplishments from early research aboard the ISS- both applied human research for exploration, and research on the effects of microgravity on life. We will also look ahead to the full capabilities for life sciences research when assembly of ISS is complete in 2010.
    Keywords: Space Sciences (General)
    Type: JSC-CN-18546 , American Society for Gravitational and Space Biology Annual Meeting; Nov 05, 2009 - Nov 09, 2009; Raleigh, NC; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-19
    Description: The photometric signature of a debris object can be useful in determining what the physical characteristics of a piece of debris are. We report on optical observations in multiple filters of debris at geosynchronous Earth orbit (GEO). Our sample is taken from GEO objects discovered in a survey with the University of Michigan's 0.6-m aperture Schmidt telescope MODEST (for Michigan Orbital DEbris Survey Telescope), and then followed up in real-time with the Cerro Tololo Inter- American Observatory (CTIO) 0.9-m for orbits and photometry. Our goal is to determine 6 parameter orbits and measure colors for all objects fainter than R=15th magnitude that are discovered in the MODEST survey. At this magnitude the distribution of observed angular rates changes significantly from that of brighter objects. There are two objectives: 1. Estimate the orbital distribution of objects selected on the basis of two observational criteria: brightness (magnitude) and angular rates. 2. Obtain magnitudes and colors in standard astronomical filters (BVRI) for comparison with reflectance spectra of likely spacecraft materials. What is the faint debris likely to be? More than 90 calibrated sequences of R-B-V-I-R magnitudes for a sample of 50 objects have been obtained with the CTIO 0.9-m. For objects that do not show large brightness variations, the colors are largely redder than solar in both B-R and R-I. The width of the color distribution may be intrinsic to the nature of the surfaces, but also could be that we are seeing irregularly shaped objects and measuring the colors at different times with just one telescope. For a smaller sample of objects we have observed with synchronized CCD cameras on the two telescopes. The CTIO 0.9-m observes in B, and MODEST in R. The CCD cameras are electronically linked together so that the start time and duration of observations are the same to better than 50 milliseconds. Thus the B-R color is a true measure of the surface of the debris piece facing the telescopes for that observation. Any change in color reflects a real change in the debris surface. We will compare our observations with models and laboratory measurements of selected surfaces.
    Keywords: Astronomy
    Type: JSC-CN-18152 , AMOS Technical Conference; Sep 01, 2009 - Sep 04, 2009; Maui, HI; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: 400 years ago, Galileo first turned a telescope to the sky, and to honor that historic moment, 2009 has been designated the International Year of Astronomy (IYA2009). This session will feature two scientists who have used the telescope to understand our solar system and well beyond to yield fantastic new discoveries. Jennifer Wiseman will share the work she does with NASA, presenting beautiful and tantalizing images from the Hubble Space Telescope and discussing how space astronomy can inspire all ages.
    Keywords: Astronomy
    Type: The Evolution of Dust in the Local and Early Universe; Mar 06, 2009 - Mar 08, 2009; New York City, NY; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: An extrasolar planet sculpts the famous debris disk around Fomalhaut; probably many other debris disks contain planets that we could locate if only we could better recognize their signatures in the dust that surrounds them. But the interaction between planets and debris disks involves both orbital resonances and collisions among grains and rocks in the disks---difficult processes to model simultaneously. The author describes new 3-D models of debris disk dynamics, Drag-o-llision models, that incorporate both collisions and resonant trapping of dust for the first time. The author also discusses the implications of these models for coronagraphic imaging with Gemini and other telescopes.
    Keywords: Astronomy
    Type: 2nd Subaru International Conference - Exoplanets and Disks: Their Formation and Diversity; Mar 04, 2009 - Mar 12, 2009; Hawaii; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-07-19
    Description: The history of the universe in a nutshell, from the Big Bang to now, and on to the future - John Mather will tell the story of how we got here, how the Universe began with a Big Bang, how it could have produced an Earth where sentient beings can live, and how those beings are discovering their history. Mather was Project Scientist for NASA s Cosmic Background Explorer (COBE) satellite, which measured the spectrum (the color) of the heat radiation from the Big Bang, discovered hot and cold spots in that radiation, and hunted for the first objects that formed after the great explosion. He will explain Einstein s biggest mistake, show how Edwin Hubble discovered the expansion of the universe, how the COBE mission was built, and how the COBE data support the Big Bang theory. He will also show NASA s plans for the next great telescope in space, the James Webb Space Telescope. It will look even farther back in time than the Hubble Space Telescope, and will look inside the dusty cocoons where stars and planets are being born today. Planned for launch in 2013, it may lead to another Nobel Prize for some lucky observer.
    Keywords: Astronomy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-07-19
    Description: After one year of survey observations and more than 70 billion triggers, Fermi is revealing an unprecedented view of the high energy gamma-ray sky. The observatory carries two instruments, the Gamma-ray Burst Monitor (GBM, 8 keV - 40 MeV) and the Large Area Telescope (LAT, 20 MeV - X300 GeV), which in combination cover over 7 orders of magnitude in energy. The LAT provides substantially more sensitivity than previous instruments in this waveband and has opened up the energy window from 10-100 GeV. This is particularly relevant for the study of gamma-ray sources in the Galaxy. The first year data have revealed new classes of Galactic emitters as well as providing spectacular detail on some old friends. I'll review the fascinating range of Galactic emission now seen - from pulsars their nebulae to X-ray binaries and supernova remnants - with particular emphasis on the impact of the Fermi pulsars.
    Keywords: Astronomy
    Type: A First Year View of the Galaxy with the Fermi Gamma-ray Space Telescope; Sep 28, 2009 - Sep 30, 2009; Montreal; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-19
    Description: Enceladus has taken its place as one of the most remarkable moons in the solar system. When Voyager encountered Enceladus it was noted that its surface showed signs of recent activity with the observations of a large province, which was characterized by smooth sparsely cratered terrain. Even the heavily cratered areas of Enceladus showed a lower crater density than other Saturnian satellites. Moreover, its extraordinarily high albedo hinted at past cryovolcanic resurfacing events. Ground-based observations further demonstrated that Saturn's diffuse E-ring is concentrated at the orbit of EnceladLis, making the moon, the likely source of E-ring particles. However the short estimated lifetime of E-ring particles requires that new particles must constantly be fed to the Ering, implying more recent activity on Enceladus. Recently, in 2005 the Cassini spacecraft provided definitive proof that Enceladus is currently geologically active when multiple Cassini instruments detected plumes of gas and ice particles emanating from a series of warm fractures centered on the south pole, dubbed the "tiger stripes." Enceladus is the second cryovolcanically active icy satellite that has been identified (Triton is the only other known active icy satellite) and can be used to study active processes that are thought to have once played a role in shaping the surfaces of other icy satellites. These processes include tidal heating, cryovolcanism, and ice tectonism, which all can be studied as they currently happen on Enceladus, Moreover, the plume source region on Enceladus samples a warm, chemically rich, environment that may facilitate complex organic chemistry and biological processes. For these reasons, Enceladus science is highly relevant to NASA's goals.
    Keywords: Astronomy
    Type: 41st annual meeting of the Division of Planetary Sciences of the American Astronomical Society; Oct 04, 2009 - Oct 10, 2009; Fajardo; Puerto Rico
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-19
    Description: Given the non-spherical shape of Enceladus, the satellite may experience gravitational torques that will cause it to physically librate as it orbits Saturn. Physical Libration would produce a diurnal oscillation in the longitude of Enceladus' tidal bulge, which could have a profound effect on the diurnal stresses experienced by the surface of the satellite. Although Cassini ISS has placed an observational upper limit on Enceladus' libration amplitude, small amplitude librations may have geologically significant consequences. For example, a physical libration will affect heat production. along the tiger stripes as produced by tidal shear heating. We have modeled the expected power en-litted along the tiger stripes for various types of physical libration and have quantified which types of physical libration best reproduce the observed power flux as detailed in Cassini CIRS data. We find that including a physical libration does allow better fits to the observations and we have identified regions of the libration phase space that where these fits are optimized. A physical libration has important implications for tidal dissipation within Enceladus and if identified may provide an additional constraint on its interior mass distribution.
    Keywords: Astronomy
    Type: 41st annual meeting of the Division for Planetary Sciences of the American Astronomical Society; Oct 04, 2009 - Oct 10, 2009; Fajardo; Puerto Rico
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: A brief historical introduction to the development of observational astronomy will be presented. The close historical relationship between the successful application of mathematical concepts and advances in astronomy will be presented. A variety of simple physical demonstrations, hands-on group activities, and puzzles will be used to understand how the properties of light can be used to understand the contents of our universe.
    Keywords: Astronomy
    Type: National Radio Astronomy Observatory Conference; Jan 30, 2009 - Jan 31, 2009; Martinsville, WV; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-07-19
    Description: An interesting new high-energy pulsar sub-population is emerging following early discoveries of gamma-ray millisecond pulsars (MSPs) by the Fermi Large Area Telescope (LAT). We present results from 3D emission modeling, including the Special Relativistic effects of aberration and time-of-flight delays and also rotational sweepback of 13-field lines, in the geometric context of polar cap (PC), slot gap (SG), outer gap (OG), and two-pole caustic (TPC) pulsar models. In contrast to the general belief that these very old, rapidly-rotating neutron stars (NSs) should have largely pair-starved magnetospheres due to the absence of significant pair production, we find that most of the light curves are best fit by SG and OG models, which indicates the presence of narrow accelerating gaps limited by robust pair production -- even in these pulsars with very low spin-down luminosities. The gamma-ray pulse shapes and relative phase lags with respect to the radio pulses point to high-altitude emission being dominant for all geometries. We also find exclusive differentiation of the current gamma-ray MSP population into two MSP sub-classes: light curve shapes and lags across wavebands impose either pair-starved PC (PSPC) or SG / OG-type geometries. In the first case, the radio pulse has a small lag with respect to the single gamma-ray pulse, while the (first) gamma-ray peak usually trails the radio by a large phase offset in the latter case. Finally, we find that the flux correction factor as a function of magnetic inclination and observer angles is typically of order unity for all models. Our calculation of light curves and flux correction factor f(_, _, P) for the case of MSPs is therefore complementary to the "ATLAS paper" of Watters et al. for younger pulsars.
    Keywords: Astronomy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: Prior to the launch of Fermi, only weak gamma-ray pulsations from a single millisecond pulsar, PSR J0218+4232, had been reported. A firm detection of gamma rays from a member of this class of pulsar having periods near neutron star break-up and magnetic dipole moments well below those of normal pulsars would provide new insights into pulsar acceleration and emission. Using accurate ephemerides obtained from several radio telescopes as well as the unprecedented accuracy of the GPS-derived clocks used by Fermi and the LAT, we have searched for gamma-ray pulsations from known pulsars over a broad range of timing parameters. We will present some results from our search for pulsed gamma rays from millisecond pulsars.
    Keywords: Astronomy
    Type: 213th American Astronomical Society Meeting; Jan 04, 2009 - Jan 08, 2009; California; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: Sub-orbital programs can push science to new limits by deploying the very latest in instrument concepts and technologies. Many space missions have sprung from sub-orbital programs, scientifically, technologically, and personally. I will illustrate the sub-orbital potential with examples from cosmology, interferometry, high-energy astrophysics, and others foreseen in NASA roadmaps.
    Keywords: Space Sciences (General)
    Type: American Astronomical Society (AAS)Meeting; Jan 04, 2009 - Jan 08, 2009; Long Beach, Ca; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-19
    Description: The delivery of amino acids to the early Earth by comets and their fragments could have been a significant source of the early Earth's prebiotic organic inventory that led to the emergence of life (Chyba and Sagan, 1992). Over 20 organic molecules including methane, ethane, ammonia, cyanic acid, formaldehyde, formamide, acetaldehyde, acetonitrile, and methanol have been identified by radio spectroscopic observations of the comae of comets Hale-Bopp and Hyakutake (Crovisier et al. 2004). These simple molecules could have provided the organic reservoir to allow the formation of more complex prebiotic organic compounds such as amino acids. After a 7-year mission, the Stardust spacecraft returned to Earth samples from comet Wild 2 on January 15, 2006 providing the opportunity to analyze the organic composition and isotopic distribution of cometary material with state-of-the-art laboratory instrumentation. The Preliminary Examination Team analyses of organics in samples returned by Stardust were largely focused on particles that impacted the collector aerogel and aluminum foil (Sandford et al. 2006). However, it is also possible that Stardust returned a "diffuse" sample of gas-phase organic molecules that struck the aerogel directly or diffused away from the grains after impact. To test this possibility, samples of Stardust flight aerogel and foil were carried through a hot water extraction and acid hydrolysis procedure to see if primary amine compounds were present in excess of those seen in controls. Here we report highly sensitive liquid chromatography time-of-flight mass spectrometry measurements of amino acids and amines in samples returned from a comet (Glavin et al. 2008). A suite of amino acids and amines including glycine, L-alanine, methylamine (MA), and ethylamine (EA) were identified in the Stardust bulk aerogel. With the exception of MA and EA, all other primary amines detected in comet-exposed aerogels were also present in the aerogel witness tile that was not exposed to Wild 2, suggesting that most amines are terrestrial in origin. However, the enhanced abundances of MA, EA, and possibly glycine in comet-exposed aerogel compared to controls, coupled with MA to EA ratios (1 to 2) that are distinct from preflight aerogels (7 to 10), suggest that these amines were captured from Wild 2. It is possible that MA and EA were formed on energetically processed icy grains containing methane, ethane, and ammonia. The presence of cometary amines in Stardust material supports the hypothesis that comets were an important source of prebiotic organics on the early Earth. To better understand their origin, a systematic compound specific carbon isotopic analysis (C-CSIA) via gas chromatography quadrupole mass spectrometry in with parallel with combustion isotope ratio mass spectrometry (GCQMS/ IRMS) is being conducted. We will discuss our latest C-CSIA measurements and what they indicate about the origin of amino acids extracted from Stardust samples.
    Keywords: Astronomy
    Type: Origins of Life and Evolution of the Biosphere; 39; 179-392
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-07-19
    Description: Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission, and SOFIA will continue to provide exciting new discoveries. The relatively low angular resolution of these missions, however, is insufficient to resolve the physical scale on which mid-to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths - a powerful tool for scientific discovery. We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII), an eight-meter baseline Michelson stellar interferometer to fly on a high-altitude balloon. BETTII's spectral-spatial capability, provided by an instrument using double-Fourier techniques, will address key questions about the nature of disks in young star clusters and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the technological groundwork for future space interferometers and for suborbital programs optimized for studying extrasolar planets.
    Keywords: Astronomy
    Type: Pathways Towards Habitable Planets; Aug 14, 2009 - Aug 18, 2009; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: The Primordial Inflation Polarization Explorer is a balloon-borne instrument to measure the polarization of the cosmic microwave background in order to detect the characteristic signature of gravity waves created during an inflationary epoch in the early universe. PIPER combines cold /I.G K\ optics, 5120 bolometric detectors, and rapid polarization modulation using VPM grids to achieve both high sensitivity and excellent control of systematic errors. I will discuss the current status and plans for the PIPER instrument.
    Keywords: Astronomy
    Type: The Path to CMBPol: Upcoming Measurements of CMB Polarization; Jul 01, 2009 - Jul 03, 2009; Chicago, IL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: In addition to probing inflationary cosmology, PIPER will measure the polarized dust emission from the Galaxy. PIPER will be capable of full (I,0,U,V) measurement over four frequency bands ' These measurements will provide insight into the physics of dust grains and a probe of the Galactic magnetic field on large and intermediate scales.
    Keywords: Astronomy
    Type: The Path to CMBP0l: Upcoming Measurements of DMB Polarizaiton; Jul 01, 2009 - Jul 03, 2009; Chicago, IL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: We report on a study of approx.20,000 luminous red galaxies (LRG's) at z=0.4-0.5 observed by the Sloan Digital Sky Survey. In order to differentiate among them, we measured restframe magnitudes, u (3000-3500 A), b (4200-4800 A), and y (5700-6300 A) from the spectra themselves. The galaxies show a significant range in restframe colors and absolute magnitudes. We binned the spectra according to the restframe u-b color and y-band absolute magnitude in order to increase the S/N. We used 3 approaches to estimate the ages and metal content of these binned spectra: via their spectral energy distributions, from spectral-line indices, and by full spectral fitting. The three methods usually produce discordant results
    Keywords: Astronomy
    Type: VIIth Marseille International Cosmology Conference. Harvesting the Desert: The Universe between Redshift 1 and 3; Jun 29, 2009 - Jul 03, 2009; Marseille; France|International Astronomical Union (IAU) XXVII; Aug 03, 2009 - Aug 14, 2009; Rio de Janeiro; Brazil|Bridging Laboratory and Astrophysics: From the Infrared to the Submm; Jun 08, 2009 - Jun 10, 2009; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-07-19
    Description: Recently the Advanced Thin Ionization Calorimeter (ATIC) balloon experiment reported observations of high energy cosmic ray electrons over the energy range 300 to 800 GeV, indicating a feature or "bump" in the otherwise smoothly decreasing energy spectrum. The severe energy losses that occur as these high energy particles traverse the galaxy render the cosmic ray electron spectrum sensitive to local (a few kiloparsecs) sources and hence very interesting. The ATIC results are the first time that such a cosmic ray spectrum anomaly has been observed at high energy. Potential sources of this electron excess include pulsars, microquasars, supernovae remnants as well as the annihilation of exotic dark matter candidate particles. ATIC has had three successful high altitude flights over the continent of Antarctica 2000-2001, 2002-2003 and 2007-2008. Only results from the first two flights have been reported so far. During this talk we will discuss the ATIC experiment, the electron observations (including preliminary results from the most recent ATIC flight), examine the merits of the various source models and compare the ATIC observations with other recent measurements.
    Keywords: Astronomy
    Type: M09-0288 , April meeting of the APS; May 02, 2009 - May 05, 2009; Denver, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-07-19
    Description: Scores of compounds are found in the International Space Station (ISS) atmospheric samples that are returned to the Johnson Space Center Toxicology Laboratory for analysis. Spacecraft Maximum Allowable Concentrations (SMACs) are set with the view that each compound is present as if there were no other compounds present. In order to apply SMACs to the interpretation of the analytical data, the toxicologist must employ some method of combining the potential effects of the aggregate of compounds found in the atmospheric samples. The simplest approach is to assume that each quantifiable compound has the potential for some effect in proportion to the applicable SMAC, and then add all the proportions. This simple paradigm disregards the fact that most compounds have potential to adversely affect only a few physiological systems, and their effects would be independent rather than additive. An improved approach to dealing with exposure to mixtures is to add the proportions only for compounds that adversely affect the same physiological system. For example, toxicants that cause respiratory irritation are separated from those that cause neurotoxicity or cardio-toxicity. Herein we analyze ISS air quality data according to toxicological groups with a view that this could be used for understanding any crew symptoms occurring at the time of the sample. In addition, this approach could be useful in post-flight longitudinal surveys where the flight surgeon may need to identify post-flight, follow-up medical studies because of on-orbit exposures that target specific physiological systems.
    Keywords: Space Sciences (General)
    Type: JSC-CN-19331 , International Conference on Environmental Systems; Jul 12, 2010 - Jul 15, 2010; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-19
    Description: A community modeling program, which provides a forum for exchange and integration between modelers, has excellent potential for furthering our Space Weather modeling and forecasting capabilities. The design of such a program is of great importance to its success. In this presentation, we will argue that the most effective community modeling program should be focused on Space Weather-related objectives, and that it should be open and inclusive. The tremendous successes of prior community research activities further suggest that the most effective implementation of a new community modeling program should be based on community leadership, rather than on domination by individual institutions or centers. This presentation will provide an experience-based justification for these conclusions.
    Keywords: Space Sciences (General)
    Type: American Meteorological Society meeting/Space Weather Workshop; Jan 12, 2009 - Jan 15, 2009; Phoenix, AZ; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-19
    Description: The Texas Space Grant Consortium (TSGC) and the Exploration Systems Mission Directorate (ESMD) both have programs that present design challenges for university senior design classes that offer great opportunities for educational outreach and workforce development. These design challenges have been identified by NASA engineers and researchers as real design problems faced by the Constellation Program in its exploration missions and architecture. Student teams formed in their senior design class select and then work on a design challenge for one or two semesters. The senior design class follows the requirements set by their university, but it must also comply with the Accreditation Board for Engineering and Technology (ABET) in order to meet the class academic requirements. Based on a one year fellowship at a TSGC university under the NASA Administrator's Fellowship Program (NAFP) and several years of experience, results and metrics are presented on the NASA Design Challenge Program.
    Keywords: Space Sciences (General)
    Type: JSC-CN-19234 , International Conference on Environmental Systems; Jul 11, 2010 - Jul 15, 2010; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-19
    Description: Manned space vehicles have a common requirement to remove the Carbon Dioxide (CO2) created by the metabolic processes of the crew. The Space Shuttle and International Space Station (ISS) each have systems in place to allow control and removal of CO2 from the habitable cabin environment. During periods where the Space Shuttle is docked to ISS, known as joint docked operations, the Space Shuttle and ISS share a common atmosphere environment. During this period there is an elevated production of CO2 caused by the combined metabolic activity of the Space Shuttle and ISS crew. This elevated CO2 production, combined with the large effective atmosphere created by the collective volumes of the docked vehicles, creates a unique set of requirements for CO2 removal. This paper will describe the individual CO2 control plans implemented by the Space Shuttle and ISS engineering teams, as well as the integrated plans used when both vehicles are docked. In addition, the paper will discuss some of the issues and anomalies experienced by both engineering teams.
    Keywords: Space Sciences (General)
    Type: JSC-CN-19211 , International Conference on Environmental Systems; Jul 11, 2010 - Jul 15, 2010; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: The Fermi Gamma-ray Space Telescope, formerly called GLAST, is a mission to measure the cosmic gamma-ray flux in the energy range 20 MeV to more than 300 GeV, with supporting measurements for gamma-ray bursts from 8 keV to 30 MeV. In addition to breakthrough capabilities in energy coverage and localization, the very large field of view enables observations of 20% of the sky at any instant, and the entire sky on a timescale of a few hours. With its recent launch on 11 June 2008, Fermi now opens a new and important window on a wide variety of phenomena, including pulsars, black holes and active galactic nuclei, gamma-ray bursts, the origin of cosmic rays and supernova remnants, and searches for hypothetical new phenomena such as supersymmetric dark matter annihilations. In addition to early results and the science opportunities, this talk includes a description of the instruments and the mission status and plans.
    Keywords: Astronomy
    Type: 213th Meeting of the American Astronomical Society with HAD and HEAD; Jan 04, 2009 - Jan 08, 2009; California; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-19
    Description: During MESSENGER'S second flyby of Mercury on October 6,2008, very intense reconnection was observed between the planet's magnetic field and a steady southward interplanetary magnetic field (IMF). The dawn magnetopause was threaded by a strong magnetic field normal to its surface, approx.14 nT, that implies a rate of reconnection approx.10 times the typical rate at Earth and a cross-magnetospheric electric potential drop of approx.30 kV. The highest magnetic field observed during this second flyby, approx.160 nT, was found at the core of a large dayside flux transfer event (FTE). This FTE is estimated to contain magnetic flux equal to approx.5% that of Mercury's magnetic tail or approximately one order of magnitude higher fraction of the tail flux than is typically found for FTEs at Earth. Plasmoid and traveling compression region (TCR) signatures were observed throughout MESSENGER'S traversal of Mercury's magnetotail with a repetition rate comparable to the Dungey cycle time of approx.2 min. The TCR signatures changed from south-north, indicating tailward motion, to north-south, indicating sunward motion, at a distance approx.2.6 RM (where RM is Mercury's radius) behind the terminator indicating that the near-Mercury magnetotail neutral line was crossed at that point. Overall, these new MESSENGER observations suggest that magnetic reconnection at the dayside magnetopause is very intense relative to what is found at Earth and other planets, while reconnection in Mercury's tail is similar to that in other planetary magnetospheres, but with a very short Dungey cycle time.
    Keywords: Space Sciences (General)
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, Herschel, and SOFIA will continue to provide exciting new discoveries. The relatively low angular resolution of these missions, however, is insufficient to resolve the physical scale on which mid-to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths - a powerful tool for scientific discovery. We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII), an eight-meter baseline Michelson stellar interferometer to fly on a high-altitude balloon. BETTII's spectral-spatial capability, provided by an instrument using double-Fourier techniques, will address key questions about the nature of disks in young star clusters and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the technological groundwork for future balloon programs, paving the way for interferometric observations of exoplanets.
    Keywords: Astronomy
    Type: Low Cost Access to Near Space 2009; Oct 25, 2009 - Oct 28, 2009; Boulder, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-19
    Description: Direct infrared imaging and spectroscopy of exoplanets will allow for detailed characterization of the atmospheric constituents of more than 200 nearby Earth-like planets, more than is possible with any other method under consideration. A flagship mission based on larger passively cooled infrared telescopes and formation flying technologies would have the highest angular resolution of any concept under consideration. The 2008 Exoplanet Forum committee on Direct Infrared Imaging of Exoplanets recommends: (1) a vigorous technology program including component development, integrated testbeds, and end-to-end modeling in the areas of formation flying and mid-infrared nulling; (2) a probe-scale mission based on a passively cooled structurally connected interferometer to be started within the next two to five years, for exoplanetary system characterization that is not accessible from the ground, and which would provide transformative science and lay the engineering groundwork for the flagship mission with formation flying elements. Such a mission would enable a complete exozodiacal dust survey (〈1 solar system zodi) in the habitable zone of all nearby stars. This information will allow for a more efficient strategy of spectral characterization of Earth-sized planets for the flagship missions, and also will allow for optimization of the search strategy of an astrometric mission if such a mission were delayed due to cost or technology reasons. (3) Both the flagship and probe missions should be pursued with international partners if possible. Fruitful collaboration with international partners on mission concepts and relevant technology should be continued. (4) Research and Analysis (R&A) should be supported for the development of preliminary science and mission designs. Ongoing efforts to characterize the the typical level of exozodiacal light around Sun-like stars with ground-based nulling technology should be continued.
    Keywords: Astronomy
    Type: Missions for Exoplanets 2010-2020; Apr 20, 2009 - Apr 24, 2009; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-19
    Description: Dust coming from asteroids and comets will strongly affect direct imaging and characterization of terrestrial planets in the Habitable Zones of nearby stars. Such dust in the Solar System is called the zodiacal dust (or 'zodi' for short). Higher levels of similar dust are seen around many nearby stars, confined in disks called debris disks. Future high-contrast images of an Earth-like exoplanet will very likely be background-limited by light scattered of both the local Solar System zodi and the circumstellar dust in the extrasolar system (the exozodiacal dust). Clumps in the exozodiacal dust, which are expected in planet-hosting systems, may also be a source of confusion. Here we discuss the problems associated with imaging an Earth-like planet in the presence of unknown levels of exozodiacal dust. Basic formulae for the exoplanet imaging exposure time as function of star, exoplanet, zodi, exozodi, and telescope parameters will be presented. To examine the behavior of these formulae, we apply them to the New Worlds Observer (NWO) mission. NWO is a proposed 4-meter UV/optical/near-IR telescope, with a free flying starshade to suppress the light from a nearby star and achieve the high contrast needed for detection and characterization of a terrestrial planet in the star's Habitable Zone. We find that NWO can accomplish its science goals even if exozodiacal dust levels are typically much higher than the Solar System zodi level. Finally, we highlight a few additional problems relating to exozodiacal dust that have yet to be solved.
    Keywords: Astronomy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-19
    Description: The International X-ray Observatory requires mirror assemblies with unprecedented characteristics that cannot be provided by existing optical technologies. In the past several years, the project has supported a vigorous mirror technology development program. This program includes the fabrication of lightweight mirror segments by slumping commercially available thin glass sheets, the support and mounting of these thin mirror segments for accurate metrology, the mounting and attachment of these mirror segments for the purpose of X-ray tests, and development of methods for aligning and integrating these mirror segments into mirror assemblies. This paper describes our efforts and developments in these areas.
    Keywords: Astronomy
    Type: 213th Meeting of the American Astronomical Society; Jan 04, 2009 - Jan 09, 2009; Long Beach, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-19
    Description: We have resolved the outer structures of the massive binary interacting wind of Eta Carinae using the HST/STIS. They extend as much as 0.7' (1600AU) and are highly distorted due to the very elliptical orbit of the binary system. Observations conducted from 1998.0 to 2004.3 show spatial and temporal variations consistent with a massive, low excitation wind, seen by spatially resolved, velocity-broadened [Fe II], and a high excitation extended wind interaction region, seen by[Fe III], in the shape of a distorted paraboloid. The highly excited [Fe III] structure is visible for 90% of the 5.5-year period, but disappears as periastron occurs along with the drop of X-Rays as seen by RXTE. Some components appear in [Fe II] emission across the months long minimum. We will discuss the apparent differences between the bowshock orientation derived from the RXTE light curve and these structures seen by HST/STIS. Monitoring the temporal variations with phase using high spatial resolution with appropriate spectral dispersions proves to be a valuable tool for understanding massive wind interactions.
    Keywords: Astronomy
    Type: 213th Meeting of the American Astronomical Society with HAD and HEAD: 2009 International Year of Astronomy; Jan 04, 2009 - Jan 08, 2009; Long Beach, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-19
    Description: Space-based astronomy is going through a renaissance, with three Great Observatories currently flying: Hubble in the visible and ultraviolet, Spitzer in the infrared and Chandra in X-rays. The future looks equally bright. The final servicing mission to Hubble will take place in February 2009 and promises to make the observatory more capable than ever with two new cameras, and refurbishment that will allow it to last at least five years. The upcoming launch of the Herschel Space Telescope will open the far-infrared to explore the cool and dusty Universe. Finally, we look forward to the launch of the James Webb Space Telescope in 2013, which wil provide a successor to both Hubble and Spitzer. In this talk, the author discusses some of the highlights of scientific discovery in the last 10 years and reveals the promise to the next 10 years.
    Keywords: Astronomy
    Type: Opening Ceremonies of the 2009 International Year of Astronomy; Jan 13, 2009 - Jan 17, 2009; Paris; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-27
    Description: Potential Mars Sample Return missions would aspire to collect small core and regolith samples using a rover with a sample acquisition tool and sample caching system. Samples would need to be stored in individual sealed tubes in a canister that could be transfered to a Mars ascent vehicle and returned to Earth. A sample handling, encapsulation and containerization system (SHEC) has been developed as part of an integrated system for acquiring and storing core samples for application to future potential MSR and other potential sample return missions. Requirements and design options for the SHEC system were studied and a recommended design concept developed. Two families of solutions were explored: 1)transfer of a raw sample from the tool to the SHEC subsystem and 2)transfer of a tube containing the sample to the SHEC subsystem. The recommended design utilizes sample tool bit change out as the mechanism for transferring tubes to and samples in tubes from the tool. The SHEC subsystem design, called the Bit Changeout Caching(BiCC) design, is intended for operations on a MER class rover.
    Keywords: Space Sciences (General)
    Type: AIAA SPACE 2009 Conference & Exposition; 14-17 Sept. 2009; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-19
    Description: The scientific capabilities of the James Webb Space Telescope fall into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and dark matter, gas, stars, metals morphological structures, and active nuclei within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and investigate the potential for life in those systems. A comprehensive, top-level review of JWST sciences was published in the journal Space Science Reviews (Gardner et al. 2006, SSR, 123, 485). That paper gives details of the 4 JWST science themes, and describes the design of the observatory and ground system. Since that paper was published, the JWST Science Working Group, working with members of the astronomical community, has continued to develop the science case for JWST, giving more details in a series of white papers. In this poster, the main science themes and white papers are reviewed.
    Keywords: Astronomy
    Type: 213th Meetin gof the American Astronomical Society with HAD and HEAD; Jan 04, 2008 - Jan 08, 2008; Long Beach, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: The James Webb Space Telescope (JWST) is a large aperture (6.5 meter), cryogenic space telescope with a suite of near and mid-infrared instruments covering the wavelength range of 0.6 pm to 28 pm. JWST's primary science goal is to detect and characterize the first galaxies. It will also study the assembly of galaxies, star formation, and the formation of evolution of planetary systems. We will present an overview of the Observatory's current design following the Mission Preliminary Design Review, (PDR). Recent progress in hardware development for the observatory will be presented, including a discussion of the status of JWST's optical system and Beryllium mirror fabrication, progress with sunshield prototypes, and recent changes in the integration and test configuration. We also review the expected scientific performance of the observatory based on the mission PDR design.
    Keywords: Astronomy
    Type: 2008 International Year Astronomy - AAS; Jan 04, 2009 - Jan 08, 2009; Long Beach, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-26
    Description: The LISA space mission, designed to monitor low frequency gravitational waves, is also sensitive to passages of asteroids nearby one of its three spacecrafts. We report the expected rate of detections of asteroid passages, using the known catalog of asteroids and a modeled population. The method adopted consists of determining for each known asteroid the critical encounter distance capable of producing a detectable event, and then computing the rate of encounters within this distance. Results are then scaled to the modeled population using its differential distribution in absolute magnitude, correcting for selection effects. We find that an average of 2.0 +/- 0.1 events per year at a signal-to-noise ratio of 1 will be detected by LISA, including all the asteroids in the modeled population with absolute magnitude H 〈 22, roughly equivalent to all asteroids with a diameter larger than 100 m.
    Keywords: Space Sciences (General)
    Type: Classical and Quantum Gravity; 26; 8
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-12
    Description: We present deep Chandra observations and Spitzer Space Telescope infrared (IR) spectroscopy of the shell in the composite supernova remnant (SNR) Kes 75 (G29.7-0.3). The remnant is composed of a central pulsar wind nebula and a bright partial shell in the south that is visible at radio, IR, and X-ray wavelengths. The X-ray emission can be modeled by either a single thermal component with a temperature of ~ 1.5 keV, or with two thermal components with temperatures of 1.5 and 0.2 keV. Previous studies suggest that the hot component may originate from reverse-shocked SN ejecta. However, our new analysis shows no definitive evidence for enhanced abundances of Si, S, Ar, Mg, and Fe, as expected from supernova (SN) ejecta, or for the IR spectral signatures characteristic of confirmed SN condensed dust, thus favoring a circumstellar or interstellar origin for the X-ray and IR emission. The X-ray and ill emission in the shell are spatially correlated, suggesting that the dust particles are collisionally heated by the X-ray emitting gas. The IR spectrum of the shell is dominated by continuum emission from dust with little, or no line emission. Modeling the IR spectrum shows that the dust is heated to a temperature of ~ 140 K by a relatively dense, hot plasma, that also gives rise to the hot X-ray emission component. The density inferred from the IR emission is significantly higher than the density inferred from the X-ray models, suggesting a low filling factor for this X-ray emitting gas. The total mass of the warm dust component is at least 1.3 x 10(exp -2) solar mass, assuming no significant dust destruction has occurred in the shell. The IR data also reveal the presence of an additional plasma component with a cooler temperature, consistent with the 0.2 keV gas component. Our IR analysis therefore provides an independent verification of the cooler component of the X-ray emission. The complementary analyses of the X-ray and IR emission provide quantitative estimates of density and filling factors of the clumpy medium swept up by the SNR.
    Keywords: Astronomy
    Type: GSFC.JA.6941.2012
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-12
    Description: The National Aeronautics and Space Administration of the United States of America (NASA) has arguably led this planet in space exploration and certainly has been one of two major leaders in those endeavors. NASA governance is institutionalized and managed in a series documents arranged in a hierarchy and flowing down to the work levels. A document tree of NASA s documentation in its totality would likely overwhelm and not be very informative. Taken in segments related to the various business topics and focusing in those segments, however, provides a logical and understandable relationship and flow of requirements and processes. That is the nature of this chapter, a selection of NASA documentation pertaining to space exploration and a description of how those documents together form the plan by which NASA business for space exploration is conducted. Information presented herein is taken from NASA publications and is available publicly and no information herein is protected by copyright or security regulations. While NASA documents are the source of information presented herein, any and all views expressed herein and any misrepresentations of NASA data that may occur herein are those of the author and should not be considered NASA official positions or statements, nor should NASA endorsement of anything presented in this work be assumed.
    Keywords: Space Sciences (General)
    Type: M09-0702
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-12
    Description: We searched for X-ray shadowing toward two infrared dark clouds (IRDCs) using the MOS detectors on XMM-Newton to learn about the Galactic distribution of X-ray emitting plasma. IRDCs make ideal X-ray shadowing targets of 3/4 keY photons due to their high column densities, relatively large angular sizes, and known kinematic distances. Here we focus on two clouds near 30 deg Galactic longitude at distances of 2 and 5 kpc from the Sun. We derive the foreground and background column densities of molecular and atomic gas in the direction of the clouds. We find that the 3/4 ke V emission must be distributed throughout the Galactic disk. It is therefore linked to the structure of the cooler material of the ISM, and to the birth of stars.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-12
    Description: We report on the first Suzaku observation of IGR J16318-4848, the most extreme example of a new group of highly absorbed X-ray binaries that have recently been discovered by the International Gamma-Ray Astrophysics Laboratory (INTEGRAL). The Suzaku observation was carried out between 2006 August 14 and 17, with a net exposure time of 97 ks. The average X-ray spectrum of the source can be well described (chi-square (sub red)= 0.99) with a continuum model typical for neutron stars i.e., a strongly absorbed power law continuum with a photon index of 0.676(42) and an exponential cutoff at 20.5(6) keY. The absorbing column is N(sub H) = 1.95(3) X 10(exp 24)/square cm. Consistent with earlier work, strong fluorescent emission lines of Fe K-alpha, Fe K-beta, and Ni K-alpha are observed. Despite the large N(sub H), no Compton shoulder is seen in the lines, arguing for a non-spherical and inhomogeneous absorber. Seen at an average 5-60 keV absorbed flux of 3.4 x 10(exp -10) erg/square cm/second, the source exhibits significant variability on timescales of hours.
    Keywords: Astronomy
    Type: Astronomy and Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-12
    Description: Because MIOl is nearly face-on, it provides an excellent laboratory in which to study the distribution of X-ray emitting gas in a typical late-type spiral galaxy. We obtained a Chandra observation with a cumulative exposure of roughly 1 Ms to study the diffuse X-ray emission in MlOl. The bulk of the X-ray emission is correlated with the star formation traced by the FUV emission. The global FUV/Xray correlation is non-linear (the X-ray surface brightness is roughly proportional to the square root of the FUV surface brightness) and the small-scale correlation is poor, probably due to the delay between the FUV emission and the X-ray production ill star-forming regions. The X-ray emission contains only minor contributions from unresolved stars (approximates less than 3%), unresolved X-ray point sources (approximates less than 4%), and individual supernova remnants (approximates 3%). The global spectrum of the diffuse emission can be reasonably well fitted with a three component thermal model, but the fitted temperatures are not unique; many distributions of emission measure can produce the same temperatures when observed with the current CCD energy resolution. The spectrum of the diffuse emission depends on the environment; regions with higher X-ray surface brightnesses have relatively stronger hard components, but there is no significant evidence that the temperatures of the emitting components increase with surface brightness.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-12
    Description: We present results from two observations of the wind-accreting X-ray pulsar 4U 1907+09 using the Suzaku observatory, The broadband time-averaged spectrum allows us to examine the continuum emission of the source and the cyclotron resonance scattering feature at approx. 19 keV. Additionally, using the narrow CCD response of Suzaku near 6 ke V allows us to study in detail the Fe K bandpass and to quantify the Fe Kp line for this source for the first time. The source is absorbed by fully-covering material along the line of sight with a column density of N(sub H) approx. 2 x 10(exp 22)/sq cm, consistent with a wind accreting geometry, and a high Fe abundance (approx. 3 - 4 x solar). Time and phase-resolved analyses allow us to study variations in the source spectrum. In particular, dips found in the 2006 observation which are consistent with earlier observations occur in the hard X-ray bandpass, implying a variation of the whole continuum rather than occultation by intervening material, while a dip near the end of the 2007 observation occurs mainly in the lower energies implying an increase in NH along the line of sight, perhaps indicating clumpiness in the stellar wind
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-12
    Description: In October and November of 2008, the Jet Propulsion Laboratory installed and tested essential elements of Delay/Disruption Tolerant Networking (DTN) technology on the Deep Impact spacecraft. This experiment, called Deep Impact Network Experiment (DINET), was performed in close cooperation with the EPOXI project which has responsibility for the spacecraft. During DINET some 300 images were transmitted from the JPL nodes to the spacecraft. Then, they were automatically forwarded from the spacecraft back to the JPL nodes, exercising DTN's bundle origination, transmission, acquisition, dynamic route computation, congestion control, prioritization, custody transfer, and automatic retransmission procedures, both on the spacecraft and on the ground, over a period of 27 days. All transmitted bundles were successfully received, without corruption. The DINET experiment demonstrated DTN readiness for operational use in space missions.
    Keywords: Space Sciences (General)
    Type: JPL-Publ-09-02
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-07-12
    Description: Kepler, a NASA Discovery mission, is a spaceborne telescope designed to search a nearby region of our galaxy for Earth-size planets orbiting in the habitable zone of stars like our sun. The habitable zone is that region around a start where the temperature permits water to be liquid on the surface of a planet. Liquid water is considered essential forth existence of life. Mission Phases: Six mission phases have been defined to describe the different periods of activity during Kepler's mission. These are: launch; commissioning; early science operations, science operations: and decommissioning
    Keywords: Astronomy
    Type: ARC-E-DAA-TN395
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-12
    Description: The Materials and Processes (M&P) Branch of the Structural Engineering Division at Johnson Space Center (JSC) seeks to uphold the production of dependable space hardware through materials research, which fits into NASA's purpose of advancing human exploration, use, and development of space. The Space Environmental Effects projects fully support these Agency goals. Two tasks were assigned to support M&P. Both assignments were to further the research of material behavior outside of Earth's atmosphere in order to determine which materials are most durable and safe to use in space for mitigating risks. One project, the Materials on International Space Station Experiments (MISSE) task, was to compile data from International Space Station (ISS) experiments to pinpoint beneficial space hardware. The other project was researching the effects on composite materials of exposure to high doses of radiation for a Lunar habitat project.
    Keywords: Space Sciences (General)
    Type: JSC-CN-18791
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-12
    Description: Magnetars are young neutron stars with extreme magnetic fields (B〉10(exp 14)-10(exp 15) G). How these fields relate to the properties of their progenitor stars is not yet clearly established. However, from the few objects with initial mass estimates it has been suggested that a very massive progenitor star (M(sub prog) 〉40M ) is required to produce a magnetar. Here we report that the initial progenitor star mass of the magnetar SGR 1900+14 was a factor of two lower than this limit, M(sub prog)=17+/-1M . Our results strongly contradict the prevalent hypothesis that only very massive stars can produce magnetars. Instead, we favour the "fossil-field" model as a possible explanation of the origin of these extreme magnetic fields.
    Keywords: Astronomy
    Type: M09-0541
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-12
    Description: The Antarctic plateau contains the best sites on earth for many forms of astronomy, but none of the existing bases were selected with astronomy as the primary motivation. In this paper, we try to systematically compare the merits of potential observatory sites. We include South Pole, Domes A, C and F, and also Ridge B (running NE from Dome A), and what we call Ridge A (running SW from Dome A). Our analysis combines satellite data, published results and atmospheric models, to compare the boundary layer, weather, free atmosphere, sky brightness, pecipitable water vapour, and surface temperature at each site. We find that all Antarctic sites are likely compromised for optical work by airglow and aurorae. Of the sites with existing bases, Dome A is the best overall; but we find that Ridge A offers an even better site. We also find that Dome F is a remarkably good site. Dome C is less good as a thermal infrared or terahertz site, but would be able to take advantage of a predicted OH hole over Antarctica during Spring.
    Keywords: Astronomy
    Type: LF99-8851
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: This report documents the generation of an outbound Earth to Moon transfer preliminary database consisting of four cases calculated twice a day for a 19 year period. The database was desired as the first step in order for NASA to rapidly generate Earth to Moon trajectories for the Constellation Program using the Mission Assessment Post Processor. The completed database was created running a flight trajectory and optimization program, called Copernicus, in batch mode with the use of newly created Matlab functions. The database is accurate and has high data resolution. The techniques and scripts developed to generate the trajectory information will also be directly used in generating a comprehensive database.
    Keywords: Space Sciences (General)
    Type: JSC-CN-18922
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-12
    Description: Although NASA has conducted research on orbital debris since the 1960s, the NASA Orbital Debris Program Office is now considered to have been established in October 1979, following the recognition by senior NASA officials of orbital debris as a space environmental issue and the allocation by NASA Headquarters Advanced Programs Office to the Lyndon B. Johnson Space Center (JSC) of funds specifically dedicated for orbital debris investigations. In the 30 years since, the NASA Orbital Debris Program Office has pioneered the characterization of the orbital debris environment and its potential effects on current and future space systems, has developed comprehensive orbital debris mitigation measures, and has led efforts by the international aerospace community in addressing the challenges posed by orbital debris. In 1967 the Flight Analysis Branch at the Manned Spacecraft Center (renamed the Lyndon B. Johnson Space Center in 1973) evaluated the risks of collisions between an Apollo spacecraft and orbital debris. Three years later the same group calculated collision risks for the forthcoming Skylab space station, which was launched in 1973. By 1976, the nucleus of NASA s yet-to-be-formed orbital debris research efforts, including Andrew Potter, Burton Cour-Palais, and Donald Kessler, was found in JSC s Environmental Effects Office, examining the potential threat of orbital debris to large space platforms, in particular the proposed Solar Power Satellites (SPS).
    Keywords: Space Sciences (General)
    Type: JSC-CN-18990
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-12
    Description: This report summarizes research accomplishments on the International Space Station (ISS) through the first 15 Expeditions. When research programs for early Expeditions were established, five administrative organizations were executing research on ISS: bioastronautics research, fundamental space biology, physical science, space product development, and space flight. The Vision for Space Exploration led to changes in NASA's administrative structures, so we have grouped experiments topically by scientific themes human research for exploration, physical and biological sciences, technology development, observing the Earth, and educating and inspiring the next generation even when these do not correspond to the administrative structure at the time at which they were completed. The research organizations at the time at which the experiments flew are preserved in the appendix of this document. These investigations on the ISS have laid the groundwork for research planning for Expeditions to come. Humans performing scientific investigations on ISS serve as a model for the goals of future Exploration missions. The success of a wide variety of investigations is an important hallmark of early research on ISS. Of the investigations summarized here, some are completed with results released, some are completed with preliminary results, and some remain ongoing.
    Keywords: Space Sciences (General)
    Type: NASA/TP-2009-213146-REVA , S-978 , JSC-CN-17592
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-12
    Description: This paper presents new observations of the AGNs M87 and Hydra A at 90 GHz made with the MUSTANG bolometer array on the Green Bank Telescope at 8.5" resolution. A spectral analysis is performed combining this new data and archival VLA data or1 these objects at longer wavelengths. This analysis can detect variations in spectral index and curvature expected from energy losses in the radiating particles. L187 shows only weak evidence for steepening of the spectrum along the jet suggesting either re-acceleration of the relativistic particles in the jet or insufficient los~esto affect the spectrum at 90 GHz The jets in Hydra A show strong steepening as they move from the nucleus suggesting unbalanced losses of the higher energy relativistic particles The difference between these two sources may be accounted for by the different lengths over which the jets are observable, 2 kpc for 5187 and 45 kpc for Hydra A. Subject headings: galaxies: jets, galaxies: active, radio continuum, galaxies: individual (M87. Hydra A),
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-08-13
    Description: The FLUKA nuclear transport and reaction code can be developed into a practical tool for calculation of spacecraft and planetary surface asset SEE and TID environments. Nuclear reactions and secondary particle shower effects can be estimated with acceptable accuracy both in-flight and in test. More detailed electronic device and/or spacecraft geometries than are reported here are possible using standard FLUKA geometry utilities. Spacecraft structure and shielding mass. Effects of high Z elements in microelectronic structure as reported previously. Median shielding mass in a generic slab or concentric sphere target geometry are at least approximately applicable to more complex spacecraft shapes. Need the spacecraft shielding mass distribution function applicable to the microelectronic system of interest. SEE environment effects can be calculated for a wide range of spacecraft and microelectronic materials with complete nuclear physics. Evaluate benefits of low Z shielding mass can be evaluated relative to aluminum. Evaluate effects of high Z elements as constituents of microelectronic devices. The principal limitation on the accuracy of the FLUKA based method reported here are found in the limited accuracy and incomplete character of affordable heavy ion test data. To support accurate rate estimates with any calculation method, the aspect ratio of the sensitive volume(s) and the dependence must be better characterized.
    Keywords: Space Sciences (General)
    Type: JSC-CN-19144 , Microelectronics Reliability and Qualification Workshop; Dec 08, 2009 - Dec 09, 2009; Manhattan Beach, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-13
    Description: Gamma-ray bursts (GRBs) are among the most fascinating occurrences in the universe. They are powerful explosions, visible to high redshift, and thought to be the signature of black hole formation. The Swift Observatory has been detecting 100 bursts per year for 4 years and has greatly stimulated the field with new findings. Observations are made of the X-ray and optical afterglow from approximately 1 minute after the burst, continuing for days. Evidence is building that the long and short duration subcategories of GRBs have very different origins: massive star core collapse to a black hole for long bursts and binary neutron star coalescence to a black hole for short bursts. The similarity to Type II and Ia supernovae originating from young and old stellar progenitors is striking. Bursts are providing a new tool to study the high redshift universe. Swift has detected several events at z〉5 and one at z=6.7 giving metallicity measurements and other data on galaxies at previously inaccessible distances. The talk will present the latest results from Swift in GRB astronomy.
    Keywords: Astronomy
    Type: Nonlinear Processes in Astrophysical Plasma; Sep 28, 2009 - Oct 02, 2009; Santa Barbara, CA; United States|Astro2010: The Astronomy and Astrophysics Decadal Survey. Program Prioritization Panels; Jun 08, 2009 - Jun 11, 2009; Pasadena, California; United States|American Astronomical Society Meeting; Jan 07, 2008 - Jan 11, 2008; Austin, TX; United States|Stellar Death and Supernovae Conference; Aug 17, 2009 - Aug 21, 2009; Santa Barbara, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-08-13
    Description: The 'Future Directions in Ultraviolet Spectroscopy' conference was inspired by the accomplishments of the Far Ultraviolet Spectroscopic Explorer (FUSE) Mission. The FUSE mission was launched in June 1999 and spent over eight years exploring the far-ultraviolet universe, gathering over 64 million seconds of high-resolution spectral data on nearly 3000 astronomical targets. The goal of this conference was not only to celebrate the accomplishments of FUSE, but to look toward the future and understand the major scientific drivers for the ultraviolet capabilities of the next generation fo space observatories. Invited speakers presented discussions based on measurements made by FUSE and other ultraviolet instruments, assessed their connection with measurements made with other techniques and, where appropriate, discussed the implications of low-z measurements for high-z phenomena. In addition to the oral presentations, many participants presented poster papers. The breadth of these presentation made it clear that much good science is still in progress with FUSE data and that these result will continue to have relevance in many scientific areas.
    Keywords: Astronomy
    Type: Future Directions in Ultraviolet Spectroscopy: A Conference Inspired by the Accomplishments of the Far Ultraviolet Spectroscopic Explorer Mission; Oct 20, 2008 - Oct 22, 2008; Annapolis, MD; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...