ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Aerodynamics  (32)
  • Fluid Mechanics and Thermodynamics  (16)
  • 1950-1954  (48)
  • 1953  (25)
  • 1950  (23)
  • 1
    Publication Date: 2019-06-28
    Description: Experiments have been made at Stanford University to determine the performance characteristics of plane-wall, two-dimensional diffusers which were so proportioned as to insure reasonable approximation of two-dimensional flow. All of the diffusers had identical entrance cross sections and discharged directly into a large plenum chamber; the test program included wide variations of divergence angle and length. During all tests a dynamic pressure of 60 pounds per square foOt was maintained at the diffuser entrance and the boundary layer there was thin and fully turbulent. The most interesting flow characteristics observed were the occasional appearance of steady, unseparated, asymmetric flow - which was correlated with the boundary-layer coalescence - and the rapid deterioration of flow steadiness - which occurred as soon as the divergence angle for maximum static pressure recovery was exceeded. Pressure efficiency was found to be controlled almost exclusively by divergence angle, whereas static pressure recovery was markedly influenced by area ratio (or length) as well as divergence angle. Volumetric efficiency. diminished as area ratio increased, and at a greater rate with small lengths than with large ones. Large values of the static-pressure-recovery coefficient were attained only with long diffusers of large area ratio; under these conditions pressure efficiency was high and. volumetric efficiency low. Auxiliary tests with asymmetric diffusers demonstrated that longitudinal pressure gradient, rather than wall divergence angle, controlled flow separation. Others showed that the addition of even a short exit duct of uniform section augmented pressure recovery. Finally, it was found that the installation of a thin, central, longitudinal partition suppressed flow separation in short diffusers and thereby improved pressure recovery
    Keywords: Aerodynamics
    Type: NACA-TN-2888
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: A method is presented for the estimation of the subsonic-flight-speed characteristics of sharp-lip inlets applicable to supersonic aircraft. The analysis, based on a simple momentum balance consideration, permits the computation of inlet pressure recovery - mass-flow relations and additive-drag coefficients for forward velocities from zero to the speed of sound. The penalties for operation of a sharp-lip inlet at velocity ratios other than 1.0 may be severe; at lower velocity ratios an additive drag is incurred that is not cancelled by lip suction, while at higher velocity ratios, unavoidable losses in inlet total pressure will result. In particular, at the take-off condition, the total pressure and the mass flow for a choked inlet are only 79 percent of the values ideally attainable with a rounded lip. Experimental data obtained at zero speed with a sharp-lip supersonic inlet model were in substantial agreement with the theoretical results.
    Keywords: Aerodynamics
    Type: NACA-TN-3004
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: The condensation pressure of air was determined over the range of temperature from 60 to 85 K. The experimental results were slightly higher than the calculated values based on the ideal solution law. Heat of vaporization of oxygen was determined at four temperatures ranging from about 68 to 91 K and of nitrogen similarly at four temperatures ranging from 62 to 78 K.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-TN-2969
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: Wake development behind circular cylinders at Reynolds numbers from 40 to 10,000 was investigated in a low-speed wind tunnel. Standard hotwire techniques were used to study the velocity fluctuations. The Reynolds number range of periodic vortex shedding is divided into two distinct subranges. At R = 40 to 150, called the stable range, regular vortex streets are formed and no turbulent motion is developed. The range R = 150 to 300 is a transition range to a regime called the irregular range, in which turbulent velocity fluctuations accompany the periodic formation of vortices. The turbulence is initiated by laminar-turbulent transition in the free layers which spring from the separation points on the cylinder. This transition first occurs in the range R = 150 to 300. Spectrum and statistical measurements were made to study the velocity fluctuations. In the stable range the vortices decay by viscous diffusion. In the irregular range the diffusion is turbulent and the wake becomes fully turbulent in 40 to 50 diameters downstream. It was found that in the stable range the vortex street has a periodic spanwise structure. The dependence of shedding frequency on velocity was successfully used to measure flow velocity. Measurements in the wake of a ring showed that an annular vortex street is developed.
    Keywords: Aerodynamics
    Type: NACA-TN-2913
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: The heat requirements for the icing protection of two radome configurations have been studied over a range of design icing conditions. Both the protection limits of a typical thermal protection system and the relative effects of the various icing variables have been determined. For full evaporation of all impinging water, an effective heat density of 14 watts per square inch was required. When a combination of the evaporation and running wet surface systems was employed, a heat requirement of 5 watts per square inch provided protection at severe icing and operating conditions.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-RM-E53A22
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: The trajectories of droplets in the air flowing past NACA 65(1)-208 airfoil and an NACA 65(1)-212 airfoil, both at an angle of attack of 4 degrees, were determined. The amount of water in droplet form impinging on the airfoils, the area of droplet impingement, and the rate of droplet impingement per unit area on the airfoil surface affected were calculated from the trajectories and are presented. The amount, extent, and rate of impingement of the NACA 65(1)-208 airfoil are compared with the results for the NACA 65(1)1-212 airfoil. Under similar conditions of operation, the NACA 65(1)-208 airfoil collects less water than the NACA 65(1)-212 airfoil. The extent of impingement on the upper surface of the NACA 65(1)-208 airfoil is much less than on the upper surface of the NACA 65(1)-212 airfoil, but on the lower surface the extents of impingement are about the same.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-TN-2952
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-17
    Description: An analysis has been made of available experimental data to show the effects of most variables that are predominant in determining base pressure at supersonic speeds. Two dimensional bases and bases of bodies of revolution, restricted to turbulent boundary layers, are covered.
    Keywords: Aerodynamics
    Type: NACA-RM-L53C02
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-11
    Description: Theory and experiment were compared and found in good agreement for the elastic Buckling under combined stresses of long flat plates with integral waffle-like stiffening in a variety of configurations. For such flat plates, 45deg waffle stiffening was found to be the most effective of the configurations for the proportions considered over the widest range of combinations of compression and shear.
    Keywords: Aerodynamics
    Type: NACA-RM-L53J27
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-11
    Description: The zero-lift damping in roll of the Bell MX-776 missile has been measured by a sting-mounted rocket-model technique at Mach numbers from 0.6 to 1.56. The damping-in-roll data, in general, show no unusual variation with Mach number. Aileron rolling-moment effectiveness derived from these data and previously obtained rolling-effectiveness data appear reasonable,
    Keywords: Aerodynamics
    Type: NACA-RM-SL54A13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-11
    Description: The present investigation was conducted to determine, from low-speed tests in the Langley stability tunnel, the static and rotary derivatives of a 1/9-scale model of the Republic F-91 airplane and various of its components (including the effects of wing incidence) and to determine the accuracy with which the period and damping of the lateral oscillation of the airplane could be calculated by using these experimentally between flight and calculated period and damping of the lateral oscillation were made for Mach numbers from 0.4 to 0.9 at an altitude of 20,OOO feet for 0deg wing incidence and several other wing incidences. Some comparisons were made of the static and rotary derivatives of the model and derivatives estimated by available procedures. determined derivatives (corrected for Mach number effects). Comparisons The results of the investigation have indicated that the model did not have unusual aerodynamic characteristics except for a large (about -0.125) increment in the damping in yaw contributed by the fuselage. Changes in wing incidence, in general, had little effect on the static and rotary derivatives of the model. The static and rotary derivatives of the model could be estimated with good accuracy only in the low angle-of-attack range by using available procedures.
    Keywords: Aerodynamics
    Type: NACA-RM-L53G01
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-07-12
    Description: Aeroelastic instability phenomena of isolated open and closed rigid bodies of revolution free to move under elastic restraint have been investigated experimentally at low speeds by means of models suspended at zero angles of attack and yaw on slender flexible struts from a wind tunnel ceiling. Three types of instability were observed - flutter similar to classical bending-torsion flutter, divergence, and an uncoupled oscillatory instability which consists in nonviolent continuous or intermittent small-amplitude oscillations involving only angular deformations. The speeds at which this oscillatory instability starts were found to be as low as about one-third of the speed at flutter or divergence and to depend on the shape of the body, particularly that of the afterbody, and on the relative location of the elastic axis. An attempt has been made to calculate the airspeeds and, in the case of the oscillatory phenomena, the frequencies at which these instabilities occur by using slender-body theory for the aerodynamic forces on the bodies and neglecting the aerodynamic forces on the struts. However, the agreement between the speeds and frequencies calculated in this manner and those actually observed has been found to be generally unsatisfactory; with the exception of the frequencies of the uncoupled oscillations which could be predicted with fair accuracy. The nature of the observed phenomena and of the forces on bodies of revolution suggests that a significant improvement in the accuracy of analytical predictions of these aeroelastic instabilities can be had only by taking into account the effects of boundary-layer separation on the aerodynamic forces.
    Keywords: Aerodynamics
    Type: NACA-RM-L53E07
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-11
    Description: Three rocket-propelled buffet-research models have been flight tested to determine the buffeting characteristics of a swept-wing- airplane configuration with the horizontal tail operating near the wing wake. The models consisted of parabolic bodies having 45deg sweptback wings of aspect ratio 3.56, at aspect ratio of 0.3, NACA 64A007 airfoil sections, and tail surfaces of geometry and section identical to the wings. Two tests were conducted with the horizontal tail located in the wing chord plane with fixed incidence angles of -1.5deg on one model and 0deg on the other model. The third test was conducted with no horizontal tail. Results of these tests are presented as incremental accelerations in the body due to buffeting, trim angles of attack, trim normal- and side-force coefficients, wing-tip helix angles, static-directional-stability derivatives , and drag coefficients plotted against Mach number. These data indicate that mild low-lift buffeting was experienced by all models over a range of Mach number from approximately 0.7 to 1.4. It is further indicated that this buffeting was probably induced by wing-body interference and was amplified at transonic speeds by the horizontal tail operating in the wing wake. A longitudinal trim change was encountered by the tail-on models at transonic speeds, but no large changes in side force and no wing dropping were indicated.
    Keywords: Aerodynamics
    Type: NACA-RM-L53I10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-11
    Description: Experimental measurements of the attenuation of plane shock waves moving over rough walls have been made in a shock tube. Measurements of the boundary-layer characteristics, including thickness and velocity distribution behind the shock, have also been made with the aid of new cal techniques which provide direct information on the local boundary-layer conditions at the rough walls. Measurements of shock speed and shock pressure ratio are presented for both smooth-wall and rough-wall flow over lengths of machined-smooth and rough strips which lined all four walls of the shock tube. A simplified theory based on Von Karman's expression for skin-friction coefficient for flow over rough walls, along with a wave-model concept and extensions to include time effects, is presented. In this theory, the shock-tube flow is assumed to be one-dimensional at all times and the wave-model concept is used to relate the local layer growth to decreases in shock strength. This concept assumes that local boundary-layer growths act as local mass-flow sinks, which give rise to expansion waves which, in turn, overtake the shock and lower its mass flow accordingly.
    Keywords: Aerodynamics
    Type: NACA-RM-SL53D13A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-08-13
    Description: The observed discrepancy at supersonic speeds between theoretical and apparent experimental average flat plate friction-drag coefficients calculated from boundary layer total-pressure surveys was investigated. Effects of the total-pressure probe, heat transfer through the leading edge region, change in leading-edge radius and strength of the leading-edge wave, possible early transition to turbulent flow or bursts of turbulence, and the slight stream-wise pressure gradient inherent in flat plate flow were investigated for plates with very sharp leading edges. Only one of these factors, the effect of the total-pressure probe, was found to be significant. Total-pressure probes of different tip heights, when placed in laminar boundary layers developing under identical conditions, were found to yield different values of friction drag coefficient. Extrapolation of these measurements indicates that a probe of vanishing size would yield the theoretical predicted values of average flat plate friction-drag coefficients. A correlation describing the relation between the friction-drag discrepancy and the probe tip height is presented.
    Keywords: Aerodynamics
    Type: NACA-TN-2891
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-11
    Description: An investigation was made of the trim and dynamic response characteristics of the free-floating horizontal tail of a 1/7-scale model of the complete tail of the Grumman XF10F-1 airplane in the Langley 8-foot transonic tunnel at Mach numbers up to 1.13. The complete tail was mounted in the tunnel on a 3deg conical support body. Various configurations were investigated. A loss in damping of the horizontal tail at transonic speeds was shown by both tunnel and flight tests. The loss in damping extended over a greater Mach number range and the maximum loss occurred at a higher Mach number in the tunnel tests. Large-amplitude oscillations of the horizontal tail of the basic configuration which occurred at low supersonic Mach numbers appeared to be primarily due to the vertical tail of the basic configuration and the interference effects associated with this tail. Secondary factors contributing to the development of the large-amplitude oscillations of the horizontal tail of the basic configuration were probably the loss in damping of the horizontal tail at transonic speeds and the turbulence of the airstream itself.
    Keywords: Aerodynamics
    Type: NACA-RM-SL53D28
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-11
    Description: At subsonic speeds the pressure drag arising from the thickness of the body or wings is negligible so long as the shapes are sufficiently well streamlined to avoid flow separation. In that range there exists no possibility of either favorable or adverse interference on the pressure distributions themselves. If one body is so placed as to receive a drag from the pressure field of another then the second body is sure to receive a corresponding increment of thrust from the first. At supersonic speeds this tolerance, which was permitted the designer, disappears and the drag becomes sensitive to the shape and arrangement of the bodies.To be sure, the primary factor here is the thickness ratio, but nevertheless there exist arrangements in which a large cancellation of drag occurs.
    Keywords: Aerodynamics
    Type: NACA-RM-A53H18a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-07-11
    Description: Calibrations of the Friez Aerovane, Wind Measuring Set AN/GMQ-11, manufactured by the Friez Instrument Division of the Bendix Aviation Corporation, were made in the Langley 300 MPH 7- by 10-foot tunnel at the request of the Signal Corps, U, S. Army. Two propellers snd two generators were tested through a speed range of 15 to 190 knots, The results indicated that at airspeeds greater than 80 knots the instrument indicated airspeeds higher than the tunnel airspeed..
    Keywords: Aerodynamics
    Type: NACA-RM-SL53L23B
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-07-11
    Description: This paper is concerned primarily with the application of the "area rule" to the interpretation and improvement of the drag-rise characteristics of wing-body combinations at transonic and moderate supersonic speeds. Consideration of the general physical nature of the flow at transonic speeds, together with comparisons of the flow fields and drag-rise characteristics for wing-body combinations and bodies of revolution has led to the conclusion that near the speed of sound the drag rise for a thin low-aspect-ratio wing-body combination is primarily dependent on the axial distribution of cross-sectional area normal to the airstream (ref. 1). (The drag rise, sometimes referred to as pressure drag, is the difference between the drag level near the speed of sound and the drag level at subsonic speeds where the drag is due primarily to skin friction.) In order to illustrate the concept, figure 1 shows a wing-body combination and a body of revolution. A typical cross section normal to the airstream for the wing-body combination is shown at AA. The cross-sectional area of the wing is wrapped around the body of revolution so that the body has the same cross-sectional area at BB. All the other cross-sectional areas of the body of revolution are the same as those for the wing-body combination at the same axial stations. On the basis of the conclusion just stated, the drag rise for this body of revolution should be similar to that for the wing-body combination.
    Keywords: Aerodynamics
    Type: NACA-RM-L53I15a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-07-11
    Description: The effects of inlet circumferential position around the fuselage on the characteristics of a half-conical scoop inlet having a 24.6deg half-angle cone have been investigated in the langley 4- by 4-foot supersonic pressure tunnel. Pressure-recovery results have been obtained at a Mach number of 2.01 for a fixed boundary-layer-bleed height which was 60 percent of the boundary-layer thickness at an angle of attack of 0deg, and for cowling position parameters of 42.4deg and 38.0deg. inlet had a capture area equal to 24.9 percent of the basic-fuselage frontal area. The angle of attack was varied from 0deg to 12deg. The most favorable pressure-recovery characteristics at angles of attack were obtained with the Inlet located on the bottom of the fuselage where the maximum recovery increased from a value of 81 percent at an angle of attack of 0deg to 87 percent at 12deg. In general, the pressure recovery decreased with increasing angle of attack for all other inlet locations. At a given angle of attack the pressure recovery decreased as the inlet location was progressively moved from the bottom to the top of the fuselage. Stable subcritical operation of the inlet with nearly constant pressure recovery was obtained for inlet mass-flow ratios from 1.0 to about 0.76 at an angle of attack of 0deg with the central body in the design position.
    Keywords: Aerodynamics
    Type: NACA-RM-L53D30B
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-10
    Description: Tests on equivalent bodies of revolution of six configurations of the Consolidated Vultee Aircraft Corporation proposed supersonic bomber (Convair MX-1964) have indicated that it is possible to reduce the drag of the configuration by designing it to have a favorable area distribution. The method of NACA RM L53I22c to predict the peak pressure drag of a configuration on the basis of its area distribution gave generally good agreement with the subject models.
    Keywords: Aerodynamics
    Type: NACA-RM-SL53K04 , L-82024
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-07-11
    Description: Tests were made in the Langley 8-foot high-speed tunnel to investigate the aerodynamic characteristics of the D-558-1 airplane and various wing and tail configurations on the D-558-1 fuselage. The various wing and tail configurations were tested to determine the aerodynamic effects of aspect ratio and sweep for suitable use on the second phase of the D-558 project (D-558-2). The tests were conducted through a speed range from a Mach number of 0.40 to approximately 0.94.This part of the investigation includes the lift and drag results available for the configurations tested at this rate. The D-558-1 results indicated that the lift force break would occur at a Mach number of 0.85 with some reduction in lift at speeds above this Mach number. Tests indicated that the airplane will have satisfactory lift and drag characteristics up to and including its design Mach number of 0.85. The 35deg sweptback, 35deg swept-forward, and low-aspect-ratio (2.0) wing configurations all showed pronounced improvements in maintaining lift throughout the Mach number range tested and in increasing the critical speeds above the D-558-1 value &itical to critical Mach numbers on the order of 0.9. Insofar as lift and drag characteristics are concerned level flight at speeds approaching the velocity of sound appears practical if swept or low-aspect-ratio configurations similar to those tested are used.
    Keywords: Aerodynamics
    Type: NACA-RM-L6J09
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-07-12
    Description: A low-speed investigation was made of a 1/6-scale model of the Republic XF-84H airplane. The model had a single tractor propeller and a 40deg swept wing of aspect ratio 3.45. This investigation was undertaken to provide information on the effects of propeller operation on longitudinal stability characteristics for the XF -84H airplane and to provide an indication of slipstream effects that might be encountered on similar swept-wing configurations. Effects of propeller operation were generally destabilizing for all conditions investigated; however, the over-all stability characteristics with power on were greatly dependent on the power-off characteristics. With flaps and slats retracted, longitudinal instability was present at moderate angles of attack both with the propeller off and with power on. The longitudinal stability with flaps and slats deflected, which was satisfactory without power, was decreased by propeller operation, but no marked pitch-up tendency was indicated. Significant improvement in the power-on stability with flaps retracted was achieved by use of either a wing fence at 75 percent semispan, a leading-edge chord-extension from 65 to 94 percent semispan, or a raised horizontal tail located 65 percent semispan above the thrust line.
    Keywords: Aerodynamics
    Type: NACA-RM-SL-53F26
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-07-12
    Description: Drag and longitudinal trim at low lift of the North American YF-100A airplane at Mach numbers from 0.76 to 1.77 as determined from the flight test of a 0.11-scale rocket model are presented herein. Also included are some longitudinal stability and some qualitative pitch-damping data. The subsonic external-drag-coefficient level was about 0.012, and the supersonic level was about 0.043. The drag rise occurred at a Mach number of 0.95. The longitudinal trim change at low lift consisted basically of a mild nose-up tendency at a Mach number of 0.90. An indication of wing flutter was present at Mach numbers from 0.95 to 1.11. However, the full-scale airplane wing has approximately twice the scaled first-bending frequency as the model tested and, hence, will probably be free of this type of flutter. The aerodynamic-center location was 71 percent behind the leading edge of the mean aerodynamic chord at a Mach number of 1.03 and 62 percent at a Mach number of 1.74. Qualitative measurement of damping in pitch indicates that at low lift coefficients damping will be low at a Mach number of 1.03.
    Keywords: Aerodynamics
    Type: NACA-RM-SL53E11a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-07-12
    Description: Flight tests were conducted between Mach numbers of 0.9 and 1.8 over a Reynolds number range of 9(exp 6) to 30(exp 6) to determine the zero-lift drag and some rolling-effectiveness characteristics of the Northrop MX -775B missile with small and large body. The MX-775B is a proposed long range, supersonic, ground-to-ground missile having an arrow wing with 67.5 degree leading-edge sweep, 15 deg trailing-edge sweep, and a modified NACA 0004 airfoil section. The configuration has no horizontal tail but has wing trailing-edge elevons which serve a dual purpose as elevators and ailerons. The ratio of body frontal area to wing plan-form area is 0.0127 for the small-body configuration and 0.0330 for the large-body configuration. Five 1/4-scale models were flown permitting determination of the drag coefficient for the basic small-body configuration, the incremental drag due to the large body, the incremental drag resulting from a blunt wing trailing edge, the wing-plus-interference drag, and some rolling-effectiveness data. Results indicated that the MX-775B has low supersonic zero-lift drag, the maximum zero-lift drag coefficients being respectively 0.0125 and 0.0155 at a Mach number of M = 1803 for the small- and large-body configurations. The effect of a blunt wing trailing edge, obtained by cutting off 10 percent of the wing chord, was to increase the zero-lift drag by 13 to 21 percent. Wing-plus-interference drag accounted for 78 percent of the total drag at M = 0.9 and 70 percent at M = 195 for the small-body configuration. The ailerons produced positive rolling effectiveness for the wing stiffness of the test models and the dynamic pressures of the test.
    Keywords: Aerodynamics
    Type: NACA-RM-SL53J02
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-07-12
    Description: The present status of available information relative to the prediction of shock-induced boundary-layer separation is discussed. Experimental results showing the effects of Reynolds number and Mach number on the separation of both laminar and turbulent boundary layer are given and compared with available methods for predicting separation. The flow phenomena associated with separation caused by forward-facing steps, wedges, and incident shock waves are discussed. Applications of the flat-plate data to problems of separation on spoilers, diffusers, and scoop inlets are indicated for turbulent boundary layers.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-RM-L53I16a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-06-28
    Description: Numerical solutions of the differential equation obtained from the momentum theorem for the development of a turbulent boundary layer along a thermally insulated surface in two-dimensional and in radial shock-free flow are presented in tabular form for a range of Mach numbers from 0.100 to 10. The solution can be used in a step-wise procedure with any given distribution of favorable pressure gradients and for zero pressure gradients. Solutions are also given for use with moderate adverse pressure gradients. The mean velocity in the boundary layer is approximated by a power-law profile. In view of the stepwise integration methods to be used, the exponent designated the profile shape can be varied along the surface between the integral fraction limits 1/5 and 1/11 through interpolation. Agreement obtained between theoretical and experimental boundary-layer development in a supersonic nozzle at a nominal Mach number of 2 indicates the general validity of the approximations used in the analysis - in particular, the method of extrapolating low-speed skin-friction relations to high Mach number flows. The extrapolation method used assumes that the skin-friction coefficient depend primarily on Reynolds number, provided that the density and the kinematic viscosity are evaluated at surface conditions.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-TN-2045
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-06-28
    Description: The hypersonic similarity law as derived by Tsien has been investigated by comparing the pressure distributions along bodies of revolution at zero angle of attack. In making these comparisons, particular attention was given to determining the limits of Mach number and fineness ratio for which the similarity law applies. For the purpose of this investigation, pressure distributions determined by the method of characteristics for ogive cylinders for values of Mach numbers and fineness ratios varying from 1.5 to 12 were compared. Pressures on various cones and on cone cylinders were also compared in this study. The pressure distributions presented demonstrate that the hypersonic similarity law is applicable over a wider range of values of Mach numbers and fineness ratios than might be expected from the assumptions made in the derivation. This is significant since within the range of applicability of the law a single pressure distribution exists for all similarly shaped bodies for which the ratio of free-stream Mach number to fineness ratio is constant. Charts are presented for rapid determination of pressure distributions over ogive cylinders for any combination of Mach number and fineness ratio within defined limits.
    Keywords: Aerodynamics
    Type: NACA-TN-2250
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-06-28
    Description: No abstract available
    Keywords: Aerodynamics
    Type: NACA-TN-2211
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-06-27
    Description: No abstract available
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-RM-E50I29A , REPT-2003
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-06-27
    Description: No abstract available
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-RM-E50I29A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-07-12
    Description: Tests of a 1/5 scale model of a proposed 153-foot high-speed submarine have been conducted in the Langley full-scale tunnel at the request of the Bureau of Ships, Department of the Navy. The test program included: (1) force tests to determine the drag, control effectiveness, and static stability characteristics for a number of model configurations, both in pitch and in yaw, (2) pressure measurements to determine the boundary-layer conditions and flow characteristics in the region of the propeller, and (3) an investigation of the effects of propeller operation on the model aerodynamic characteristics. In response to oral requests from the Bureau of Ships representatives t hat the basic data obtained in these tests be made available to them as rapidly as possible, this data report has been prepared to present some of the more pertinent results. All test results given in the present paper are for the propeller-removed condition and were obtained at a Reynolds number of approximately 22,300,000 based on model length.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-RM-SL50E09a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-07-12
    Description: A flight test was made a t high subsonic, transonic, and supersonic speeds and at high Reynolds numbers to determine the zero-lift drag of a 1/14-scale model of the Northrop MX-775B pilotless aircraft with small small body. The triangular wing of the model had 67.5 deg leading-edge sweep and 15 deg. trailing-edge sweep, The wing airfoil sections were modified NACA 0004 sections. The drag coefficient based on total wing area was 0.0107 at Mach number 1.60. At transonic speeds the maximum drag coefficient was 0.0125. The force-break Mach number was 0,98.
    Keywords: Aerodynamics
    Type: NACA-RM-SL50H18
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-07-11
    Description: Investigations were conducted of a 12 degree 21-inch conical diffuser of 2:l area ratio to determine the interrelation of boundary layer growth and performance characteristics. surveys were made of inlet and exit from, longitudinal static pressures were recorded, and velocity profiles were obtained through an inlet Reynolds number range, determined From mass flows and based on inlet diameter of 1.45 x 10(exp 6) to 7.45 x 10(exp 6) and a Mach number range of 0.11 to approximately choking. These investigations were made to two thicknesses of inlet boundary layer. The mean value, over the entire range of inlet velocities, of the displacement thickness of the thinner inlet boundary layer was approximately 0.035 inch and that of the thicker inlet boundary layer was approximately six times this value. The loss coefficient in the case of the thinner inlet boundary layer had a value between 2 to 3 percent of the inlet impact pressure over most of the air-flow range. The loss coefficient with the thicker inlet boundary layer was of the order of twice that of the thinner inlet boundary layer at low speeds and approximately three times at high speeds. In both cases the values were substantially less than those given in the literature for fully developed pipe flow. The static-pressure rise for the thinner inlet boundary layer was of the order of 95 percent of that theoretically possible over the entire speed range. For the thicker inlet boundary layer the static pressure rise, as a percentage of that theoretically possible, ranged from 82 percent at low speeds to 68 percent at high speeds.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-RM-L9H10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-11
    Description: Performance and boundary-layer data were taken in a 12 degree 10-inch inlet-diameter conical diffuser of 2:1 exit- to inlet-area ratio. These data were taken for two inlet-boundary-layer conditions. The first condition was that of a thinner inlet boundary later (boundary-layer displacement thickness, delta* approximately equal to 0.034) produced by an inlet section approximately 1 inlet diameter in length between the entrance bell and the diffuser. The second condition was a thicker inlet boundary layer (delta* approximately equal to 0.120) produced by an additional inlet section length of approximately 6 diameters. Longitudinal static-pressure distributions were measured fro wall static orifices. Transverse total- and static-pressure surveys were made at the inlet and exit stations. Boundary-layer velocity distributions were measured at seven stations between the inlet and exit. These data were obtained for a Reynolds number (based on inlet diameter) range of 1 x 10(exp 6) to 3.9 x 10(exp 6). The corresponding Mach number range was from M = 0.2 to choking. At the maximum-power-available condition supersonic flow was obtained as far as 4.5 inches downstream from the diffuser inlet with a maximum Mach number of M approximately equal to 1.5. The total-pressure loss through the diffuser in percentage of inlet dynamic pressure was approximately 2.5 percent for the thinner inlet boundary later and 5.5 percent for the thicker inlet boundary later over the lower subsonic range. These valued increased with increasing flow rate- the values for the thicker inlet boundary later more than those for the thinner inlet boundary layer. The diffuser effectiveness, expressed as the ratio of the actual static-pressure rise to the ideal static-pressure rise, was about 85 percent for the thinner inlet boundary layer and about 67 percent for the thicker inlet boundary later in the lower subsonic range. These values decrease with increasing flow rate. Separated flow was observed for both inlet-boundary-layer conditions in the region of adverse pressure gradient just downstream of the transition curvature from inlet section to diffuser. The flow for the thinner-inlet-boundary-layer condition did not fully re-establish itself along the diffuser walls. The thicker inlet-boundary-layer flow, while not completely re-establishing the normal flow pattern downstream of the separated region, did re-establish more successfully than the thinner inlet boundary layer.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-RM-L50C02a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-07-11
    Description: Force tests on a proposed body shape of the Hermes A-2 missile with and without longitudinal spoilers were made at Mach number 4.04. Values of normal force coefficient, pitching-moment coefficient, and center-of-pressure position were obtained.
    Keywords: Aerodynamics
    Type: NACA-RM-SL50H23A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: This document presents equations for the two-dimensional stationary problem of gas dynamics, and uses them to derive other equations, including equations for vorticity.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-TM-1260 , Prikladnaya Matematika I Mekhanica; 11; 193-198
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: The vortices forming in flowing water behind solid bodies are not represented correctly by the solution of the potential theory nor by Helmholtz's jets. Potential theory is unable to satisfy the condition that the water adheres at the wetted bodies, and its solutions of the fundamental hydrodynamic equations are at variance with the observation that the flow separates from the body at a certain point and sends forth a highly turbulent boundary layer into the free flow. Helmholtz's theory attempts to imitate the latter effect in such a way that it joins two potential flows, jet and still water, nonanalytical along a stream curve. The admissibility of this method is based on the fact that, at zero pressure, which is to prevail at the cited stream curve, the connection of the fluid, and with it the effect of adjacent parts on each other, is canceled. In reality, however, the pressure at these boundaries is definitely not zero, but can even be varied arbitrarily. Besides, Helmholtz's theory with its potential flows does not satisfy the condition of adherence nor explain the origin of the vortices, for in all of these problems, the friction must be taken into account on principle, according to the vortex theorem.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-TM-1256 , Zeitschrift fuer Mathematik und Physik; 56; 1; 1-37
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-07-13
    Description: The use of the linearized equations of Chaplygin to calculate the subsonic flow of a gas permits solving the problem of the flow about a wing profile for absence and presence of circulation. The solution is obtained in a practical convenient form that permits finding all the required magnitudes for the gas flow (lift, lift moment velocity distribution over the profile, and critical Mach number). This solution is not expressed in simple closed form; for a certain simplifying assumption, however, the equations of Chaplygin can be reduced to equations with constant coefficients, and solutions are obtained by using only the mathematical apparatus of the theory of functions of a complex variable. The method for simplifying the equations was pointed out by Chaplygin himself. These applied similar equations to the solution of the flow problem and obtained a solution for the case of the absence of circulation.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-TM-1250 , Prikladnaya Matematika I Mekhanika; 11; 1; 105-118
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-07-13
    Description: In the flow about a body with large subsonic velocity if the velocity of the approaching flow is sufficiently large, regions of local supersonic velocities are formed about the body. It is known from experiment that these regions downstream of the flow are always bounded by shock waves; a continuous transition of the supersonic velocity to the subsonic under the conditions indicated has never been observed. A similar phenomenon occurs in pipes. If at two cross sections of the pipe the velocity is subsonic and between these sections regions of local supersonic velocity are formed without completely occupying a single cross section, these regions are always bounded by shock waves.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-TM-1251 , Prikladnaya Matematika I Mekhanika; 11; 190-202
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-07-11
    Description: An investigation of the spin and recovery characteristics of a 1/24-scale model of the Grumman AF-2S, -2W airplane was conducted in the Langley 20-foot free-spinning tunnel. The effects of controls on the erect and inverted spin and recovery characteristics for a range of possible loadings of the.airplane were determined. The effect of a revised-tail installation (small dual fins added to the stabilizer of the original tail and the vertical-tail height of the original tail increased) and the effect of various ventral-fin and antispin-fillet installations were determined. The investigation also included spin-recovery parachute tests.
    Keywords: Aerodynamics
    Type: NACA-RM-SL51B20
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-07-11
    Description: An investigation has been made in the Langley 9- by 12-inch super-sonic blowdown tunnel at Mach numbers of 1.62 and 1.96 of a partial-span body with one tail surface, designed for use on the Hughes Falcon (MX-904) missile. The present paper extends the work reported in NACA-RM-SL50E10. Force and moment data including elevator hinge moment were obtained for the conditions of the tail in the presence of a small segment of the fore-shortened body, in the presence of a semi-span body and attached to a semi-span body, and for the condition of the foreshortened semi-span body alone.
    Keywords: Aerodynamics
    Type: NACA-RM-SL50G13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-07-11
    Description: The two-dimensional motion of an incompressible fluid about a closed contour with a definite velocity in magnitude and direction at infinity is considered. If, without changing the direction of the velocity at infinity, the magnitude is increased, the configuration of the streamlines remains unchanged and only the numbering of the stream function changes. There exists only one family of curves that can serve as streamlines in the incompressible flow about a given contour (at a given angle of attack); for example, the contour of an airplane wing. The case is quite different with a compressible fluid.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-TM-1252 , Izvestia Akademii Nauk, SSSR, No. 3; 153-259; Rept-3
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-07-12
    Description: An investigation has been conducted in the Langley 20-foot free-spinning tunnel on a 1/30 - scale model of the Grumman XFlOF-1 airplane to determine its spin and recovery characteristics. The investigation included erect and inverted spins for both the straight-wing and swept-wing configurations. Tests to determine the optimum size spin-recovery parachutes and the rudder forces required for recovery were also made. The results indicated that in the straight-wing configuration, satisfactory recoveries of the airplane will be obtained from erect and inverted spins by rudder reversal alone. In the swept-wing configuration recoveries will be unsatisfactory from erect spins. Unsweeping the wings during the spin and reversal of the rudder, however, will lead to eventual recovery. The test results also indicated that, if existing small ailerons are made deflectable through large angles, satisfactory recoveries will be obtained from erect spins in the swept-wing configuration by simultaneous movement of the rudder to against the spin and movement of the ailerons to with the spin. Normal-size ailerons deflected through a normal range would also be effective. Satisfactory recoveries by rudder reversal will be obtained from inverted spins in the swept-wing configuration. In the straight-wing configuration a 14.2-foot tail parachute or a 5.0-foot wing-tip parachute opened on the outer wing tip will effect satisfactory recovery of the airplane by parachute action alone; a 30.0-foot tail parachute or a 10.0-foot wing-tip parachute will be required for the swept-wing configuration. The forces required to fully reverse the rudder should be within the capabilities of the pilot.
    Keywords: Aerodynamics
    Type: NACA-RM-SL50L14
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-07-12
    Description: Dynamic--response measurements for various conditions of displacement and rate signal input, sensitivity setting, and simulated hinge moment were made of the three control-surface servo systems of an NAES-equipped remote-controlled airplane while on the ground. The basic components of the servo systems are those of the General Electric Company type G-1 autopilot using electrical signal. sources, solenoid-operated valves, and hydraulic pistons. The test procedures and difficulties are discussed, Both frequency and transient-response data, are presented and comparisons are made. The constants describing the servo system, the undamped natural frequency, and the damping ratio, are determined by several methods. The response of the system with the addition of airframe rate signal is calculated. The transfer function of the elevator surface, linkage, and cable system is obtained. The agreement between various methods of measurement and calculation is considered very good. The data are complete enough and in such form that they may be used directly with the frequency-response data of an airplane to predict the stability of the autopilot-airplane combination.
    Keywords: Aerodynamics
    Type: NACA-RM-SA50J05
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-12
    Description: The behavior of the Westinghouse electronic power regulator operating on a J34-WE-32 turbojet engine was investigated in the NACA Lewis altitude wind tunnel at the request of the Bureau of Aeronautics, Department of the Navy. The object of the program was to determine the, steady-state stability and transient characteristics of the engine under control at various altitudes and ram pressure ratios, without afterburning. Recordings of the response of the following parameters to step changes in power lever position throughout the available operating range of the engine were obtained; ram pressure ratio, compressor-discharge pressure, exhaust-nozzle area, engine speed, turbine-outlet temperature, fuel-valve position, jet thrust, air flow, turbine-discharge pressure, fuel flow, throttle position, and boost-pump pressure. Representative preliminary data showing the actual time response of these variables are presented. These data are presented in the form of reproductions of oscillographic traces.
    Keywords: Aerodynamics
    Type: NACA-RM-SE50J11
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-07-12
    Description: A rocket-propelled model of the Mx-656 configuration has been flown through the Mach number range from 0.65 to 1.25. An analysis of the response of the model to rapid deflections of the horizontal tail gave information on the lift, drag, longitudinal stability and control, and longitudinal-trim change. The lift-coefficient range covered by the test was from -0.2 to 0,3 throughout most of the Mach number range, The model was statically and dynamically stable throughout the lift-coefficient and Mach number range of the test. At subsonic speeds the aerodynamic center moved f o m r d with increasing lift coefficient. The most forward position of the aerodynamic center was about 12,5 percent of the mean aerodynamic chord at a small positive lift coefficient and at a Mach number of about 0.84. A t supersonic speeds the aerodynamic center was well aft, varying from 33 to 39 percent of the mean aerodynamic chord at Mach numbers of 1.0 and 1.25, respectively. Transonic-trim change, as measured by the change in trim lift coefficient with Mach number at a constant t a i l setting, was of small magnitude (about 0.1 lift coefficient for zero tail setting). The zero-lift/drag coefficient increased about 0.042 in the region between a Mach number of 0.9 and 1.1
    Keywords: Aerodynamics
    Type: NACA-RM-SL50J03
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-07-12
    Description: An investigation of the nature of the flow field behind a rectangular circular-arc wing has been conducted in the Langley 9-inch supersonic tunnel. Pitot- and static-pressure surveys covering a region of flow behind the wing have been made together with detailed pitot surveys throughout the region of the wake. In addition, the flow direction has been measured using a weathercocking vane measurements. Theoretical calculations of the variation of both downwash and sidewash with angle of attack using Lagerstrom's superposition method have been made. In addition the effect of the wing thickness on the sidewash with the wing at 0 angle of attack has been evaluated. Near an angle of attack of 0, agreement between theory and experiment is good, particularly for the downwash results, except in the plane of the wing, inboard of the tip. In this region the proximity of the shed vortex sheet and the departure of the spanwise distribution of vorticity from theory would account for the disagreement. At higher angles of attack prediction of downwash depends on a knowledge of the location of the trailing vortex sheet, in order that the downwash may be corrected for its displacement and distortion. The theoretical location of the trailing vortex sheet, based on the theoretical downwash values integrated downstream from the wing trailing edge, is shown to differ widely from the experimental case. The rolling-up of the trailing vortex sheet behind the wing tip is evidenced by both the wake surveys and the flow-angle measurements.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-RM-L50G12 , NACA Rept 1340
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-07-10
    Description: After conclusion of the spin investigation of the model Me 210 with elongated fuselage and central vertical tail surfaces (model condition III; reference 3), tests were performed on the same model with a vee tail (model condition IV). Here the entire tail surfaces consist of only one surface with pronounced dihedral. Since the blanketing of the vertical tail surfaces by the horizontal tail surfaces, which may occur in case of standard tail surfaces, does not occur here, one could expect for this type of tail surface favorable spin characteristics, particularly with respect to rudder effectiveness for spin recovery. However, the test results did not confirm these expectations. The steady spin was shown to be very irregular; regarding rudder effectiveness the vee tail surfaces proved to be inferior even to standard tail surfaces, thus they represent the most unfavorable of the four fuselage and tail-surface combinations investigated so far.
    Keywords: Aerodynamics
    Type: NACA-TM-1222 , Zentrale fuer Wissenschaftliches Berichtswesen der Luftfahrtforschung des Generalluftzeugmeisters (ZWB) Untersuchungen und Mitteilungen; Rept-1288
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...