ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 05. General::05.02. Data dissemination::05.02.01. Geochemical data  (7)
  • American Geophysical Union  (7)
  • Wiley
  • Essen : Verl. Glückauf
  • Krefeld : Geologischer Dienst Nordhein-Westfalen
  • 2005-2009  (7)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2020-02-24
    Description: Measurements of 220Rn and 222Rn activity and of CO2 flux in soil and fumaroles were carried out on Mount Etna volcano in 2005–2006, both in its summit area and along active faults on its flanks. We observe an empirical relationship between (220Rn/222Rn) and CO2 efflux. The higher the flux of CO2, the lower the ratio between 220Rn and 222Rn. Deep sources of gas are characterized by high 222Rn activity and high CO2 efflux, whereas shallow sources are indicated by high 220Rn activity and relatively low CO2 efflux. Excess 220Rn highlights sites of ongoing shallow rock fracturing that could be affected by collapse, as in the case of the rim of an active vent. Depletion both in 220Rn and in CO2 seems to be representative of residual degassing along recently active eruptive vents.
    Description: This work was funded by the Istituto Nazionale di Geofisica e Vulcanologia (S.G., M.N.) and by the Dipartimento per la Protezione Civile (Italy), projects V3_6/28-Etna (M.N.) and V5/08-Diffuse degassing in Italy (S.G.), and NSF EAR 063824101 (K.W.W.S.).
    Description: Published
    Description: Q10001
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: reserved
    Keywords: radon ; thoron ; carbon dioxide ; rock stress ; gas transport ; Mount Etna ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Soil temperature and total dissolved gas pressure(TDGP) data were recorded by two continuous monitoring stations on the volcano of Stromboli (Italy) between March and October 2006. During this period several TDGP and soil temperature anomalies, unrelated to external causes and characterized by a similar shape and occurrence time, were recorded. These anomalies were interpreted as transients due to changes in the degassing regime of the volcano,which was in turn related to changes in the partition ratio of the volcanic fluidsbetweenthe conduitandthe soil. In thesame period Stromboli experienced an anomalous phase of volcanic and tectonic activity. The close correlation found between volcano-tectonic activity and variations in anomalousmonitored parameters suggests that their continuous monitoring may be a useful tool for the surveillance of volcanic activity on the island.
    Description: Published
    Description: L08301
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Dissolved gases ; Soil temperature ; Total dissolved gas pressure ; Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Chemical and isotopic data have been used as geochemical tracers for a genetic characterization of hydrocarbon gases from a total of eleven manifestations located in Eastern and Central-Southern Sicily (Italy). The molecular analysis shows that almost all the samples are enriched in methane (up to 93.2% Vol.), with the exception of four gas samples collected around Mt. Etna showing high mantle-derived CO2 content. Methane isotope signatures suggest that these are thermogenic gases or a mixture between thermogenic gases and microbial gases. Although samples from some mud volcanoes in Southern Sicily (Macalube di Aragona) show isotope signatures consistent with a mixing model between thermogenic and microbial, by combining the molecular compositions (C1/(C2 + C3))and the methane isotope ratios (d13C1), such a process seems to be excluded. Therefore, the occurrence of secondary post-genetic processes should be invoked. Two main hypotheses have been considered: the first hypothesis includes that the gas is produced by microbial activity and altered post-genetically by microbial oxidation of methane, while according to the second hypothesis thermogenic gas have modified their molecular ratios due to vertical migration.
    Description: Published
    Description: L06607
    Description: partially_open
    Keywords: Isotopic composition/chemistry ; Organic geochemistry ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 503 bytes
    Format: 1041380 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Marked increases of CO2, H2 and He dissolved in thermal waters and changes in the dissolved carbon isotopic composition, were observed at Stromboli before the 28 December 2002 eruption and before a violent explosive paroxysm occurred on 5 April 2003. High anomalous CO2 flux values were recorded at the crater rim since a week before the eruption onset. The first anomalies in the thermal waters (dissolved CO2 amount) appeared some months before the eruption, when magma column rose at a very high level in the conduit. High peaks of dissolved H2 and He were recorded a few days before the paroxysm. Carbon isotopic composition indicates a magmatic origin of the dissolved CO2 whose increase, together with those of H2 and He, is attributed to an increasing output of deep gases likely produced by depressurization of a rising batch of a deep gas-rich magma, whose fragments have been emitted during the explosion.
    Description: Italian Civil Protection
    Description: Published
    Description: L07620
    Description: partially_open
    Keywords: Stromboli ; geochemical precursors ; CO2 flux ; pH ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 190819 bytes
    Format: 503 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: The Jalisco Block (JB) is a geologically and tectonically complex part of northwestern Mexico characterized by active subduction-type volcanism, rifting, and old stable structures. Thermal springs and groups of springs are widely distributed over JB. Bubbling gas from seven thermal springs located within different tectonic environments of the JB was analyzed for He, 20Ne, and N2 concentrations and d15N ratios. All gases are N2-dominant (〉84%) with the exception of one sample (Rio´ Purificacio´n), which has a significant CH4 content (about 50%). All collected gas samples are relatively high in He, up to 1500 ppm vol and with 3He/4He values ranging from 0.6 to 4.5 Ra. All measured nitrogen isotope ratios are heavier than air with d15N values ranging from 0.5 to 5.0%. The relative N2 excess with respect to air-saturated water computed on the basis of N2 and 20Ne contents indicates the contribution of a nonatmospheric N2 source. All the samples show a good correlation between d15N and the relative excess of N2 with d15N +5.3% for the maximum N2 excess of 100%. Due to a presumed lack of seafloor sediment involved in the subduction process, such a d15N positive value seems to reflect the addition to the fluids of a heavy nitrogen originating from metamorphism processes of rocks occurring within the overlying continental crust.
    Description: Published
    Description: 1-9
    Description: partially_open
    Keywords: bubbling gases ; forearc region ; Jalisco Block-Mexico ; nitrogen isotopes ; subduction-related volcanism ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 532399 bytes
    Format: 503 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: In this paper we present the first geochemical data set regarding long-term monitoring of dissolved gases in thermal waters from a seismic area. Three sites in Umbria (Central Apennines, Italy) were studied both for the chemical and for the helium isotopic composition of the dissolved gases. Data were collected during and after the seismic crisis that struck the region in 1997â 1998. The chemical composition of the dissolved gases revealed that a CO2-rich gas phase was always mixed with an atmospheric-derived component dominated by N2. A normal faulting marked the beginning of the seismic activity enhancing the release of CO2 on a regional scale. Variations in both the chemical and isotopic compositions of the dissolved gases were also observed as preseismic, synseismic, and postseismic phenomena related to the seismic shock of March 1998. Those geochemical modifications were interpreted as being the consequence of a drop in the CO2 degassing rate, in good agreement with the compressive focal mechanism of that seismic event. Furthermore, this interpretation was also consistent with the geologic and tectonic setting of the study area and induced us to postulate that changes in the local rock permeability, due to crustal deformations (i.e., coseismic deformation and postseismic release), were responsible for the geochemical modifications observed. On the basis of the foregoing, we have concluded that the geochemistry of dissolved gases in groundwaters represents a useful tool for the investigation of the relationships between circulating fluids and seismic activity.
    Description: Published
    Description: partially_open
    Keywords: dissolved gases ; geochemistry ; seismic areas ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.02. Data dissemination::05.02.04. Hydrogeological data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 337669 bytes
    Format: 503 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: On 2nd/3rd November 2002, a huge amount of gas, mainly composed of CO2, was suddenly released from the sea bottom off the coast of Panarea, producing a ‘‘crater’’20 by 10 meters wide and 7 meters deep. The gas output was estimated to be 109 l/d, two orders of magnitude higher than that measured in the 1980s. The anomalous degassing rate lasted for some weeks, slowly decreasing to an almost constant rate of about 4 x 107 l/d after two months. The geothermo- barometric estimations revealed an increase of both the temperature and pressure in the geothermal system feeding the sampled vents. The 3He/4He ratios were similar to those measured in nearby Stromboli. We have monitored the area for the last two decades, and based on our intensive and extensive geochemical measurements, have ascertained that the geothermal reservoir has lost its steady state. We maintain that a new magmatic input caused these phenomena.
    Description: - Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Vesuviano, Naples, Italy. - Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Palermo, Palermo, Italy. - Dipartimento Chimica e Fisica della Terra ed Applicazioni, Palermo, Italy.
    Description: Published
    Description: L07619
    Description: partially_open
    Keywords: Submarine degassing ; magmatic fluids ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 3123251 bytes
    Format: 503 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...