ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.01. Gases  (5)
  • Elsevier  (4)
  • American Geophysical Union  (1)
  • Krefeld : Geologischer Dienst Nordhein-Westfalen
  • Irkutsk : Ross. Akad. Nauk, Sibirskoe Otd., Inst. Zemnoj Kory
  • 2005-2009  (5)
  • 2006  (5)
Collection
Publisher
Years
  • 2005-2009  (5)
Year
  • 1
    Publication Date: 2017-04-04
    Description: Sulphur speciation in volcanic gases acts as a major redox buffer, and H2S/SO2 ratios represent a valuable indicator of magmatic conditions and interactions between magmatic and hydrothermal fluids. However, measurement of H2S/SO2 even by direct sampling techniques, is not straightforward. We report here on application of a small ultraviolet spectrometer for real-time field measurement of H2S and SO2 concentrations, using open-path and extractive configurations. The device was tested at fumaroles on Solfatara and Vulcano, Italy, in November 2002. H2S concentrations of up to 220ppmm(400 ppmv) were measured directly above the Bocca Grande fumarole at Solfatara, and H2S/SO2 molar ratios of 2 and 2.4, respectively, were determined for the ‘F11’ and ‘F0’ fumaroles at Vulcano. In comparison with other optical techniques capable of multiple volcanic gas measurements, such as laser and FTIR spectroscopy, this approach is considerably simpler and cheaper, with the potential for autonomous, sustained hightime resolution operation.
    Description: Published
    Description: 1652
    Description: partially_open
    Keywords: Remote monitoring ; Plume chemistry ; sulphur species ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 503 bytes
    Format: 124998 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: A Conjugated Toop-Samis-Flood-Grjotheim (CTSFG) model is developed by combining the framework of the Toop-Samis polymeric approach with the Flood-Grjotheim theoretical treatment of silicate melts and slags. Electrically equivalent ion fractions are computed over the appropriate matrixes (anionic and cationic) in a Temkin notation for fused salts, and are used to weigh the contribution of the various disproportionation reactions of type: M2/pO(melt)+ 1/2S(gas)+M2/pS(melt)+1/2O2(gas) M2/po(melt)+1/2S2(gas)+3/2O2(gas)-M2/pSO4(melt)v being the charge of the generic Mp-1 cation. The extension of the anionic matrix is calculated in the framework of a previously developed polymeric model (Ottonello et al., 2001), based on a parameterization of Lux-Flood acid-base properties of melt components. Model activities follow the Raoultian behavior implicit in the Temkin notation, without the needs of introducing adjustable parameters. The CTSFG model is based on a large amount of data available in literature and exhibits a satisfactory heuristic capability, with virtually no compositional limits, as long as the structural role given to each oxide holds. The model may be employed to compute gas-melt equilibria involving sulfur and allows computing sulfide and sulfate contents of silicate melts whenever the fugacity of a gaseous sulfur species and oxygen are known. Alternatively, the model calculates the oxidation state of the system (i.e., oxygen fugacity), whenever an analytical determination of either sulfide/sulfate or ferrous/ferric ratios in the melt is provided. Calculated sulfide and sulfate capacities allow the estimates of sulfur abundance in various melts of geological interest, both under anhydrous and hydrous conditions or, alternatively, of fS2, given fO2 and the bulk sulfur content. In this case, fSO2 and fH2S may be eventually computed along the water-sulfur-melt boundary provided fH2O is known.
    Description: Published
    Description: 801-823
    Description: partially_open
    Keywords: sulfur ; silicate melts ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 568 bytes
    Format: 1278538 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Despite its impact in understanding oceanic crust formation and eruptive styles of related volcanism, magma dynamics at midocean ridges are poorly known. Here, we propose a new method to assess ascent rates of mid-ocean ridge basalt (MORB) magmas,as well as their pre- and sin-eruptive dynamics. It is based on the idea that a rising magma can reach a variable degree of both CO2 supersaturation in melt and kinetic fractionation among noble gases in vesicles in relation to its ascent rate through the crust. To quantify the relationship, we have used a model of multicomponent bubble growth in MORB melts, developed by extending the single-component model of Proussevitch and Sahagian [A.A. Proussevitch, D.L. Sahagian, Dynamics and energetics of bubble growth in magmas: analytical formulation and numerical modeling, J. Geophys. Res. 103 (1998), 18223–18251.] to CO2–He–Ar gas mixtures. After proper parameterization, we have applied it to published suites of data having the required features (glasses from Pito Seamount and mid-Atlantic ridges). Our results highlight that the investigated MORB magmas display very different ranges of ascent rates: slow rises of popping rock forming-magmas that cross the crust (0.01–0.5 m/s), slightly faster rates of energetic effusions (0.1–1 m/s), up to rates of 1–10 m/s which fall on the edge between lava effusion and Hawaiian activity. Inside a single plumbing system, very dissimilar magma dynamics highlight the large differences in compressive stress of the oceanic crust on a small scale. Constraints on how the systems of ridges work, as well as the characteristics of the magmatic source, can also be obtained. Our model shows how measurements of both the dissolved gas concentration in melt and the volatile composition of vesicles in the same sample are crucial in recognizing the kinetic effects and definitively assessing magma dynamics. An effort should be made to correctly set the studied samples in the sequence of volcanic submarine deposits where they are collected. Enhanced knowledge of a number of physical properties of gas-bearing MOR magmas is also required, mainly noble gas diffusivities, to describe multicomponent bubble growth at a higher confidence level.
    Description: Published
    Description: 138-158
    Description: partially_open
    Keywords: Bubble growth ; MORB ; Noble gas ; Kinetic fractionation ; Modeling ; 04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistry ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 539 bytes
    Format: 695380 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Thermal springs with a maximum measured temperature of 89°C discharge hot water and gas from a depth of 11 m, 400 m offshore of Punta Pantoque, located in the northern part of Bahìa de Banderas, near Puerto Vallarta, Mexico. The composition of all water samples collected from the sea bottom is close to that of sea water. Nevertheless, it was possible to estimate the thermal endmember composition by extrapolating the sulfate concentration to zero. This endmember is similar in chemical composition both to waters of the Rio Purificacion and La Tuna thermal springs, located to the South along the Pacific coast of the Jalisco Block, and to pore waters from the deep-sea drilling cores from some accretionary complexes. Gas composition as well as isotopic composition of He and carbon from CO2, CH4 and C2H6 suggests an essentially thermo-biogenic origin for the gas and the presence of a high proportion of radiogenic, crustal helium. Isotopic composition of He in the Punta de Mita gas (0.4 Ra) is the lowest ever measured in Mexican hydrothermal gases. These findings do not support the idea that there exists a direct connection between the Punta de Mita springs and the last volcanic events which occurred in this area at V3 Ma. Rather, this hydrothermal activity is related to deep active faulting and the existence of a deep regional aquifer or local aquifers of connate waters underlying the granites of the Jalisco Block.
    Description: Published
    Description: 329-338
    Description: partially_open
    Keywords: submarine springs ; hydrothermal systems ; geothermometry ; He-isotopes ; formation waters ; Jalisco Block ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 539 bytes
    Format: 269561 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Elsevier
    In:  Taran Y. A., Inguaggiato S., Marin M., and Yurova L. M. (2002) Geochemistry of fluids from submarine hot springs at Punta de Mita, Nayarit, Mexico. J. Volcanol. Geoth. Res. 115, 329-338.
    Publication Date: 2017-04-04
    Description: We thank R.M. Prol-Ledesma for her comment on the paper by Taran et al. (2002a) and the new data presented on the water composition of the Punta de Mita (PM) submarine springs. Prol-Ledesma (2003) comments refer to a supposedly wrong citation, superficial description of the geological background, incorrect method of water sampling, wrong approach for the estimation of the end-member composition, irrelevant discussion on the origin of fluids and, lastly, the using of someone else’s ideas and conclusions. In addition, she claims that our data on the fluid chemistry of the springs are not the first (original)ones. The Comment is supported by numerous references to publications by Prol-Ledesma et al. The text below follows the rubrics in the Comment.
    Description: Published
    Description: 319-322
    Description: partially_open
    Keywords: submarine springs ; hydrothermal systems ; geothermometry ; He-isotopes ; formation waters ; Jalisco Block ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 539 bytes
    Format: 164856 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...