ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics  (25)
  • 04. Solid Earth::04.04. Geology::04.04.09. Structural geology  (19)
  • Elsevier Science Limited  (32)
  • Nature Publishing Group
Sammlung
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2021-05-12
    Beschreibung: This study presents a series of self-correcting models that are obtained by integrating information about seismicity and fault sources in Italy. Four versions of the stress release model are analyzed, in which the evolution of the system over time is represented by the level of strain, moment, seismic energy, or energy scaled by the moment. We carry out the analysis on a regional basis by subdividing the study area into eight tectonically coherent regions. In each region, we reconstruct the seismic history and statistically evaluate the completeness of the resulting seismic catalog. Following the Bayesian paradigm, we apply Markov chain Monte Carlo methods to obtain parameter estimates and a measure of their uncertainty expressed by the simulated posterior distribution. The comparison of the four models through the Bayes factor and an information criterion provides evidence (to different degrees depending on the region) in favor of the stress release model based on the energy and the scaled energy. Therefore, among the quantities considered, this turns out to be the measure of the size of an earthquake to use in stress release models. At any instant, the time to the next event turns out to follow a Gompertz distribution, with a shape parameter that depends on time through the value of the conditional intensity at that instant. In light of this result, the issue of forecasting is tackled through both retrospective and prospective approaches. Retrospectively, the forecasting procedure is carried out on the occurrence times of the events recorded in each region, to determine whether the stress release model reproduces the observations used in the estimation procedure. Prospectively, the estimates of the time to the next event are compared with the dates of the earthquakes that occurred after the end of the learning catalog, in the 2003–2012 decade.
    Beschreibung: Italian Dipartimento della Protezione Civile in the framework of the 2007–2009 Agreement with Istituto Nazionale di Geofisica e Vulcanologia (INGV), project S1: Analysis of the seismic potential in Italy for the evaluation of the seismic hazard.
    Beschreibung: Published
    Beschreibung: 147-168
    Beschreibung: 2T. Tettonica attiva
    Beschreibung: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Beschreibung: JCR Journal
    Beschreibung: restricted
    Schlagwort(e): point process ; probabilistic forecasting ; interevent time distribution ; seismogenic sources ; Bayesian inference ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 05. General::05.01. Computational geophysics::05.01.04. Statistical analysis
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2020-12-03
    Beschreibung: Along the ∼500km long Sicily–Calabria segment of the Nubia–Eurasia plate boundary GPS data highlight a complex, and debated, kinematic pattern. We focus on eastern Sicily, where the style of crustal deformation rapidly changes in the space of few tens of kilometers. In southeastern Sicily, struck by the 1693MW∼7.4earthquake, GPS measurements highlight a steep velocity gradient, with ∼2.4mm/yr of ∼N–S shortening in ∼10km, changing to broader extension (∼3mm/yr in ∼60km) in northern Sicily and shortening in the southern Tyrrhenian Sea. GPS data and kinematic elastic block models highlight a complex fragmentation of the Sicilian domain into three tectonic blocks, which move independently from Nubia, describing an overall clockwise rotation of this crustal domain with respect to Eurasia. Shortening in southeastern Sicily is associated witha system of high-angle reverse faults resulting from tectonic inversion of extensional faults at the northern tip of the Hyblean plateau. Extension in northern Sicily occurs on a broader deformation belt, developed on the former Kumeta–Alcantara line, extending west of Mount Etna toward the southwestern Tyrrhenian Sea, accommodating the faster rotation of the northeastern Sicily block with respect to central Sicily. Although the seismic potential of inland faults is not negligible, our results strengthen the hypothesis that the Malta escarpment is the likely source of the large 1693 earthquake and tsunami. The observed kinematics appears only subordinately driven by the Nubia–Eurasia convergence and the dynamics of the Mediterranean subduction system is likely playing a major role in governing block motions and active tectonics in Sicily.
    Beschreibung: Published
    Beschreibung: 77-88
    Beschreibung: 1T. Geodinamica e interno della Terra
    Beschreibung: JCR Journal
    Beschreibung: restricted
    Schlagwort(e): Central Mediterranean ; GPS ; tectonic blocks ; kinematics ; tectonic reactivation ; geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    facet.materialart.
    Unbekannt
    Elsevier Science Limited
    Publikationsdatum: 2021-03-09
    Beschreibung: High-resolution ground and marine magnetic data are exploited for a detailed definition of a 3D model of the Vulcano Island volcanic complex. The resulting 3D magnetic imaging, obtained by 3-D inverse modeling technique, has delivered useful constraints both to reconstruct the Vulcano Island evolution and to be used as input data for volcanic hazard assessment models. Our results constrained the depth and geometry of the main geo-structural features revealing more subsurface volcanic structures than exposed ones and allowing to elucidate the relationships between them. The recognition of two different magnetization sectors, approximatively coincident with the structural depressions of Piano caldera, in the southern half of the island, and La Fossa caldera at the north, suggests a complex structural and volcanic evolution.Magnetic highs identified across the southern half of the island reflect the main crystallized feeding systems, intrusions and buried vents, whose NNW–SSE preferential alignment highlights the role of the NNW–SSE Tindari–Letojanni regional system from the initial activity of the submarine edifice, to the more recent activity of the Vulcano complex. The low magnetization area, in the middle part of the islandmay result fromhydrothermally altered rocks. Their presence not only in the central part of the volcano edifice but also in other peripheral areas, is a sign of a more diffuse historical hydrothermal activity than in present days. Moreover, the high magnetization heterogeneity within the upper flanks of La Fossa cone edifice is an imprint of a composite distribution of unaltered and altered rocks with different mechanical properties, which poses in this area a high risk level for failure processes especially during volcanic or hydrothermal crisis.
    Beschreibung: Published
    Beschreibung: 40-49
    Beschreibung: 1V. Storia e struttura dei sistemi vulcanici
    Beschreibung: JCR Journal
    Beschreibung: restricted
    Schlagwort(e): Vulcano Island ; 3D inverse model ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2021-03-01
    Beschreibung: An updated tectonic framework of Etna's unstable flank has been defined as a result of multidisciplinary analyses carried out by integrating geological and geophysical data. The different typologies of datasets have been analyzed and correlated in order to constrain the geometry and kinematics of the fault systems controlling the unstable flank of Etna volcano and to better understand their complex relationship with the offshore morphostructures of the continental margin. In particular, we have considered as the main structural elements the following four fault systems: Pernicana, Ragalna, Tremestieri–Trecastagni and Timpe. Slip-rates and kinematics have been estimated in both long- and short-terms, respectively, from geological and seismotectonic/geodetic data. Data integration has allowed defining five kinematic domains in the sliding flank of Etna: (1) the NE block, bordered by the Pernicana fault and characterised by the highest deformation velocities; ground velocity progressively diminishes toward South, with a clockwise rotation of the vectors defining (2) the block embracing the central part of the Timpe system; (3) the Giarre wedge; (4) the Medium-East block, bounded by the S. Tecla and Trecastagni faults; and (5) the SE block bordered, by the hidden Belpasso-Ognina tectonic lineament. The dynamics of these blocks takes place through discontinuous movements: sudden short-term accelerations related to the magma intrusion are superimposed to a fairly constant mid-term ESE sliding. The proposed comprehensive model of the unstable flank provides the basic input parameters for applying analytical models to flank dynamics of Etna volcano.
    Beschreibung: Published
    Beschreibung: 5-15
    Beschreibung: 3.2. Tettonica attiva
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Faults, Seismotectonics, Ground deformation, Geodynamic model, Flank instability, Mt Etna ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2021-04-07
    Beschreibung: Recognizing the seismogenic source of major historical earthquakes, particularly when these have occurred offshore, is a long-standing issue across the Mediterranean Sea and elsewhere. The destructive earthquake (M ~7) that struck western Calabria (southern Italy) on the night of 8 September 1905 is one such case. having various authors proposed a seismogenic source, with apparently diverse hypotheses and without achieving a unique solution. To gain novel insight into the crustal volume where the 1905 earthquake took place and to seek a more robust solution for the seismogenic source associated with this destructive event, we carried out a well-targeted multidisciplinary survey within the Gulf of S. Eufemia (SE Tyrrhenian Sea), collecting geophysical data, oceanographic measurements, and biological, chemical and sedimentary samples. We identified three main tectonic features affecting the sedimentary basin in the Gulf of S. Eufemia: 1) a NE-SW striking, ca. 13-km-long, normal fault, here named S. Eufemia Fault; 2) a WNW-striking polyphased fault system; and 3) a likely E-W trending lineament. Among these, the normal fault shows evidence of activity witnessed by the deformed recent sediments and by its seabed rupture along which, locally, fluid leakage occurs. Features in agreement with the anomalous distribution of prokaryotic abundance and biopolymeric C content, resulted from the shallow sediments analyses. The numerous seismogenic sources proposed in the literature during the past 15 years make up a composite framework of this sector of western Calabria, that we tested against a) the geological evidence from the newly acquired dataset, and b) the regional seismotectonic models. Such assessment allows us to propose the NE-SW striking normal fault as the most probable candidate for the seismogenic source of the 1905 earthquake. Re-appraising a major historical earthquake as the 1905 one enhances the seismotectonic picture of western Calabria. Further understanding of the region and better constraining the location of the seismogenic source may be attained through integrated interpretation of our data together with a) on-land field evidence, and b) seismological modeling.
    Beschreibung: Published
    Beschreibung: 62-75
    Beschreibung: 3.2. Tettonica attiva
    Beschreibung: JCR Journal
    Beschreibung: open
    Schlagwort(e): seismogenic source ; earthquake ; seismotectonics ; prokaryotes ; Calabrian Arc ; 04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methods ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.05. Historical seismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2020-11-20
    Beschreibung: Alpine orogens in the central Mediterranean region have revealed the concomitance of crustal extension in back-arc domain and crustal shortening in frontal domain. Quantitative data of deformation in the frontal orogenic wedges are necessary to understand how the shortening-extension pair evolves in terms of structures, orogenic transport, timing, and exhumation rate. This paper deals with kinematics and ages of the frontal thrust systems of the Calabria-Peloritani Arc (Italy) exposed in the eastern Sila Massif. We first present structural fieldwork, onshore and offshore well log data, and new apatite fission-track (AFT) thermochronology. Then, we describe the structural architecture of the studied area as an ENE-verging stacking of thrust sheets involving basement units and syn-orogenic sediments. The AFT study documents that thrust sheets entered the partial annealing zone from 18 Ma to 13 Ma. This Early-Middle Miocene thrusting phase was coeval with exhumation of high-pressure/low temperature metamorphic rocks in the hinterland of the orogen (Coastal Chain area), mainly driven by top-to-the-W extensional tectonics. Opposite kinematic shear senses (contractional top-to-the-E and extensional top-to-the-W) and different exhumation rates (slow in the frontal, more rapid in the hinterland) are framed in a tectonic scenario of a critically tapered orogenic wedge during the eastward retreating of the Apennine slab.
    Beschreibung: Published
    Beschreibung: 105-119
    Beschreibung: 3.3. Geodinamica e struttura dell'interno della Terra
    Beschreibung: JCR Journal
    Beschreibung: restricted
    Schlagwort(e): AFT thermochronology ; orogenic wedge ; Calabria-Peloritani Arc ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2021-03-31
    Beschreibung: On 21 August 1962 an earthquake sequence set off near the city of Benevento, in Italy's southern Apennines. Three earthquakes, the largest having Mw 6.1, struck virtually the same area in less than 40 min (at 18:09, 18:19 and 18:44 UTC, respectively). Several historical earthquakes hit this region, and its seismic hazard is accordingly among the highest countrywide. Although poorly understood in the past, the seismotectonics of this region can be revealed by the 1962 sequence, being the only significant earthquake in the area forwhichmodern seismograms are available. We determine location, magnitude, and nodal planes of the first event (18:09 UTC) of the sequence. The focal mechanismexhibits dominant strike-slip rupture along a north-dipping, E-W striking plane or along a west-dipping, N-S striking plane. Either of these solutions is significantly different fromthe kinematics of the typical large earthquakes occurring along the crest of the Southern Apennines, such as the 23 November 1980 Irpinia earthquake (Mw 6.9), caused by predominant normal faulting along NW-SE-striking planes. The epicentre of the 21 August 1962, 18:09 event is located immediately east of the chain axis, near one of the three north-dipping, E-W striking oblique-slip sources thought to have caused one of the three main events of the December1456 sequence (Io XIMCS), the most destructive events in the southern Apennines known to date. Wemaintain that the 21August 1962, 18:09 earthquake occurred along the E-Wstriking fault systemresponsible for the southernmost event of the 1456 sequence and for two smaller but instrumentally documented events that occurred on 6May 1971 (Mw 5.0) and 27 September 2012(Mw 4.6), further suggesting that normal faulting is not the dominant tectonic style in this portion of the Italian peninsula.
    Beschreibung: Published
    Beschreibung: 375-384
    Beschreibung: 2T. Tettonica attiva
    Beschreibung: JCR Journal
    Beschreibung: open
    Schlagwort(e): 1962 Irpinia earthquake ; Multiple earthquake ; Focal mechanism ; Strike-slip faulting ; Active tectonics ; Seismic hazard ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2021-05-12
    Beschreibung: Slip rate is a critical parameter for describing geologic and earthquake rates of known active faults. Although faults are inherently three-dimensional surfaces, the paucity of data allows for estimating only the slip rate at the ground surface and often only few values for an entire fault. These values are frequently assumed as proxies or as some average of slip rate at depth. Evidence of geological offset and single earthquake displacement, as well as mechanical requirements, show that fault slip varies significantly with depth. Slip rate should thus vary in a presumably similar way, yet these variations are rarely considered. In this work, we tackle the determination of slip rate depth distributions by applying the finite element method on a 2D vertical section, with stratification and faults, across the central Apennines, Italy. In a first step, we perform a plane-stress analysis assuming visco-elasto-plastic rheology and then search throughout a large range of values to minimize the RMS deviation between the model and the interseismic GPS velocities. Using a parametric analysis, we assess the accuracy of the best model and the sensitivity of its parameters. In a second step, we unlock the faults and let the model simulate 10 kyr of deformation to estimate the fault long-term slip rates. The overall average slip rate at depth is approximately 1.1 mm/yr for normal faults and 0.2 mm/yr for thrust faults. A maximum value of about 2 mm/yr characterizes the Avezzano fault that caused the 1915, Mw 7.0 earthquake. The slip rate depth distribution varies significantly from fault to fault and even between neighbouring faults, with maxima and minima located at different depths. We found uniform distributions only occasionally. We suggest that these findings can strongly influence the forecasting of cumulative earthquake depth distributions based on long-term fault slip rates.
    Beschreibung: Project “Abruzzo” (code: RBAP10ZC8K_ 003) funded by the Italian Ministry of Education, University and Research (MIUR).
    Beschreibung: Published
    Beschreibung: 1T. Geodinamica e interno della Terra
    Beschreibung: 2T. Tettonica attiva
    Beschreibung: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Beschreibung: JCR Journal
    Beschreibung: restricted
    Schlagwort(e): slip rate ; numerical model ; fault ; rheology ; central Italy ; active tectonics ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    facet.materialart.
    Unbekannt
    Elsevier Science Limited
    In:  Supplementary data associated with this article can be found in the online version, at http://dx.doi.org/10.1016/j.jvolgeores.2012.08. 013.
    Publikationsdatum: 2017-04-04
    Beschreibung: A pilot GIS-based system has been implemented for the assessment and analysis of hazard related to active faults affecting the eastern and southern flanks of Mt. Etna. The system structure was developed in ArcGis® environment and consists of different thematic datasets that include spatially-referenced arc-features and associated database. Arc-type features, georeferenced into WGS84 Ellipsoid UTM zone 33 Projection, represent the five main fault systems that develop in the analysed region. The backbone of the GIS-based system is constituted by the large amount of information which was collected from the literature and then stored and properly geocoded in a digital database. This consists of thirty five alpha-numeric fields which include all fault parameters available from literature such us location, kinematics, landform, slip rate, etc. Although the system has been implemented according to the most common procedures used by GIS developer, the architecture and content of the database represent a pilot backbone for digital storing of fault parameters, providing a powerful tool in modelling hazard related to the active tectonics of Mt. Etna. The database collects, organises and shares all scientific currently available information about the active faults of the volcano. Furthermore, thanks to the strong effort spent on defining the fields of the database, the structure proposed in this paper is open to the collection of further data coming from future improvements in the knowledge of the fault systems. By layering additional user-specific geographic information and managing the proposed database (topological querying) a great diversity of hazard and vulnerability maps can be produced by the user. This is a proposal of a backbone for a comprehensive geographical database of fault systems, universally applicable to other sites.
    Beschreibung: Published
    Beschreibung: 170-186
    Beschreibung: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Beschreibung: 3.2. Tettonica attiva
    Beschreibung: 4.3. TTC - Scenari di pericolosità vulcanica
    Beschreibung: 5.5. TTC - Sistema Informativo Territoriale
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): GIS-based system ; Hazard assessment ; Volcano-tectonics ; Flank dynamics ; Georeferenced arc-features ; Active fault database ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2017-04-03
    Beschreibung: The April 3, 1998 Mw=5.1 Gualdo Tadino earthquake (central Italy) was the last significant event in the 6-month-long Umbria–Marche seismic crisis. This event and its aftershocks occurred in an area where active faulting produces no striking geological and geomorphological effects. In this study, we investigated the ruptured fault using detailed seismological data and a re-processed and re-interpreted seismic reflection profile. Aftershock location and focal mechanisms were used to constrain the geometry and kinematics of the ruptured fault and a comparison was made with the subsurface image provided by the seismic profile. We found that the 1998 Gualdo Tadino earthquake occurred on a WSW-dipping, normal fault, with a length of about 8 km and a relatively gentle dip (308–408), confined between 3.5 and 7 km in depth. Kinematics of the mainshock and aftershocks revealed a NE-trending extension, in agreement with the regional stress field active in the Northern Apennines belt. The Mw = 5.1 earthquake originated above the top of the basement and ruptured within the sedimentary cover, which consists of an evaporites–carbonates multilayer. We hypothesised that the active fault does not reach the surface (blind normal fault). D 2005 Elsevier B.V. All rights reserved.
    Beschreibung: Published
    Beschreibung: 233-247
    Beschreibung: 3.2. Tettonica attiva
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Aftershocks; Seismicity; Blind normal fault; Seismic reflection profile; Focal mechanisms; Umbria–Marche Apennines ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...