ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ASTROPHYSICS  (16,581)
  • 1
    Publication Date: 2019-08-28
    Description: We compute optical and infrared light curves of the pulsating class of delayed detonation models for Type Ia supernovae (SN Ia's) using an elaborate treatment of the Local Thermodynamic Equilbrium (LTE) radiation transport, equation of state and ionization balance, expansion opacity including the cooling by CO, Co(+), and SiO, and a Monte Carlo gamma-ray deposition scheme. The models have an amount of Ni-56 in the range from approximately or equal to 0.1 solar mass up to 0.7 solar mass depending on the density at which the transition from a deflagration to a detonation occurs. Models with a large nickel production give light curves comparable to those of typical Type Ia supernovae. Subluminous supernovae can be explained by models with a low nickel production. Multiband light curves are presented in comparison with the normally bright event SN 1992bc and the subluminous events Sn 1991bg and SN 1992bo to establish the principle that the delayed detonation paradigm in Chandrasekhar mass models may give a common explosion mechanism accounting for both normal and subluminous SN Ia's. Secondary IR-maxima are formed in the models of normal SN Ia's as a photospheric effect if the photospheric radius continues to increase well after maximum light. Secondary maxima appear later and stronger in models with moderate expansion velocities and with radioactive material closer to the surface. Model light curves for subluminous SN Ia's tend to show only one 'late' IR-maximum. In some delayed detonation models shell-like envelopes form, which consist of unburned carbon and oxygen. The formation of molecules in these envelopes is addressed. If the model retains a C/O-envelope and is subluminous, strong vibration bands of CO may appear, typically several weeks past maximum light. CO should be very weak or absent in normal Sn Ia's.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 444; 2; p. 831-847
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-28
    Description: We present the results of a deep optical survey for distant solar system objects. An area of 1.2 sq deg of the ecliptic has been imaged to apparent red magnitude 25, resulting in the detection of seven trans-Neptunian objects. These are the first detected members of a trans-Neptunian disk that compries about 35 000 objects larger than 100 km in the 30-50 AU heliocentric distance range. We interpret the new measurements using a set of Monte Carlo models in which the effects of observational bias in the data are taken into account.
    Keywords: ASTROPHYSICS
    Type: The Astronomical Journal (ISSN 0004-6256); 109; 4; p. 1867-1876
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-28
    Description: We investigate observable effects of anisotropic turbulence on the velocity profiles and eclipse behavior of emission lines from accretion disks. Turbulence expands the local line broadening profile, enhancing the surface brightness of saturated emission lines. Anisotropic turbulence produces anisotropic emission in such lines. The effects become observable when the turbulence exceeds the thermal velocity. Each term in the velocity-velocity correlation matrix produces a distinctive azimuthal pattern of enhanced emission-line surface brightness on the face of the accretion disk. These patterns express themselves as changes in the observable shapes of the disk's emission lines. The best place to look for turbulence effects is in saturated emission lines of heavy elements such as Ca, Mg, and Fe, which have a smaller thermal velocity at a given sound speed and at moderate inclination (60-70 degrees), since the Keplerian shear broadening dominates at higher inclinations.
    Keywords: ASTROPHYSICS
    Type: Astronomy and Astrophysics (ISSN 0004-6361); 297; 1; p. 273-284
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-28
    Description: We have calculated a grid of more than 700 model atmospheres valid for a wide range of parameters encompassing the coolest known M dwarfs, M subdwarfs, and brown dwarf candidates: 1500 less than or equal to T(sub eff) less than or equal to 4000 K, 3.5 less than or equal to log g less than or equal to 5.5, and -4.0 less than or equal to (M/H) less than or equal to +0.5. Our equation of state includes 105 molecules and up to 27 ionization stages of 39 elements. In the calculations of the base grid of model atmospheres presented here, we include over 300 molecular bands of four molecules (TiO, VO, CaH, FeH) in the JOLA approximation, the water opacity of Ludwig (1971), collision-induced opacities, b-f and f-f atomic processes, as well as about 2 million spectral lines selected from a list with more than 42 million atomic and 24 million molecular (H2, CH, NH, OH, MgH, SiH, C2, CN, CO, SiO) lines. High-resolution synthetic spectra are obtained using an opacity sampling method. The model atmospheres and spectra are calculated with the generalized stellar atmosphere code PHOENIX, assuming LTE, plane-parallel geometry, energy (radiative plus convective) conservation, and hydrostatic equilibrium. The model spectra give close agreement with observations of M dwarfs across a wide spectral range from the blue to the near-IR, with one notable exception: the fit to the water bands. We discuss several practical applications of our model grid, e.g., broadband colors derived from the synthetic spectra. In light of current efforts to identify genuine brown dwarfs, we also show how low-resolution spectra of cool dwarfs vary with surface gravity, and how the high-regulation line profile of the Li I resonance doublet depends on the Li abundance.
    Keywords: ASTROPHYSICS
    Type: The Astrophysical Journal, Part 1 (ISSN 0004-637X); 445; 1; p. 433-450
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-28
    Description: The sensitivity of the solar g-mode oscillation spectrum to variability in the universal gravitational constant G is described. Solar models in varying G cosmologies were constructed by evolving a zero-age main-sequence stellar model to the Sun's current age, while allowing the value of G to change according to the power law G(t) proportional to t(exp -beta), where Beta approximately equals delta G/GH and H is the Hubble constant. All solar models were constrained to the observed luminosity and radius at the current age of the Sun by adjusting the helium abundance and the mixing-length parameter of the models in the usual way for standard stellar models. Low-l g-mode oscillation periods were calculated for each of the models and compared to the claimed observation of the solar g-mode oscillation spectrum by Hill & Gu (1990). If one accepts Hill & Gu's claims, then within the uncertainties of the physics of the solar model calculation, our models rule out all but (delta G/GH) less than approximately 0.05. In other words, we conclude that G could not have varied by more than 2% over the past 4.5 Gyr, the lifetime of the present-day Sun. This result lends independent support to the validity of the standard solar model.
    Keywords: ASTROPHYSICS
    Type: The Astrophysical Journal, Part 1 (ISSN 0004-637X); 445; 1; p. 148-151
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-28
    Description: A total of 663 galaxies with known redshifts in a 12 deg x 12 deg field centered on A2634, including 211 new measurements, are used to study in detail the structure of the region. In it we find six main galaxy concentrations: the nearby clusters A2634 and A2666, two groups in the vicinity of A2634, and two distant clusters at approximately 18,000 (A2622) and approximately 37,000 km/s seen in projection near the core of A2634. For A2634, the most richly sampled of those concentrations, we are able to apply strict cluster membership criteria. Two samples - one containing 200 galaxies within 2 deg from the cluster center and a second, magnitude-limited, of 118 galaxies within the central half degree - are used to examine the structure, kinematics, dynamics, and morphological segregation of the cluster. We show that early type galaxies appear to be a relaxed system, while the spiral population eschews the center of the cluster and exhibits both a multimodal velocity distribution and a much larger velocity dispersion that the ellipticals. We propose that the spiral galaxies of A2634 represent a dynamically young cluster population. For the galaxy component of A2634, we find no evidence of significant substructure in the central regions. We also conclude that the adoption of lenient membership criteria that ignore the dynamical complexity of A2634 are unlikely to be responsible for the conflicting results reported on the motion of this cluster with respect ot the CMB. The kinematical and dynamical analysis is extended to A2634's close companion, A2666, and the two distant background clusters.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 444; 1; p. 41-63
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-28
    Description: Voyager 2 observations of electrostatic electron and ion harmonic waves in Neptune's magnetosphere are addressed. A model of electron Bernstein modes generated by a loss cone distribution of superthermal electrons is scaled to Neptune parameters and a comparison of theory with the observed electron flux shows good agreement. A model of proton Bernstein modes generated by a ring distribution of Tritonogenic nitrogen ions is also investigated and satisfactory agreement with the data are obtained compatible with known properties of the magnetosphere. The success of the model in accounting for electrostatic emission observed by Voyager over a wide range of sampled parameters recommends its general applicability to planetary magnetospheres.
    Keywords: ASTROPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 98; A11; p. 19,465-19,469
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-28
    Description: Ionospheric plasma flowing out from the cusp can be an important source of plasma to the magnetosphere. One source of free energy that can drive this outflow is the injection of magnetosheath plasma into the cusp. Two-dimensional (three velocity) mesoscale particle simulations are used to investigate the particle dynamics in the cusp during southward interplanetary magnetic field. This mesoscale model self-consistently incorporates (1) global influences such as the convection of plasma across the cusp, the action of the mirror force, and the injection of the magnetosheath plasma, and (2) wave-particle interactions which produce the actual coupling between the magnetosheath and ionospheric plasmas. It is shown that, because the thermal speed of the electrons is higher than the bulk motion of the magnetosheath plasma, an upward current is formed on the equatorward edge of the injection region with return currents on either side. However, the poleward return currents are the stronger due to the convection and mirroring of many of the magnetosheath electrons. The electron distribution in this latter region evolves from upward directed streams to single-sided loss cones or possibly electron conics. The ion distribution also shows a variety of distinct features that are produced by spatial and/or temporal effects associated with varying convection patterns and wave-particle interactions. On the equatorward edge the distribution has a downflowing magnetosheath component and an upflowing cold ionospheric component due to continuous convection of ionospheric plasma into the region. In the center of the magnetosheath region, heating from the development of an ion-ion streaming instability causes the suppression of the cold ionospheric component and the formation of downward ionospheric streams. Further poleward there is velocity filtering of ions with low pitch angles, so that the magnetosheath ions develop a ring-beam distribution and the ensuing wave instabilities generate downward ionospheric conics. These downward ionospheric components are eventually turned by the mirror force, leading to the production of upward conics at elevated energies throughout the region.
    Keywords: ASTROPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 98; A11; p. 19,331-19,347
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-28
    Description: We have calculated UV/EUV (300 A less than or = lambda less than or = 1500 A) continuous energy distributions of accretion disks in the centers of active galactic nuclei (AGNs) for disk luminosities in the range 0.1 L(sub Edd) and central masses ranging from 10(exp 8) solar mass to 10(exp 10) solar mass. The vertical gas pressure structure of the disk is obtained analytically, the temperature stratification and the resulting continuum radiation fields are calculated numerically. We show that weak Lyman edges are an intrinsic feature of such disks. The strength of the H I Lyman edge decreases for increasing accretion rate and fixed mass of the central black hole. It increases for increasing central mass and fixed luminosity in terms of the Eddington luminosity.
    Keywords: ASTROPHYSICS
    Type: Astronomy and Astrophysics (ISSN 0004-6361); 289; 1; p. 45-53
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-28
    Description: The multifluid diffusive model of G. P. Zank et al. (1994), which describes the interaction of the solar wind with a cometary plasma in the outer coma, has been used to model the structure of the Halley bow shock. The theoretical results are compared to in situ observations made by Giotto. We compare the solar wind and cometary ion number densities and pressures upstream and through the quasi-perpendicular and quasi-parallel shocks (observed on the inbound and outbound legs of the encounter, respectively). In general, good agreement is found between theory and observations in terms of shock structure, strength, and location, especially for the quasi-parallel shock. The comparison between tha quasi-perpendicular shock observations and theory is complicated by the apparently nonstationary behavior of the shock, a feature which has been remarked upon by other investigators. The cometary bow shock appears to be an excellent example of an energetic-particle-mediated shock where the energetic particles comprise less than 10% of the total number density.
    Keywords: ASTROPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; A5; p. 7899-7906
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-28
    Description: The Saturn magnetosphere model of Richardson and Sittler (1990) is extended to include the outer magnetosphere. The inner magnetospheric portion of this model is updated based on a recent reanalysis of the plasma data near the Voyager 2 ring plane crossing. The result is an axially symmetric model of the plasma parameters which is designed to provide accurate input for models needing either in situ or line-of-sight data and to be a useful tool for Cassini planning.
    Keywords: ASTROPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 22; 10; p. 1177-1180
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-08-28
    Description: We present a detailed study of the highest-frequency component of smooth radio emission observed during the Voyager 2 encounter with Neptune in August 1989. This emission occurs during three distinct periods on August 24 and 25, 1989, in the frequency range of 550 to 900 kHz. By assuming straight-line propagation from sources of both fundamental and second harmonic gyroemission, we perform a detailed analysis of the observed polarization of the emission. The data are most consistent with an L-O mode source in the north magnetic polar region, around 50 deg W, 50 deg N. A second possible source is in the north magnetic polar region, around 270 deg W, 50 deg N. This source must emit in the R-X mode.
    Keywords: ASTROPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; A4; p. 5567-5578
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-08-28
    Description: We present a complete solution for a set of magnetohydrodynamic (MHD) Riemann problems in which the upstream and downstream states have the same total pressure, and in which the normal component of the magnetic field is very small. These solutions are pertinent to subfast flows in the earth's magnetic tail and near the magnetopause. In a coplanar situation a family of solutions exists that depend on two parameters as well as on dissapation mechanisms. In the parallel case the transverse magnetic field either does not change direction or changes the direction twice by involving two intermediate shocks. In the antiparallel case an intermediate shock is always required, except when the solution consists of two switch-off shocks. In a noncoplanar case the solution is not self-similar as a function of x/t, but continues to evolve. At early times the evolution is similar to the coplanar case. In general two time-dependent intermediate shocks are required to rotate the magnetic fields. The velocity shear has a strong effect on the Riemann solution. In some cases no Riemann solution can exist because of the cavitation caused by the slow refraction waves. The calculated magnetopause structure resembles the observed structure for northward interplanetary magnetic field (IMF). However, for southward IMF, the MHD result shows the existence of a depletion layer, which is not supported by observations. We also show that on the magnetosheath side, the Walen relation, which is exact for a rotational discontinuity, can also be well satisfied by a slow shock, an intermediate shock, or the head of a slow rarefaction wave.
    Keywords: ASTROPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; A4; p. 5579- 5598
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-08-28
    Description: L1551NE is a very young protostar (class I or perhaps class 0), located very close to L1551NE IRS 5. It is the second brightest far-infrared source in the Taurus molecular cloud complex, but its proximity to the brightest source IRS 5 has prevented effective observations of any molecular outflow. We here present evidence that it does indeed process an outflow, that the optical/infrared reflection nebula is associated with the blueshifted outflow lobe, and that the L1551W outflow does not originate from L1551NE, as has been suggested.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 2 - Letters (ISSN 0004-637X); 445; 1; p. L55-L58
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-08-28
    Description: A small fraction of galaxies appear to reside in dense compact groups, whose inferred crossing times are much shorter than a Hubble time. These short crossing times have led to considerable disagreement among researchers attempting to deduce the dynamical state of these systems. In this paper, we suggest that many of the observed groups are not physically bound but are chance projections of galaxies well separated along the line of sight. Unlike earlier similar proposals, ours does not require that the galaxies in the compact group be members of a more diffuse, but physically bound entity. The probability of physically separated galaxies projecting into an apparent compact group is nonnegligible if most galaxies are distributed in thin filaments. We illustrate this general point with a specific example: a simulation of a cold dark matter universe, in which hydrodynamic effects are included to identify galaxies. The simulated galaxy distribution is filamentary and end-on views of these filaments produce apparent galaxy associations that have sizes and velocity dispersions similar to those of observed compact groups. The frequency of such projections is sufficient, in principle, to explain the observed space density of groups in the Hickson catalog. We discuss the implications of our proposal for the formation and evolution of groups and elliptical galaxies. The proposal can be tested by using redshift-independent distance estimators to measure the line-of-sight spatial extent of nearby compact groups.
    Keywords: ASTROPHYSICS
    Type: The Astrophysical Journal, Part 1 (ISSN 0004-637X); 442; 1; p. 57-60
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-08-28
    Description: We investigate the anisotropy of the thermal radiation emitted by a surface element of a neutron star atmosphere (e.g., by a polar cap of a radio pulsar). Angular dependences of the partial fluxes at various photon energies, and spectra at various angles are obtained for different values of the effective temperature T(sub eff) and magnetic field strength B, and for different directions of the magnetic field. It is shown that the local radiation of the magnetized neutron star atmospheres is highly anisotropic, with the maximum flux emitted in the magnetic field direction. At high B the angular dependences in the soft X-ray range have two maxima, a high narrow peak along B and a lower and broader maximum at intermediate angles. The radiation is strongly polarized, the modulation of the degree of polarization due to the rotation of the neurtron star may be much higher than that for the radiative flux. The results obtained are compared with recent ROSAT observations of the thermal-like radiation from the radio pulsars PSR 1929+10 and PSR J0437-4715.
    Keywords: ASTROPHYSICS
    Type: Astronomy and Astrophysics (ISSN 0004-6361); 289; 3; p. 837-845
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-08-28
    Description: Laboratory studies of infrared emission from gas-phase naphthalene in the 3.3 micrometer region following ultraviolet laser excitation are used to interpret the unidentified infrared bands observed in many astronomical objects. A time-resolved Fourier transform infrared emission technique acquires the time and spectrally resolved data. Two excitation wavelengths are employed: 193 nm and 248 nm. The infrared emission features are strongly dependent on the initial excitation energy. Wavelength-resolved spectra recorded 6.8 microseconds after the laser pulse show a 45/cm redshift from the gas-phase absorption spectra for 193 nm excitation and 25/cm for 248 nm excitation. We hypothesize that a series of sequence bands originating from the highly vibrationally excited ensemble of molecules is responsible for the observed shift. As collisional and radiative deactivation removes energy from the highly vibrationally excited molecules, the maximum in the emission profile gradually approaches the customary absorption maximum. This indicates that the amount of redshift is strongly dependent on the amount of internal vibrational energy in the molecule at the time of the vibrational transition.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 443; 2; p. 675-681
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-08-28
    Description: We employ an approximate treatment of dissipative hydrodynamics in three dimensions to study the coalescence of binary neutron stars driven by the emission of gravitational waves. The stars are modeled as compressible ellipsoids obeying a polytropic equation of state; all internal fluid velocities are assumed to be linear functions of the coordinates. The hydrodynamics equations then reduce to a set of coupled ordinary differential equations for the evolution of the principal axes of the ellipsoids, the internal velocity parameters, and the binary orbital parameters. Gravitational radiation reaction and viscous dissipation are both incorporated. We set up exact initial binary equilibrium configurations and follow the transition from the quasi-static, secular decay of the orbit at large separation to the rapid dynamical evolution of the configurations just prior to contact. A hydrodynamical instability resulting from tidal interactions significantly accelerates the coalescence at small separation, leading to appreciable radial infall velocity and tidal lag angles near contact. This behavior is reflected in the gravitational waveforms and may be observable by gravitational wave detectors under construction. In cases where the neutron stars have spins which are not aligned with the orbital angular momentum, the spin-induced quadrupole moment can lead to precession of the orbital plane and therefore modulation of the gravitational wave amplitude even at large orbital radius. However, the amplitude of the modulation is small for typical neutron star binaries with spins much smaller than the orbital angular momentum.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 443; 2; p. 705-716
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-08-28
    Description: Meteorites are impact-derived fragments from approximately 85 parent bodies. For seven of these bodies, the meteorites record evidence suggesting that they may have been catastrophically fragmented. We identify three types of catastrophic events: (1) impact and reassemble events greater than 4.4 Gy ago, involving molten or very hot parent bodies (greater than 1200 C); this affected the parent bodies of the ureilites, Shallowater, and the mesosiderites. In each case, the fragments cooled rapidly (approximately 1-1000 C/day) and then reassembled. (2) Later impacts involving cold bodies which, in some cases, reassembled; this occurred on the H and L ordinary chondrite parent bodies. The L parent body probably suffered another catastrophic event about 500 My ago. (3) Recent impacts of cold, multi-kilometer-sized bodies that generated meter-sized meteoroids; this occurred on the parent bodies of the IIIAB irons (650 My ago), the IVA irons (400 My ago), and the H ordinary chondrite (7 My ago).
    Keywords: ASTROPHYSICS
    Type: Planetary and Space Science (ISSN 0032-0633); 42; 12; p. 1109-1122
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-08-28
    Description: We develop numerical models of accretions disks in cataclysmic variables (CVs), including and emphasizing the boundary layer region where the accretion disk meets the accreting white dwarf. We confine ourselves to solutions where the boundary layer region is vertically optically thick, and find that these solutions share several common features. The angular and radial velocities of the accreting material drop rapidly in a dynamical boundary layer, which has a radial width approximately 1%-3% of the white dwarf radius. The energy dissipated in this region diffuses through the inner part of the disk and is radiated from the disk surface in a thermal boundary layer, which has a radial width comparable to the disk thickness, approximately 5%-15% of the white dwarf radius. We examine the dependence of the boundary layer structure on the mass accretion rate, the white dwarf mass and rotation rate, and the viscosity parameter alpha. We delineate the boundary between optically thick and optically thin boundary layer solutions as a function of these parameters and suggest that by means of a careful comparison with observations it may be possible to estimate alpha in CVs. We derive an expression for the total boundary layer luminosities as a function of the parameters and show that it agrees well with the luminosites of our numerical solutions. Finally, we calcuate simple blackbody continuum spectra of the boundary layer and disk emission for our solutions and compare these to soft X-ray, EUV, and He II emission-line observations of CVs. We show that, through such comparisons, it may be possible to determine the rotation rates of the accreting stars in CVs, and perhaps also the white dwarf masses and the accretion rates. The spectra are quite insensitive to alpha, so the uncertainty in this parameter does not affect such comparisons.
    Keywords: ASTROPHYSICS
    Type: The Astrophysical Journal, Part 1 (ISSN 0004-637X); 442; 1; p. 337-357
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...