ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04.08. Volcanology
  • Società Geologica Italiana  (3)
  • Springer Nature
Collection
Keywords
Publisher
Years
  • 1
    Publication Date: 2022-02-11
    Description: Magmatism accompanies rifting along divergent plate boundaries, although its role before continental breakup remains poorly understood. For example, the magma-assisted Northern Main Ethiopian Rift (NMER) lacks current volcanism and clear tectono-magmatic relationships with its contiguous rift portions. Here we define its magmatic behaviour, identifying the most recent eruptive fissures (EF) whose aphyric basalts have a higher Ti content than those of older monogenetic scoria cones (MSC), which are porphyritic and plagioclase-dominated. Despite these differences, calculations highlight a similar parental melt for EF and MSC products, suggesting only a different evolutionary history after melt generation. While MSC magmas underwent a further step of storage at intermediate crustal levels, EF magmas rose directly from the base of the crust without contamination, even below older polygenetic volcanoes, suggesting rapid propagation of transcrustal dikes across solidified magma chambers. Whether this recent condition in the NMER is stable or transient, it indicates a transition from central polygenetic to linear fissure volcanism, indicative of increased tensile conditions and volcanism directly fed from the base of the crust, suggesting transition towards mature rifting.
    Description: Published
    Description: 21821
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Keywords: 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-28
    Description: From the 2010s on, pattern classification has proven an effective method for flagging alerts of volcano unrest before eruptive activity at Mt. Etna, Italy. The analysis has been applied online to volcanic tremor data, and has supported the surveillance activity of the volcano that provides timely information to Civil Protection and other authorities. However, after declaring an alert, no one knows how long the volcano unrest will last and if a climactic eruptive activity will actually begin. These are critical aspects when considering the effects of a prolonged state of alert. An example of longstanding unrest is related to the Christmas Eve eruption in 2018, which was heralded by several months of almost continuous Strombolian activity. Here, we discuss the usage of thresholds to detect conditions leading to paroxysmal activity, and the challenges associated with defining such thresholds, leveraging a dataset of 52 episodes of lava fountains occurring in 2021. We were able to identify conservative settings regarding the thresholds, allowing for an early warning of impending paroxysm in almost all cases (circa 85% for the first 4 months in 2021, and over 90% for the whole year). The chosen thresholds also proved useful to predict that a paroxysmal activity was about to end. Such information provides reliable numbers for volcanologists for their assessments, based on visual information, which may not be available in bad weather or cloudy conditions.
    Description: Project IMPACT (A multidisciplinary Insight on the kinematics and dynamics of Magmatic Processes at Mt. Etna Aimed at identifying preCursor phenomena and developing early warning sysTems). IMPACT belongs to the Progetti Dipartimentali INGV [DIP7], https://progetti.ingv.it/index.php/it/progetti-dipartimentali/vulcani/impact#informazioni-sul-progetto.
    Description: Published
    Description: 17895
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: Volcanic tremor ; Volcano monitoring ; Pattern recognition ; Self Organizing maps ; Fuzzy clustering ; Mt. Etna ; 04.06. Seismology ; 04.08. Volcanology ; 05.01. Computational geophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-11-09
    Description: The Pico do Fogo volcano, in the Cape Verde Archipelago off the western coasts of Africa, has been the most active volcano in the Macaronesia region in the Central Atlantic, with at least 27 eruptions during the last 500 years. Between eruptions fumarolic activity has been persisting in its summit crater, but limited information exists for the chemistry and output of these gas emissions. Here, we use the results acquired during a field survey in February 2019 to quantify the quiescent summit fumaroles’ volatile output for the first time. By combining measurements of the fumarole compositions (using both a portable Multi-GAS and direct sampling of the hottest fumarole) and of the SO2 flux (using near-vent UV Camera recording), we quantify a daily output of 1060±340 tons CO2, 780±320 tons H2O, 6.2±2.4 tons H2S, 1.4±0.4 tons SO2 and 0.05±0.022 tons H2. We show that the fumarolic CO2 output from Pico do Fogo exceeds (i) the time-averaged CO2 release during 2015-type recurrent eruptions and (ii) is larger than current diffuse soil degassing of CO2 on Fogo Island. When compared to worldwide volcanoes in quiescent hydrothermal-stage, Pico do Fogo is found to rank among the strongest CO2 emitters. Its substantial CO2 discharge implies a continuous deep supply of magmatic gas from the volcano’s plumbing system (verified by the low but measurable SO2 flux), that becomes partially affected by water condensation and sulphur scrubbing in fumarolic conduits prior to gas exit. Variable removal of magmatic H2O and S accounts for both spatial chemical heterogeneities in the fumarolic field and its CO2-enriched mean composition, that we infer at 64.1±9.2 mol. % H2O, 35.6±9.1 mol. % CO2, 0.26±0.14 mol. % total Sulfur (St), and 0.04±0.02 mol. % H2.
    Description: Published
    Description: 325-340
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Keywords: Pico do Fogo volcano ; Cape Verde ; Volcanic gases ; CO2 output ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-06-14
    Description: The eruption of Mt. Etna which occurred on December 24th 2018 was characterized by strombolian activity and fire fountains, emitted by the New South-East Crater and along a fissure that propagated towards the SE. The influence of volcanic emissions on atmospheric deposition was clearly detectable at several kilometres from the source. Wet and dry (bulk) deposition samples were collected each month, through a network of eleven collectors, in the areas of Milazzo, and Priolo between June 2018 and June 2019. They were analysed for major ions and trace elements concentrations. The pH values range from 3.9 to 8.3, while the EC values range from 7 to 396 μS cm-1. An extensive neutralization of the acidity has been recognised mainly due to the suspended alkaline dust particles, which have a buffering role in rainwater. A high load of Na+ and Cl- was observed at all sites, related to the closeness of the study areas to the coast, showing a high positive correlation (R2 = 0.989) along the line of Na+/Cl- ratio in seawater. During the eruption, the volcanic plume was carried by the winds for long distance (more than 300 km) affecting the area of Priolo but not that of Milazzo, which was upwind with respect to Mt. Etna. The impact of volcanic HF was clearly recognised in the samples collected after the eruption. Volcanic SO2 and HCl had a lower impact due to the overwhelming input of anthropogenic sulfate and marine chloride. On the contrary, the signature of the Mt. Etna eruption can be well recognised in the high concentrations of certain trace elements in the samples collected immediately after the eruption. The strongest contrast between affected and non-affected samples was recognised in Al, Cd, and especially in the volatile elements Tl and Te, which are typically enriched in volcanic emissions. The results showed that volcanic eruptions might have a relevant effect on the atmospheric chemistry and on the composition of rainwater up to distances of 80 km from the emission vents.
    Description: Published
    Description: 341-358
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: rainwater ; fluoride ; trace elements ; volcanic emissions ; 01. Atmosphere ; 03. Hydrosphere ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-11-09
    Description: This work presents chemical and isotopic (δ13C-CO2, δ13C-CH4, 3He, 4He, 20Ne, 40Ar, 36Ar, δ18O and δD) data on fluid discharges from the Colpitas-Taapaca volcanic-hydrothermal system, located close to the Taapaca Volcanic Complex, with the aim to investigate the physical-chemical conditions of the fluid source and to provide a preliminary evaluation of the geothermic potential of the study area. Colpitas thermal springs (to 56 °C) and part of the cold springs (≤18°C) from this area have a Na+-Cl- composition and Total Dissolved Solids (TDS) values (from 6,059 to 19,118 mg/L). Putre springs also show a Na+-Cl- composition, TDS values up to 7,887 mg/L, and outlet temperatures from 21 to 31 °C. Colpitas cold springs, with a Ca2+-SO4 2- composition and relatively low TDS values (≤1,350 mg/L), are likely produced by interaction of shallow water with uprising H2S-rich hydrothermal gases. This process is likely also controlling the chemistry of Jurase thermal springs, which have the highest outlet temperatures of the study area (up to 68 °C), a Ca2+-SO4 2- composition and TDS values ≤2,355 mg/L. Eventually, Las Cuevas springs have temperatures up to 36 °C, a Na+-HCO3 - composition and low TDS values (≤1,067 mg/L), typical features of springs related to a shallow aquifer. The δ18OH 2O and δD-H2O values indicate that all waters have a dominant meteoric origin. Enrichments in 18O and D shown by Colpitas and Putre thermal waters are likely due to steam loss and waterrock interaction, masking a possible direct steam contribution from magmatic degassing. Gas emissions from Colpitas bubbling pools are dominated by CO2, with significant concentrations of CH4, H2S and H2. The Rc/Ra values (up to 2.04) of Colpitas gases indicate a significant contribution of magmatic to mantle He, whereas the high CO2/3He ratios, combined with δ13C-CO2 values ranging from -7.66 to -5.63 ‰ vs. PDB, imply a dominant crustal CO2 source, mostly involving limestone. Estimated temperatures based on the composition of waters and gases from Colpitas are up to 215 °C. Higher temperatures (240 °C) are estimated for Putre thermal waters, although these waters, as well as those from Jurase and Las Cuevas, are too immature for a reliable application of geothermometric techniques. Based on the theoretical reservoir temperature and the measured Cl total output, the thermal energy released from Colpitas thermal area is estimated at up to 13.9 Mw. Such results suggest the occurrence of a promising heat source, possibly related to Taapaca volcanic complex, and encourage the development of future research based on combined geophysical and geochemical approaches, in order to provide a reliable evaluation of the geothermal potential of the whole area.
    Description: Published
    Description: 359-373
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Keywords: Colpitas-Taapaca geothermal system ; Fluid geochemistry ; volcanic-hydrothermal system ; geothermal potential ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...