ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (15,953)
  • Molecular Diversity Preservation International  (12,079)
  • MDPI Publishing  (3,874)
  • PANGAEA
  • Water  (3,874)
  • 125281
  • 1
    Publication Date: 2021-08-18
    Description: In recent years, Germany has experienced an increasing number of extreme wet and dry years. In the North German lowlands, wet grassland sites with shallow water table conditions are widespread landscape elements. They are characterized by a special water and nutrient balance that reacts very sensitively to changes in the hydrological system. Studies on evapotranspiration (ETa) and the development of groundwater levels were carried out at two typical wet grassland sites with shallow water table conditions. A weighable groundwater lysimeter system in the Spreewald wetland (SPW) and an eddy covariance station in Havelländisches Luch (HL) were used to measure ETa. The results show that even these shallow water table sites cannot sufficiently meet the vegetation’s water demands in extreme dry conditions. The groundwater levels drop to values deeper than 1 m below the surface. As a result, water supply to the vegetation is temporarily limited. The mean crop coefficients (Kc) of these wet grassland sites reach values of 1.1 in the vegetation period with a sufficient water supply, but drop to around 0.8 in dry years when the water supply is limited. Areas with small catchment areas, such as HL, are more seriously affected by the dry meteorological conditions than areas with sufficient inflows from larger catchment areas, such as SPW.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-01-31
    Description: Biological treatment processes perform satisfactory in wastewater treatment, but the relatively high cost and complicated maintenance limit its application in rural areas. In this study, a highly packed biofilm reactor (HPBR), with a 90% packing ratio of carriers in the bioreactor, was designed for rural wastewater treatment. The results showed that the removal rates for chemical oxygen demand (COD) and ammonia were 3.04 ± 1.81 kg/m3/d and 0.49 ± 0.18 kg/m3/d, respectively. Besides, the removal efficiency of total inorganic nitrogen (TIN) was 35.4% by the HPBR. The removal capacity of the HPBR is higher than other reported systems with fewer operational costs and maintenance. High-throughput sequencing was applied to further investigate the kinetics and principals. Microorganisms capable of simultaneous nitrification-denitrification were found to be dominant species in the HPBR system, which indicated that the nitrogen removal in HPBR is governed by simultaneous nitrification-denitrification. These findings suggest that HPBR can be used as an efficient reactor for rural wastewater treatment, demonstrating its feasibility in real applications.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-03-30
    Description: Accurate waterbody mapping can support water-related environment monitoring and resource management. The Sentinel series satellites provide high-quality Synthetic Aperture Radar (SAR) and optical observations that are commonly used in waterbody mapping. However, owing to the 10-m spatial resolution of Sentinel data, previous studies mostly focused on the mapping of large waterbodies. In this work, we evaluated the performance of small waterbody mapping over urban and mountainous regions with two datasets, the average annual VH backscatter coefficients (VHavg), derived from the Sentinel-1A series, and the Modified Normalized Difference Water Index (MNDWI), derived from cloud-free Sentinel-2. A proven framework of waterbody mapping based on watershed segmentation and noise reduction was employed to assess the performance of the two datasets in waterbody identification. The validation was performed by comparing their results with 1-m spatial resolution reference waterbody data. Assessment metrics, including Precision, Recall, and F-measure, were employed. Results showed that: (1) the MNDWI outperformed the VHavg by 9 percentage points of the F-measure; (2) there was more room for results of VHavg to improve the accuracy through a combination with noise reduction; and (3) the potential smallest identifiable waterbody area (recall rate larger than 0.8) was larger than 104 m2.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-03-30
    Description: Sandy water sources are widely distributed and are important for agricultural development. However, no explicit result has been achieved in the research of the accuracy and reliability of pipeline metering devices as well as flow rate measurement objects (water or water–sand) of different metering devices in the process of pipelines conveying muddy water. In this study, seven kinds of sediment concentration gradients, C0–C6 (0.2–7.19%), and three different flow velocities (1.0 m/s, 1.25 m/s, 1.5 m/s) were set up, and a comparison measuring method was used to compare the flow values of three kinds of metering device (electromagnetic flowmeter, ultrasonic flowmeter and water meter) with a right triangle weir. The accuracy and reliability of the metering device were obtained by analyzing the change law of the relative error between each metering device and the right triangle weir under different flow velocities and different sediment concentrations, and the flow rate measurement objects of each metering device were finally clarified. The relative error between the electromagnetic flowmeter and right triangle weir decreased gradually with the increase in the flow velocity when the sediment concentration was constant. The maximum difference of the relative error between the electromagnetic flowmeter and the right triangle weir was 2.53% when the flow velocity was constant. Additionally, the minimum differences of the relative errors of the ultrasonic flowmeter and water meter were 2.67% and 6.90%, respectively. The measured flow law of the electromagnetic flowmeter was more in line with the measured flow law of the water–sand mixture measured by the right triangle weir. However, the relative errors of water and water–sand measured by the ultrasonic flowmeter and water meter fluctuate greatly, which does not accord with the law of muddy water measured by the right triangle weir. The results showed that the electromagnetic flowmeter has the best reliability among the three metering devices, and the accuracy can be improved by calibration before use or increasing the flow velocity of the pipe network. Under the sand grading used in this study, the electromagnetic flowmeter was recommended to measure the flow rate of pipe irrigation for sandy water sources in this paper.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-03-30
    Description: Synchronous observations of the isotopic composition of water vapor and precipitation for 24 rain events were performed. Rain events driven by low-level jets exhibited similar isotopic changes in precipitation and water vapor. The vertical activity of water vapor in convection causes the isotopic variation in precipitation to be opposite to that of water vapor. Isotopic changes of precipitation in low-pressure systems were partially synchronized with that of water vapor at high but not low water vapor concentrations. Changes in microphysical meteorological properties in stratiform precipitation give rise to different patterns of isotopic changes in water. The re-evaporation of raindrops can be determined by the enrichment ratio of heavy isotopes in the water under the cloud base, which is closely related to the raindrop radius. Stratiform precipitation, with small raindrop sizes, was prone to kinetic fractionation under the cloud base. The raindrop radius of low-level jets was small, favoring exchange with surrounding air and re-evaporation. The moist air mass in convection facilitates isotopic exchange of raindrops with surrounding water vapor, leading to low enrichment ratios. The lowest enrichment ratios in low-pressure systems were due to environments characterized by large-scale water vapor convergence.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-03-29
    Description: Land application of sewage sludge on agricultural soils can be sustainable only if pollutant contents and organic matter quality meet the requirements imposed by minimization of environmental risks. This study investigated the degradation of linear alkylbenzene sulfonates (LAS) and extractable organic halogens (EOX) and the formation of humic substances (HS) during the thickening and storage phases of sewage sludge treatment. Changes in spectroscopic properties (UV-Vis, FT-IR, and excitation-emission matrix (EEM) fluorescence) of HS were also evaluated to assess the occurrence of biological activities during these curing phases of sewage sludge (SS). Humic acids (HA), fulvic acids (FA), EOX, and LAS were extracted from sewage sludge sampled from four municipal wastewater treatment plants of different size and treatment sequence, before and after 90 days of aerobic or anaerobic storage. During storage, the loss of organic C in the SS ranged from almost null to 31%. No significant changes of FA were registered, whereas HA increased in almost all samples, up to 30%. The amount of humic substances synthesized during storage correlated with the percentage of C lost. Spectroscopic changes of FA and HA showed an increase in their aromaticity, with a corresponding decrease in the aliphatic contribution. These changes show the improved agronomical quality of SS. LAS decreased during storage up to 30%, surprisingly more under anaerobic than aerobic conditions, whereas EOX decreased significantly in all samples, even up to 81%. In conclusion, although storage may be normally considered not influencing the quality of SS, their organic matter quality improved and contamination decreased during 90 days of storage, whatever the conditions of oxygen availability applied.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-03-29
    Description: Treated sewage harbours pathogenic microbes, such as enteric bacteria and protozoa, are capable of causing several diseases. Some of these are emerging pathogens sometimes recovered in the absence of common water quality indicator organisms. The possibility of selected treatments plants serving as momentary reservoirs of Vibrio pathogens during a non-outbreak period was assessed. The occurrence and diversity of Vibrio pathogens were monitored for one year (December 2016 to November 2017) in the treated effluents and upstream and downstream areas of the receiving water bodies of two wastewater treatment plants (WWTPs), designated AL and TS. Physicochemical parameters of TS and AL WWTPs’ water samples were analysed using a multi-parameter meter (Hanna, model HI 9828, Padova, Italy) and a turbidimeter (HACH, model 2100P, Johannesburg, South Africa). Water samples were augmented with alkaline peptone water and cultured on thiosulfate citrate bile salts sucrose agar at 37 °C for 24 h. The recovered probable pathogens were confirmed via PCR amplification, using primers specific for Vibrio species of public health significance. The distribution of Vibrio species positively and significantly (p 〈 0.01) correlated with turbidity (r = 0.630), temperature (r = 0.615), dissolved oxygen (r = 0.615), pH (r = 0.607), biological oxygen demand (r = 0.573), total dissolved solid (r = 0.543), total suspended solid (r = 0.511), electrical conductivity (r = 0.499), residual chlorine (r = 0.463) and salinity (r = 0.459). The densities of Vibrio species were found to be significantly higher (p 〈 0.05) in effluents from both AL and TS WWTPs than upstream and downstream of the receiving rivers across the sampling regime. Furthermore, the maximum Vibrio species density across the sampling regime were observed during the warmer Summer and Spring season. Moreover, six medically important Vibrio species were detected in the water samples, indicating that the methods employed were efficient in revealing that WWTPs are potential reservoirs of Vibrio pathogens, which could pose a substantial public health risk if the receiving water is used for domestic purposes. Our findings further strengthen existing calls for the inclusion of emerging bacterial pathogens, including Vibrio species, as water quality indicators by the South African Department of Water Affairs. Hence, we recommend regular monitoring of treated effluents and receiving water bodies to ensure early control of potential outbreaks of vibriosis and cholera.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-01-31
    Description: Climate change creates new challenges for preventing and protecting human health against different diseases that could appear and propagate. The Aedes albopictus mosquito species is an important vector for different diseases like dengue fever or zika. Although this species is not “indigenous” in Europe, its presence is noticed in many countries on the continent. The Ae. albopictus establishment is conditioned by the species’ characteristics and environmental factors. To assess the possible spread of Ae. albopictus in the Dobrogea region (situated in the Southeast of Romania), we conducted the following analysis: (1) Investigation of the current distribution and climatic factors favoring Ae. albopictus’ establishment in Europe; (2) Analysis of climate dynamics in Dobrogea in terms of the parameters identified at stage (1); (3) Testing the hypothesis that the climate from Dobrogea favors Ae. albopictus’ establishment in the region; (4) Building a Geographic Information System (GIS)-based model of the potential geographic distribution of Ae. albopictus in Dobrogea. Results show that the climate of Dobrogea favors the apparition of the investigated species and its proliferation.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-01-31
    Description: On 22 May 2017, a groundwater inrush accident occurred in the gob area of coal floor at Dongyu Coal Mine in Qingxu County, Shanxi Province, China. The water inrush accident caused great damage, among which six people died and the direct economic loss was about CNY 5.05 million. An elliptical permeable passage appeared at the floor of the water inrush point, and the lithology of the outburst is mainly fragmented sandy mudstone and siltstone of coal roof No.2 in the lower layer of coal seam No.3, which is currently being mined, with a peak inflow of 500 m3/h. The water inrush happened due to following reasons: There is an abandoned stagnant water-closed roadway in coal seam No.2, which is the lower mine group of coal seam No.3. The abandoned roadway of coal seam No.2 is an inclined roadway. The water level of the roadway far away from the accident point is higher than the floor elevation of coal seam No.3. Under the joint action of water pressure, mining disturbance, and weakening of goaf water immersion, the original equilibrium state was broken, resulting in the destruction of the only 7 m water-barrier rock pillar between coal seam No.3 and coal seam No.2. The water in the goaf led upward along the roof crack, gradually evolved from seepage to gushing water, and a large amount of goaf water poured into the roadway in the working face of the 03304 panel, finally leading to the occurrence of catastrophic water inrush. Technically, the miners did not implement the technical provisions of the coal mine water control regulations, leading to the accident. In addition, the failure to arrange evacuees to a safe location after apparent signs of water inrush also increased the catastrophic level of the accident.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-01-31
    Description: Groundwater depletion has been a consequential problem in Kansas, a drought-prone state widely reliant on the High Plains aquifer. This manuscript explores well ownership’s moderating effects on the relationships between awareness of water supplies and the use of water-saving devices. It assesses one of the only quantitative datasets of private water well owners used in social scientific research (n = 864) and discusses the intricate results of multi-group structural equation models with respondents organized by their water supplies. Well ownership and water literacy are significantly correlated to owning water-conservation technologies, and well ownership combined with access to municipal water weakens the correlations between awareness and owning water-saving appliances.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2021-03-30
    Description: Climate induced drought is a prominent threat to natural saline aquatic ecosystems by modifying their hydrology and salinity, which impacts the biodiversity of these ecosystems. Lake Nyamithi is a naturally saline lake in South Africa that experienced the effects of a two-year supra-seasonal drought (2015–2016). This study aimed to determine potential effects of the drought and accompanying increased salinity (between 9.8 and 11.5 g L−1) on aquatic invertebrate communities of Lake Nyamithi, and assess their potential recovery following the drought. Aquatic invertebrates and water were collected for biodiversity and chemical assessments during predrought conditions (2014), the peak of the drought (2016) and after the site had received water (2017). Taxon richness was considerably reduced during the peak of the drought as many biota could not tolerate the increased salinity. Ecological resilience and recovery was evident in the lake since numerous biota (re)colonized the lake promptly after the site received water and salinity decreased (
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2021-03-30
    Description: Despite lakes being a key part of the global water cycle and a crucial water resource, there is limited understanding of whether regional or lake-specific factors control water storage variations in small lakes. Here, we study groups of small, unregulated lakes in North Carolina, Washington, Illinois, and Wisconsin, USA using lake level measurements gathered by citizen scientists and lake surface area measurements from optical satellite imagery. We show the lake level measurements to be highly accurate when compared to automated gauges (mean absolute error = 1.6 cm). We compare variations in lake water storage between pairs of lakes within these four states. On average, water storage variations in lake pairs across all study regions are moderately positively correlated (ρ = 0.49) with substantial spread in the degree of correlation. The distance between lake pairs and the extent to which their changes in volume are correlated show a weak but statistically significant negative relationship. Our results indicate that, on regional scales, distance is not a primary factor governing lake water storage patterns, which suggests that other, perhaps lakes-specific, factors must also play important roles.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2021-03-30
    Description: An assessment of the risk for groundwater pollution and vulnerability to pumping can help identify strategic groundwater bodies to define sustainable management measures of groundwater resources. In this paper, we propose a new method to make a preliminary estimation of the risk for groundwater pollution at the aquifer scale through the lumped turnover time index (T index). A new lumped index (L-RISK index) was defined to assess the significance of the risk for pollution at the aquifer scale. Both L-RISK and T indices were employed to calibrate a linear regression model that showed a good inverse correlation in the eight aquifers of the Upper Guadiana Basin (Spain). This novel method can be applied to analyze a wide range of aquifers with limited information in order to identify potential strategic aquifers. It also allows one to make a preliminary assessment of the impacts of climate change on L-RISK. The results showed a high variability of the T index in the eight aquifers (8–76 years). Three of them had significant greater mean T values, which could be considered to be the main strategic groundwater resources. In the future, the T index will increase between 8 and 44%, and the L-RISK will decrease in all aquifers (1–18%).
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2021-03-30
    Description: Working on sludge with electrochemical oxidation is beneficial to promote the subsequent recessive growth of microorganisms in the sludge. To achieve the on-site sludge reduction, this study combined the anoxic/oxic (A/O) process with the electrochemical oxidation process based on the cell lysis-cryptic growth theory by determining the experimental conditions and mechanism of electrochemical cell lysis. The sludge reduction and effluent treatment of the combined process in practical operation were studied. The results showed that the cumulative sludge discharge had been reduced by 37.1% compared with that of the A/O process, and the apparent sludge yield had been reduced by 39.1% during the 30-day operation time, indicating that the electrochemical-A/O combined process could have a considerable sludge reduction effect. After the treatment, chemical oxygen demand (COD), ammonium nitrogen, and total nitrogen in the effluent of the combined process reached 33.02 mg/L, 0.83 mg/L, and 9.95 mg/L, respectively. Due to the limitation of the A/O process, the removal of total phosphorus was poor. As a result, poly aluminum chloride (PAC) was employed to achieve a chemical removal of phosphorus, by which the total phosphorus (TP) of the effluent was controlled to be lower than 0.5 mg/L.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2021-03-30
    Description: Construction of road embankments in peatlands commonly involves replacement of the peat with a fill-up soil of an adequate load-bearing capacity. This usually requires a lowering of the water level, turning a peatland from a carbon sink to a source of greenhouse gases. Thus, alternatives are sought that are less costly in both economic and ecological terms. Mass-stabilization technology can provide a cheap substitute for Portland cement. Calcareous ashes (waste materials), supplemented with pozzolanic and alkali additives to facilitate and accelerate the setting and hardening processes, are attractive alternatives to soil excavation or replacement techniques. Silica fume and waterglass were used as pozzolanic agents and KOH as a soil-alkalizing agent. X-ray fluorescence (XRF), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) analyses and stress–strain tests were performed for the hardened samples. Crystallization of alkali feldspars was observed in all test samples. Comparable hardening of peat soil was achieved for both ashes. It was shown that the ashes of Estonian kukersite (oil shale) from both pulverized firing and a circulating fluidized bed incineration process (produced in energy sector as quantitatively major solid waste in Estonia) can be used as binding agents for peat stabilization, even without the addition of Portland cement. Hardened peat soil samples behaved as a ductile material, and the cellulose fibers naturally present in peat gave the peat–ash composite plasticity, acting mechanically in the same way as the steel or glass fiber in ordinary reinforced concrete. The effect of peat fiber reinforcement was higher in cases of higher load and displacement of the composite, making the material usable in ecological constructions.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2021-03-29
    Description: Grasslands are one of the most common biomes in the world with a wide range of ecosystem services. Nevertheless, quantitative data on the change in nitrogen dynamics in extensively managed temperate grasslands caused by a shift from energy- to water-limited climatic conditions have not yet been reported. In this study, we experimentally studied this shift by translocating undisturbed soil monoliths from an energy-limited site (Rollesbroich) to a water-limited site (Selhausen). The soil monoliths were contained in weighable lysimeters and monitored for their water and nitrogen balance in the period between 2012 and 2018. At the water-limited site (Selhausen), annual plant nitrogen uptake decreased due to water stress compared to the energy-limited site (Rollesbroich), while nitrogen uptake was higher at the beginning of the growing period. Possibly because of this lower plant uptake, the lysimeters at the water-limited site showed an increased inorganic nitrogen concentration in the soil solution, indicating a higher net mineralization rate. The N2O gas emissions and nitrogen leaching remained low at both sites. Our findings suggest that in the short term, fertilizer should consequently be applied early in the growing period to increase nitrogen uptake and decrease nitrogen losses. Moreover, a shift from energy-limited to water-limited conditions will have a limited effect on gaseous nitrogen emissions and nitrate concentrations in the groundwater in the grassland type of this study because higher nitrogen concentrations are (over-) compensated by lower leaching rates.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2021-03-29
    Description: In the urban drainage sector, the problem of polluting discharges in sewers may act on the proper functioning of the sewer system, on the wastewater treatment plant reliability and on the receiving water body preservation. Therefore, the implementation of a chemical monitoring network is necessary to promptly detect and contain the event of contamination. Sensor location is usually an optimization exercise that is based on probabilistic or black-box methods and their efficiency is usually dependent on the initial assumption made on possible eligibility of nodes to become a monitoring point. It is a common practice to establish an initial non-informative assumption by considering all network nodes to have equal possibilities to allocate a sensor. In the present study, such a common approach is compared with different initial strategies to pre-screen eligible nodes as a function of topological and hydraulic information, and non-formal ‘grey’ information on the most probable locations of the contamination source. Such strategies were previously compared for conservative xenobiotic contaminations and now they are compared for a more difficult identification exercise: the detection of nonconservative immanent contaminants. The strategies are applied to a Bayesian optimization approach that demonstrated to be efficient in contamination source location. The case study is the literature network of the Storm Water Management Model (SWMM) manual, Example 8. The results show that the pre-screening and ‘grey’ information are able to reduce the computational effort needed to obtain the optimal solution or, with equal computational effort, to improve location efficiency. The nature of the contamination is highly relevant, affecting monitoring efficiency, sensor location and computational efforts to reach optimality.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2021-03-30
    Description: Nourishment has shown to be an effective method for short-term storm protection along barrier islands and sandy beaches by reducing flooding, wave attack and erosion. However, the ability of nourishment to mitigate the effects of storms and sea level rise (SLR) and improve coastal resilience over decadal time scales is not well understood. This study uses integrated models of storm-driven hydrodynamics, morphodynamics and post-storm dune recovery to assess the effectiveness of beach and dune nourishment on barrier island morphological resilience over a 30-year period, accounting for storms and a moderate amount of SLR. Results show that at the end of the 30 years, nourishment contributes to maintaining island volumes by increasing barrier height and width compared with a no-action scenario (i.e., no nourishment, only natural recovery). During storms where the collision regime was dominant, higher volumes of sand were lost from the wider beach in the nourishment scenario than in the no-action scenario. During stronger storms, nourishment reduced dune overtopping compared with the no-action scenario, allowing the island to maintain height and width. Additionally, nourishment was particularly effective in reducing breaching during back-to-back storms occurring in the same year.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2021-03-31
    Description: In shallow alluvial aquifers characterized by coarse sediments, the evapotranspiration rates from groundwater are often not accounted for due to their low capillarity. Nevertheless, this assumption can lead to errors in the hydrogeological balance estimation. To quantify such impacts, a numerical flow model using MODFLOW was set up for the Tronto river alluvial aquifer (Italy). Different estimates of evapotranspiration rates were retrieved from the online Moderate Resolution Imaging Spectroradiometer (MODIS) database and used as input values. The numerical model was calibrated against piezometric heads collected in two snapshots (mid-January 2007 and mid-June 2007) in monitoring wells distributed along the whole alluvial aquifer. The model performance was excellent, with all the statistical parameters indicating very good agreement between calculated and observed heads. The model validation was performed using baseflow data of the Tronto river compared with the calculated aquifer–river exchanges in both of the simulated periods. Then, a series of numerical scenarios indicated that, although the model performance did not vary appreciably regardless of whether it included evapotranspiration from groundwater, the aquifer–river exchanges were influenced significantly. This study showed that evapotranspiration from shallow groundwater accounts for up to 21% of the hydrogeological balance at the aquifer scale and that baseflow observations are pivotal in quantifying the evapotranspiration impact.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2021-03-29
    Description: This paper presents a spatial interpolation of the hydrological and socioeconomic processes impacting groundwater systems to predict the sustainability of the Modder river catchment of South Africa. These processes are grouped as climatic (factor A), aquifer sustainability (factor D), social-economic and land use (factor B), and the human-induced parameters of rights and equity (factor C). The parameters evaluated for factors A and D included climatic zones, precipitation, sunshine, evapotranspiration, slope, topography, recharge, yields, storativity, aquifer types, and lithology/rock types. Factors B and C included population in the catchment, use per capita, water uses, tariffs and duration of the permits, pump rate per year, number of issued permits per year in the catchment, and number of boreholes in the sub-catchment. This paper, therefore, looks at the impact of the average values of the chosen set of parameters within the given factors A, B, C and D on groundwater in the C52 catchment of the Modder River, as modelled in a sustainability index. C52 is an Upper Orange catchment in South Africa. The results are presented in sustainability maps predicting areas in the catchment with differing groundwater dynamics. The Modder River groundwater sustainability ranged between low and moderate sustainability. The sustainability maps were validated with actual field groundwater recharge and surface water, a comparison between storativity and licensed volume, and a comparison of sustainability scores and storativity. The key finding in this paper will assist groundwater managers and users to adequately plan groundwater resources, especially on licensing and over pumping.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2021-03-29
    Description: The forebay of a pumping station is an important building connecting the diversion channel and the intake pool. Based on the physical model test and research method of computational fluid dynamics (CFD) based on the improved fluid volume model, the flow field in a forebay of a multi-unit pumping station is analyzed in combination with the engineering practice of the Exi River flood discharge station in the Anhui Province, China. Aiming at the technical problems of a large-scale swing water area in the forebay internal flow field of a lateral intake pumping station, the technical problems are discussed. Different rectification measures are selected to adjust the flow pattern in the forebay of a pumping station. The internal rectification flow pattern in the forebay under different plans, the uniformity of flow velocity distribution in the measurement section, and the reduction rate of the vortex area are studied and compared, and the optimal plan is given. The results show that the flow pattern of the 7.5 m and 15 m solutions of the lengthened inflow wall is still poor, and the ability to eliminate vortices is not strong or even counterproductive. The combination plan of a rectifier sill and a rectifier pier has a better effect and can eliminate more than 90% of the vortex, but the uniformity of flow speed has not been significantly improved at the inlet of the pumping station; the combination plan of a rectifier sill and a diversion wall opening has the best effect; the reduction rate of the vortex area is more than 85%, and the velocity uniformity of three measuring sections is better than that of the original plan. The uniformity of flow rate near the pumping station is increased by 4% and that far away from the pumping station is increased by 13%. The combination plan of a rectifier sill and diversion wall with openings is recommended.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2021-03-30
    Description: Wastewater treatment plants (WWTPs) require an urgent transition from a linear to a circular economy operation/design concept with a consequent resource recovery and more sustainable waste management. Natural resources have to be preserved, and wastes have to become an opportunity for recovering resources and materials (water reuse, energy, sludge reuse). However, the transition toward a circular economy is a complex and long process due to the existence of technical, economic, social and regulatory barriers. These existing barriers are critical challenges for a modern and sustainable WWTP concept. The recovery of resources must be considered a strategic target from the earliest process-design phase. In this context, the European Union’s Horizon 2020 project “Achieving wider uptake of water-smart solutions—WIDER UPTAKE” aims to overcome the existing barriers (technological, regulatory, organizational, social and economic) toward the transition from a linear to a circular economy model for WWTPs. This study is aimed at increasing the awareness of the existing barriers to a circular economy and summarizes the key contributions of the WIDER UPTAKE project in terms of water reuse, sludge reuse and nutrient recovery.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2021-03-31
    Description: Precipitation and its development over time is an important indicator of climate change. Research on long-term precipitation totals is absent in the Slovak Republic. This paper deals with the statistical analysis of daily precipitation from 48 precipitation stations in Slovakia. The paper evaluates the spatial distribution of precipitation in Slovakia and also presents analyses of stationarity and trends using the Mann-Kendall test. Emphasis is placed especially on the evaluation of the trends in total annual precipitation, maximum daily precipitation and also the number of days without precipitation in the year. By evaluating the trends in these three indicators, it is possible to assess the impact of potential change in the temporal and spatial distribution of precipitation on hydrological drought and floods. The results show that there are currently no significant changes in precipitation in Slovakia. The problem of floods and hydrological drought seems to be more complex and is mainly due to surface water drainage from the landscape and the change in its use in connection with the increase in the average annual temperature.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2021-03-26
    Description: To investigate the feature of turbulence developing behind the filter device in a current flow, the flow fields at intermediate downstream distance of an immersed grid in an open water channel are recorded using a two-dimensional (2D) Particle Image Velocimetry (PIV) system. The measurements on a series of vertical and horizontal sections are conducted to reveal the stream-wise evolution and depth diversity of grid turbulence in the free surface flow. Unlike the previous experiments by Laser Doppler Velocimetry (LDV) and Hot-Wire Anemometry (HWA), the integral scales and space-time correlations are estimated without using the Taylor hypothesis in this paper. The distributions of mean velocity, turbulence intensity and integral scale show the transition behavior of grid-generated flow from perturbations to fully merged homogenous turbulence. The distributions of velocity and turbulence intensity become more uniform with increasing distance. While the spatial divergence of integral scale becomes more pronounced as the flow structures develop downstream. The vertical distributions of flow parameters reveal the diversity of flow characteristics in the water depth direction influenced by free surface and the outer part of turbulence boundary layer (TBL) from the channel bottom. The applicability of the newly proposed two-order elliptic approximation model for the space-time correlations of the decaying grid turbulence in channel flow is verified at different positions. The calculated convection velocity for large-scale motion and sweep velocity for small-scale motion based on this model bring a new insight into the dynamic pattern of this type of flow.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2021-03-25
    Description: To explore the purification effect of biochar-constructed wetlands on rural domestic sewage, six types of biochar-constructed wetlands were constructed for experiments. Under different hydraulic conditions, the removal effects of each biochar-constructed wetland on chemical oxygen demand, ammonia nitrogen, total nitrogen, and total phosphorus in sewage were analyzed. The results showed that the removal rates of the four types of pollutants in each biochar-constructed wetland first increased and then decreased with the increase in hydraulic retention time, and the optimal hydraulic retention time range was 36–48 h. The highest removal rates of chemical oxygen demand, ammonia nitrogen, total nitrogen, and total phosphorus in the wetland were 97.34 ± 0.84%, 95.44 ± 1.29%, 98.95 ± 0.52%, and 97.78 ± 0.91%, respectively. The chemical oxygen demand (COD) removal rate of each biochar-constructed wetland increased first, then decreased with the increase in hydraulic load, and the optimal hydraulic load was 10 cm/d. The removal efficiency of ammonia nitrogen, total nitrogen, and total phosphorus of each biochar-constructed wetland gradually weakened with the increase in hydraulic load, and the optimal hydraulic load range was between 5 and 10 cm/d. Under these conditions, the highest removal rates of chemical oxygen demand, ammonia nitrogen, total nitrogen, and total phosphorus in the wetland were 92.15 ± 2.39%, 98.32 ± 0.48%, 96.69 ± 1.26%, and 92.62 ± 2.92%, respectively. Coconut shell and shell-constructed wetlands with the highest proportion of biochar in the matrix have the best removal effect on pollutants under different hydraulic conditions, and the wastewater purification effect is stronger, indicating that the addition of biochar is helpful for the removal of pollutants in constructed wetlands.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2021-03-23
    Description: The Pacific island countries are particularly vulnerable to the effects of global warming including more frequent and intense natural disasters. Seawater inundation, one of the most serious disasters, could damage human property and life. Regional sea level rise, highest astronomic tide, vertical land motions, and extreme sea level could result in episodic, recurrent, or permanent coastal inundation. Therefore, assessing potential flooding areas is a critical task for coastal management plans. In this study, a simulation of the static flooding situation in the southwest coast of Taiwan (Tainan city) at the end of this century was conducted by using a combination of the Taiwan Digital Elevation Model (DEM), regional sea level changes reconstructed by tide gauge and altimetry data, vertical land deformation derived from leveling and GPS data, and ocean tide models. In addition, the extreme sea level situation, which typically results from high water on a spring tide and a storm surge, was also evaluated by the joint probability method using tide gauge records. To analyze the possible static flood risk and avoid overestimation of inundation areas, a region-based image segmentation method was employed in the estimated future topographic data to generate the flood risk map. In addition, an extreme sea level situation, which typically results from high water on a spring tide and a storm surge, was also evaluated by the joint probability method using tide gauge records. Results showed that the range of inundation depth around the Tainan area is 0–8 m with a mean value of 4 m. In addition, most of the inundation areas are agricultural land use (60% of total inundation area of Tainan), and two important international wetlands, 88.5% of Zengwun Estuary Wetlands and 99.5% of Sihcao Wetlands (the important Black-faced Spoonbills Refuge) will disappear under the combined situation. The risk assessment of flooding areas is potentially useful for coastal ocean and land management to develop appropriate adaptation policies for preventing disasters resulting from global climate change.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2021-03-23
    Description: As an environment-friendly material, biochar has been used to remove heavy metals from wastewater, and the development of cost-effective biochar has been an emerging trend. However, limited studies consider the competitive adsorption of co-existing metals and the separation efficiency of absorbent and solution after adsorption. In this study, pomelo peel was used to prepare biochar (BC) and magnetic biochar (MBC) at different temperatures. Then, the physicochemical properties of the biochars were characterized and the adsorption characteristics of Cu2+, Pb2+, and Zn2+ on the biochars in single, binary, and ternary metal systems were investigated. The results showed that both pyrolysis temperature and magnetization could affect the adsorption capacity of biochar. The adsorption kinetic and thermodynamic processes could be well described by the pseudo-second-order kinetic model and Langmuir model. The adsorption isotherm types of Pb2+ and Zn2+ changed in the binary metal condition. The competitive adsorption order of three heavy metal ions in ternary metal adsorption was Pb2+ 〉 Cu2+ 〉 Zn2+. The MBC of 500 °C showed a good adsorption capacity to Pb2+ in the co-existing environment, and the maximum adsorption capacity was 48.74 mmol g−1. This study also provided technical support for the utilization of pomelo peel and the engineering application of biochar.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2021-03-23
    Description: Due to the improvement of computation power, in recent decades considerable progress has been made in the development of complex hydrological models. On the other hand, simple conceptual models have also been advanced. Previous studies on rainfall–runoff models have shown that model performance depends very much on the model structure. The purpose of this study is to determine whether the use of a complex hydrological model leads to more accurate results or not and to analyze whether some model structures are more efficient than others. Different configurations of the two models of different complexity, the Système Hydrologique Européen TRANsport (SHETRAN) and Hydrologic Modeling System (HEC-HMS), were compared and evaluated in simulating flash flood runoff for the small (75.9 km2) Jičinka River catchment in the Czech Republic. The two models were compared with respect to runoff simulations at the catchment outlet and soil moisture simulations within the catchment. The results indicate that the more complex SHETRAN model outperforms the simpler HEC HMS model in case of runoff, but not for soil moisture. It can be concluded that the models with higher complexity do not necessarily provide better model performance, and that the reliability of hydrological model simulations can vary depending on the hydrological variable under consideration.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2021-03-23
    Description: Skadar Lake is a crypto-depression, a shallow lake, near to the Adriatic coast; the largest in the Balkan Peninsula and in southeastern Europe. The Lake is a very complex aquatic ecosystem in which anthropogenic activities have a long history in terms of the impact on wildlife and the overexploitation of natural resources. Such consequences related to heavy metals represent a global problem. Heavy metal pollution can cause severe ecological consequences in aquatic ecosystems. These pollutants accumulate in the aquatic biota from water, sediment and through the food chain, the impact can magnify. Aquatic macrophytes are good indicators of the health of a water body. This research was carried out to evaluate heavy metals concentration in water, sediment and in the aquatic macrophyte Trapa natans (water chestnut), with BCF (bio-concentration factor), BSAF (biota sediment accumulation factor) and TA (translocation ability), in order to determine the water quality of this specific part of the aquatic ecosystem of Skadar Lake near to the settlement of Vranjina, a fishing village. The determination of heavy metals was carried out by ICP-OES. (Inductively coupled plasma-optical emission spectrometry). Statistical analysis was established by R statistical computing software, version 3.5.3. The metal concentration in the water decreases in the following sequential order: As 〉 Pb 〉 Zn 〉 Cu = Al = Cr 〉 Cd = Hg. Meanwhile in the sediment, the descending sequence is as follows: Cr 〉 Zn 〉 Cu 〉 Pb 〉 As 〉 Cd 〉 Hg. The ability of plants to absorb and accumulate metals from the aqueous growth medium was assessed using a bio-concentration factor. The BCF in the stem, leaf and fruit has high values, mainly, of Al, Cr, Cu and Zn, while for the biota sediment accumulation factor, the highest values were recorded for the following elements: Hg, Cd, Cu and Zn. Analysis of the translocation ability of TA shows the dominance of four metals: Pb, Cd, Hg and As. A significant positive Kendall’s correlation coefficient between sediment and stem (R = 0.73, p 〈 0.05), stem and leaf (R = 0.87, p 〈 0.05) and leaf and fruit (R = 1, p 〈 0.05) was established.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2021-03-23
    Description: Fish populations play an active role in the maintenance of aquatic ecosystems biodiversity. Their intestinal microbiota and fillet chemistry depend on abiotic and biotic factors of the water environments that they inhabit. The present study investigated the grey mullets’ gut microbiota from a transitional aquatic ecosystem (Santa Giusta Lagoon, Sardinia, Italy) by a multidisciplinary approach which refers the results of (1) gut cultivable microbiota analyses (MA), (2) the trace metal assessment of fish muscle (TM), (3) the physico-chemical water monitoring (PC). MA detected the greatest number of total aerobic heterotrophic bacteria, Enterobacteriaceae and coliforms in Autumn (mean values 1.3 × 105, 2.4 × 104, 1.1 × 104 cfu g−1, respectively) when the accumulated rain and mean values of nutrients (reactive phosphorous and silica) were the highest. Marine bacteria were more numerous in Summer (mean value 7.4 × 105 cfu g−1) when the highest mean values of water temperature and salinity were registered. The gut bacteria were identified as Pseudomonas spp. (64%), Aeromonas spp. (17%), Ochrobactrum pseudogrignonense (10%), Providencia spp. (5%), Enterobacter ludwigii (2%) and Kocuria tytonicola (2%). TM showed that Ca, Na, B and Ni increased their concentrations in Winter while maxima of P, Zn, Cu and Fe were found in muscles of fish sampled in Summer. This study highlighted that the fish intestinal microbiota and metal composition of the fillet reflected the seasonal aquatic environmental variability.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2021-03-23
    Description: Riparian zones form a boundary between aquatic and terrestrial ecosystems, with disproportionate influences on food web dynamics and ecosystem functioning in both habitats. However, riparian boundaries are frequently degraded by human activities, including urbanization, leading to direct impacts on terrestrial communities and indirect changes that are mediated through altered connectivity with adjacent aquatic ecosystems. We investigated how riparian habitat influences fish communities in an urban context. We electrofished nine urban site pairs with and without forested riparian buffers, alongside an additional 12 sites that were located throughout the river networks in the Oslo Fjord basin, Norway. Brown trout (Salmo trutta) were the dominant fish species. Riparian buffers had weak positive effects on fish densities at low to moderate levels of catchment urbanization, whereas fish were absent from highly polluted streams. Subtle shifts in fish size distributions suggested that riparian buffers play an important role in metapopulation dynamics. Stable isotopes in fish from buffered reaches indicated dietary shifts, pointing to the potential for a greater reliance on terrestrial-sourced carbon. Combining these results, we postulate that spatially-mediated ontogenetic diet shifts may be important for the persistence of brown trout in urban streams. Our results show that using a food web perspective is essential in understanding how riparian buffers can offset impacts in urban catchments.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2021-03-23
    Description: The Caribbean is affected by climate change due to an increase in the variability, frequency, and intensity of extreme weather events. When coupled with sea level rise (SLR), poor urban development design, and loss of habitats, severe flooding often impacts the coastal zone. In order to protect citizens and adapt to a changing climate, national and local governments need to investigate their coastal vulnerability and climate change risks. To assess flood and inundation risk, some of the critical data are topography, bathymetry, and socio-economic. We review the datasets available for these parameters in Jamaica (and specifically Old Harbour Bay) and assess their pros and cons in terms of resolution and costs. We then examine how their use can affect the evaluation of the number of people and the value of infrastructure flooded in a typical sea level rise/flooding assessment. We find that there can be more than a three-fold difference in the estimate of people and property flooded under 3m SLR. We present an inventory of available environmental and economic datasets for modeling storm surge/SLR impacts and ecosystem-based coastal protection benefits at varying scales. We emphasize the importance of the careful selection of the appropriately scaled data for use in models that will inform climate adaptation planning, especially when considering sea level rise, in the coastal zone. Without a proper understanding of data needs and limitations, project developers and decision-makers overvalue investments in adaptation science which do not necessarily translate into effective adaptation implementation. Applying these datasets to estimate sea level rise and storm surge in an adaptation project in Jamaica, we found that less costly and lower resolution data and models provide up to three times lower coastal risk estimates than more expensive data and models, indicating that investments in better resolution digital elevation mapping (DEM) data are needed for targeted local-level decisions. However, we also identify that, with this general rule of thumb in mind, cost-effective, national data can be used by planners in the absence of high-resolution data to support adaptation action planning, possibly saving critical climate adaptation budgets for project implementation.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2021-03-22
    Description: Hindcasted wind and wave data, available on a coarse resolution global grid (Copernicus ERA5 dataset), are downscaled by means of the numerical model SWAN (simulating waves in the nearshore) to produce time series of wave conditions at a high resolution along the Italian coasts in the central Tyrrhenian Sea. In order to achieve the proper spatial resolution along the coast, the finite element version of the model is used. Wave data time series at the ERA5 grid are used to specify boundary conditions for the wave model at the offshore sides of the computational domain. The wind field is fed to the model to account for local wave generation. The modeled sea states are compared against the multiple wave records available in the area, in order to calibrate and validate the model. The model results are in quite good agreement with direct measurements, both in terms of wave climate and wave extremes. The results show that using the present modeling chain, it is possible to build a reliable nearshore wave parameters database with high space resolution. Such a database, once prepared for coastal areas, possibly at the national level, can be of high value for many engineering activities related to coastal area management, and can be useful to provide fundamental information for the development of operational coastal services.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2021-03-22
    Description: With widespread, long-term historical use of plastics and the presence of microplastics in a range of new and existing products, there is rising concern about their potential impacts on freshwater ecosystems. Understanding how microplastics are transported and distributed along river systems is key to assessing impacts. Modelling the main flow dynamics, mixing, sedimentation and resuspension processes is essential for an understanding of the transport processes. We use the new, processed based, dynamic, integrated catchments (INCA) microplastics model and apply this to the whole of the freshwater catchment of the River Thames, UK, to evaluate inputs, loads and concentrations along the river system. Recent data from UK water industry studies on microplastics in effluent discharges and sewage sludge disposal has been utilised to drive the INCA microplastics model. Predicted concentrations and microplastic loads moving along the river system are shown to be significant, with a build-up of concentrations along the river, with increasing deposition on the riverbed. The potential impacts on aquatic ecosystems are evaluated and a review of policy implications is explored.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2021-03-23
    Description: This work aims to identify the key sectors of the economic structure, considering their water flows, and estimate each sector’s impact. The goal is to highlight systemic characteristics in the regional economy, establish water use priorities, and assess water security. Based on a regional input-output matrix, we use the following methodologies: the Rasmussen and Hirschman indices for the ‘forward and backward linkages’; simple multipliers of production, job, and income; and the elasticity of water consumption to final water demand. Thirty-two economic sectors and household consumption are analysed. From the elasticity of final water demand, we find that both trade and household consumption put more pressure on water consumption. Furthermore, a joint analysis of the applied methodologies shows that: (a) the trade sector is more relevant for the linkage of water flows, (b) the agriculture sector has the highest direct water consumption, and (c) the public administration sector has the highest intermediate water consumption.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2021-03-23
    Description: Direct measurement of unsaturated hydraulic parameters is costly and time-consuming. Pedotransfer functions (PTFs) are typically developed to estimate soil hydraulic properties from readily available soil attributes. For the first time, in this study, we developed PTFs to estimate the soil hydraulic conductivity (log(K)) directly from measured data. We adopted the pseudo continuous neural network PTF (PCNN-PTF) approach and assessed its accuracy and reliability using two independent data sets with hydraulic conductivity measured via the evaporation method. The primary data set contained 150 international soils (6963 measured data pairs), and the second dataset consisted of 79 repacked Turkish soil samples (1340 measured data pairs). Four models with different combinations of the input attributes, including soil texture (sand, silt, clay), bulk density (BD), and organic matter content (SOM), were developed. The best performing international (root mean square error, RMSE = 0.520) and local (RMSE = 0.317) PTFs only had soil texture information as inputs when developed and tested using the same data set to estimate log(K). However, adding BD and SOM as input parameters increased the reliability of the international PCNN-PTFs when the Turkish data set was used as the test data set. We observed an overall improvement in the performance of PTFs with the increasing number of data points per soil textural class. The PCNN-PTFs consistently performed high across tension ranges when developed and tested using the international data set. Incorporating the Turkish data set into PTF development substantially improved the accuracy of the PTFs (on average close to 60% reduction in RMSE). Consequently, we recommend integrating local HYPROPTM (Hydraulic Property Analyzer, Meter Group Inc., USA) data sets into the international data set used in this study and retraining the PCNN-PTFs to enhance their performance for that specific region.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2021-03-23
    Description: Loss of water due to leakage is a common phenomenon observed practically in all water distribution networks (WDNs). However, the leakage volume can be reduced significantly if the occurrence of leakage is detected within minimal time after its occurrence. Based on the discriminative behavior of different consumption in water balance, an integrated bottom-up water balance model is presented for leak detection in WDNs. The adaptive moment estimation (Adam) algorithm is employed to assess the parameters in the model. By analyzing the current value and the rising rate of the assessed parameters, abnormal events (e.g., leak, illegal use, or metering inaccuracy) could be detected. Furthermore, a one-step-slower strategy is proposed to estimate the weighted coefficient of pressure sensors to provide approximate location information of leak. The method was applied in a benchmark WDN and an experimental WDN to evaluate its performance. The results showed that relatively small leak could be detected in near-real-time. In addition, the method was able to identify the pressure sensors near to the leak.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2021-03-23
    Description: Simulating high-intensity rainfall events that trigger local floods using a Numerical Weather Prediction model is challenging as rain-bearing systems are highly complex and localized. In this study, we analyze the performance of the Weather Research and Forecasting (WRF) model’s capability in simulating a high-intensity rainfall event using a variety of parameterization combinations over the Kampala catchment, Uganda. The study uses the high-intensity rainfall event that caused the local flood hazard on 25 June 2012 as a case study. The model capability to simulate the high-intensity rainfall event is performed for 24 simulations with a different combination of eight microphysics (MP), four cumulus (CP), and three planetary boundary layer (PBL) schemes. The model results are evaluated in terms of the total 24-h rainfall amount and its temporal and spatial distributions over the Kampala catchment using the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) analysis. Rainfall observations from two gauging stations and the CHIRPS satellite product served as benchmark. Based on the TOPSIS analysis, we find that the most successful combination consists of complex microphysics such as the Morrison 2-moment scheme combined with Grell-Freitas (GF) and ACM2 PBL with a good TOPSIS score. However, the WRF performance to simulate a high-intensity rainfall event that has triggered the local flood in parts of the catchment seems weak (i.e., 0.5, where the ideal score is 1). Although there is high spatial variability of the event with the high-intensity rainfall event triggering the localized floods simulated only in a few pockets of the catchment, it is remarkable to see that WRF is capable of producing this kind of event in the neighborhood of Kampala. This study confirms that the capability of the WRF model in producing high-intensity tropical rain events depends on the proper choice of parametrization combinations.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2021-03-22
    Description: To study the temporal and spatial variations of the groundwater quantity and quality in response to intensive groundwater exploitation from the Quaternary aquifer in UAE, a water budget model with a cell size of one km2 was developed. The available historical records of groundwater levels and salinity have been used to develop the water table and salinity maps of UAE for the years 1969, 2005, 2010, and 2015. The available water resources and soil information system was used to facilitate validity, cogency, and consistency of the groundwater analysis. The spatial analysis module of GIS was used to define the aquifer setting, saturated thickness, aquifer base elevation, effective porosity, and groundwater salinity at each grid cell. The obtained results indicated that the volume of fresh groundwater resources in the Quaternary aquifer in UAE has decreased from 238 km3 in 1969 to around 10 km3 in 2015. A major part of these depleted fresh groundwater resources was replaced by brackish water, and, therefore, the total groundwater storage in this aquifer has only decreased from 977 in 1969 to 922 km3 in 2015, respectively. If the same groundwater exploitation continues, the freshwater storage in the surficial aquifer might be totally depleted in agricultural areas. Most probably, the brackish groundwater resources will be exploited. In such areas, more attention should be devoted to the management of brackish water resources to avoid the exacerbation of the saltwater intrusion problem. Despite the fact that the obtained results indicate the negative impacts of the improper water resources management in a small part of the arid area, the learned lessons are valid for other arid countries, in particular, using the proper steady state boundary conditions for the initial conditions in modeling the available future management alternatives.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2021-03-23
    Description: The Miyun Reservoir is an important source of surface drinking water in Beijing. Due to climate change and human activities, the inflow of Miyun Reservoir watershed (MRW) has been continuously reduced in the past 30 years, which has seriously affected the safety of Beijing’s water supply. Therefore, this study aimed to assess the mitigation measures based on the quantification of the integrated impacts of climate and land use change in MRW. The non-point source (NPS) model (soil and water assessment tool, SWAT) was used for the development of future climate scenarios which were derived from two regional climate models (RCMs) under two representative concentration pathways (RCPs). Three land use scenarios were generated by the land use model (conversion of land-use and its effects (CLUE-S)): (1) historical trend scenario, (2) ecological protection without consideration of spatial configuration scenario and (3) ecological protection scenario. Moreover, the reduction of sediment and nutrients under three future land use patterns in future climate scenarios was evaluated. The results showed that an appropriate land use change project led to the desired reduction effect on sediment and nutrients output under future climate scenarios. The average reduction rates of sediment, total nitrogen and total phosphorus were 11.4%, 6.3% and 7.4%, respectively. The ecological protection scenario considering spatial configuration showed the best reduction effect on sediment, total nitrogen and total phosphorus. Therefore, the addition of region-specific preference variables as part of land use change provides better pollutant control effects. Overall, this research provides technical support to protect the safety of Beijing’s drinking water and future management of non-point source pollution in MRW.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2021-03-23
    Description: A multi-component geochemical dataset was collected from groundwater and surface-water bodies associated with the urban Fountain Creek alluvial aquifer, Colorado, USA, to facilitate analysis of recharge sources, geochemical interactions, and groundwater-residence times. Results indicate that groundwater can be separated into three distinct geochemical zones based on location within the flow system and proximity to surface water, and these zones can be used to infer sources of recharge and groundwater movement through the aquifer. Rare-earth-element concentrations and detections of wastewater-indicator compounds indicate the presence of effluent from wastewater-treatment plants in both groundwater and surface water. Effluent presence in groundwater indicates that streams in the area lose to groundwater in some seasons and are a source of focused groundwater recharge. Distributions of pharmaceuticals and wastewater-indicator compounds also inform an understanding of groundwater–surface-water interactions. Noble-gas isotopes corroborate rare-earth-element data in indicating geochemical evolution within the aquifer from recharge area to discharge area and qualitatively indicate variable groundwater-residence times and mixing with pre-modern groundwater. Quantitative groundwater-residence times calculated from 3H/3He, SF6, and lumped-parameter modeling generally are less than 20 years, but the presence of mixing with older groundwater of an unknown age is also indicated at selected locations. Future investigations would benefit by including groundwater-age tracers suited to quantification of mixing for both young (years to decades) and old (centuries and millennia) groundwater. This multi-faceted analysis facilitated development of a conceptual model for the investigated groundwater-flow system and illustrates the application of an encompassing suite of analytes in exploring hydrologic and geochemical interactions in complex systems.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2021-03-23
    Description: Land use change is known as one of the main influencing factors on soil erosion and sediment production processes. The objective of the article is to study on how land use change impacts on soil erosion by using Intensity of Erosion and Outflow (IntErO) as a process-oriented soil erosion model. The study has been conducted under land use changes within the period of 1991–2014 in the Talar watershed located in northern Iran. The GIS environment was used to prepare the required maps including Digital Elevation Model (DEM), geology, land use, soil, and drainage network. The climatology data including average annual precipitation and air temperature as well as the volume of torrential rain were extracted from the data of meteorological stations located inside and around the study watershed. The results indicates that, within the period of 1991–2014, the forest area decreased by 12,478.04 ha (6%), while the other land uses including rainfed agriculture, rangeland, irrigated agriculture, and residential area increased by 7248.25, 4481.05, 476.00, and 273.95 ha, respectively. The estimated outflow with 100 year return interval was 432.14 m3 s−1 in 1991, which increased to 446.91 m3 s−1 in 2014. It can be concluded that the probability of larger and/or more frequent floods waves in the Talar River is expected to increase. In addition, the amount of production of erosion material (gross erosion) in the watershed increased from 1,918,186 to 2,183,558 m3 yr−1, and the real soil losses per year (sediment yield) of the watershed increased from 440,482.4 to 501,421.3 m3 yr−1. The results clearly emphasized how the lack of appropriate land management and planning leads to increase the maximum flow discharge and sediment yield of the watershed.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2021-03-23
    Description: Climate change has increased the temperature and altered the mixing regime of high-value lakes in the subalpine region of Northern Italy. Remote sensing of chlorophyll-a can help provide a time series to allow an assessment of the ecological implications of this. Non-parametric multiplicative regression (NPMR) was used to visualize and understand the changes that have occurred between 2003–2018 in Lakes Garda, Como, Iseo, and Maggiore. In all four deep subalpine lakes, there has been a disruption from a traditional pattern of a significant spring chlorophyll-a peak followed by a clear water phase and summer/autumn peaks. This was replaced after 2010–2012, with lower spring peaks and a tendency for annual maxima to occur in summer. There was a tendency for this switch to be interspersed by a two-year period of low chlorophyll-a. Variables that were significant in NPMR included time, air temperature, total phosphorus, winter temperature, and winter values for the North Atlantic Oscillation. The change from spring to summer chlorophyll-a maxima, relatively sudden in an ecological context, could be interpreted as a regime shift. The cause was probably cascading effects from increased winter temperatures, reduced winter mixing, and altered nutrient dynamics. Future trends will depend on climate change and inter-decadal climate drivers.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2021-03-22
    Description: For decades, the Province of Alicante, located in the Southeast of Spain, has experienced important economic development associated with groundwater exploitation. The scarcity of superficial resources and irregular distribution in the time and space of rainfall, typical of the Mediterranean environment, together with the extensive limestone outcrops, have made groundwater a key resource for the area. However, insufficient knowledge about aquifers, especially the lack of precise recharge estimates, hinders regional water management. This study establishes updated recharge estimates and water budgets for the 200 aquifers found in Alicante, using readily usable methodologies and available data. These are soil water budget models, groundwater flow models, water table fluctuation methods, and spring flow analyses. The results show low mean annual values of recharge from precipitation (69 mm/year and a coefficient of 12%) and two main differentiated domains. The first one, in the northeast of the province, under more humid climatic conditions with larger carbonate aquifer systems, has higher recharge coefficients, ranging from 14% to 24%, and greater resources. For the rest of the province, where aquifers are smaller and annual averages of rainfall range between 250 and 400 mm, average recharge rates are low (9–12%).
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2021-03-22
    Description: Elevated concentrations of heavy metals in drinking water resources and industrial or urban wastewater pose a serious threat to human health and the equilibrium of ecosystems [...]
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2021-03-22
    Description: This article proposes a new approach for determining the optimal parameter (β) in the Inverse Distance Weighted Method (IDW) for spatial interpolation of hydrological data series. This is based on a genetic algorithm (GA) and finds a unique β for the entire study region, while the classical one determines different βs for different interpolated series. The algorithm is proposed in four scenarios crossover/mutation: single-point/uniform, single-point/swap, two-point/uniform, and two-point swap. Its performances are evaluated on data series collected for 41 years at ten observation sites, in terms of mean absolute error (MAE) and mean standard error (MSE). The smallest errors are obtained in the two-point swap scenario. Comparisons of the results with those of the ordinary kriging (KG), classical IDW (with β = 2 and the optimum beta found by our algorithm), and the Optimized IDW with Particle Swarm Optimization (OIDW) for each study data series show that the present approach better performs in 70% (80%) cases.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2021-03-23
    Description: The effluents of wastewater treatment plants (WWTPs) are major contributors of nutrients, microbes—including those carrying antibiotic resistance genes (ARGs)—and pathogens to receiving waterbodies. The effect of the effluent of a small-scale activated sludge WWTP treating municipal wastewater on the composition and abundance of the microbial community as well as the antibiotic resistome and pathogens in the sediment and water of the receiving stream and river was studied using metagenome sequencing and a quantitative approach. Elevated Bacteroidetes proportions in the prokaryotic community, heightened sulfonamide and aminoglycoside resistance determinants proportions, and an increase of up to three orders of magnitude of sul1–sul2–aadA–blaOXA2 gene cluster abundances were recorded in stream water and sediments 0.3 km downstream of a WWTP discharge point. Further downstream, a gradual recovery of affected microbial communities along a distance gradient from WWTP was recorded, culminating in the mostly comparable state of river water and sediment parameters 3.7 km downstream of WWTP and stream water and sediments upstream of the WWTP discharge point. Archaea, especially Methanosarcina, Methanothrix, and Methanoregula, formed a substantial proportion of the microbial community of WWTP effluent as well as receiving stream water and sediment, and were linked to the spread of ARGs. Opportunistic environmental-origin pathogens were predominant in WWTP effluent and receiving stream bacterial communities, with Citrobacter freundii proportion being especially elevated in the close vicinity downstream of the WWTP discharge point.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2021-02-02
    Description: In this paper, we investigated how the added mass, the hydrodynamic damping and the drag coefficient of a Wave Energy Converter (WEC) can be calculated using DualSPHysics. DualSPHysics is a software application that applies the Smoothed Particle Hydrodynamics (SPH) method, a Lagrangian meshless method used in a growing range of applications within the field of Computational Fluid Dynamics (CFD). Furthermore, the effect of the drag force on the WEC’s motion and average absorbed power is analyzed. Particularly under controlled conditions and in the resonance region, the drag force becomes significant and can greatly reduce the average absorbed power of a heaving point absorber. Once the drag coefficient has been determined, it is used in a modified equation of motion in the frequency domain, taking into account the effect of the drag force. Three different methods were compared for the calculation of the average absorbed power: linear potential flow theory, linear potential flow theory modified to take the drag force into account and DualSPHysics. This comparison showed the considerable effect of the drag force in the resonance region. Calculations of the drag coefficient were carried out for three point absorber WECs: one spherical WEC and two cylindrical WECs. Simulations in regular waves were performed for one cylindrical WEC with two different power take-off (PTO) systems: a linear damping and a Coulomb damping PTO system. The Coulomb damping PTO system was added in the numerical coupling between DualSPHysics and Project Chrono. Furthermore, we considered the optimal PTO system damping coefficient taking the effect of the drag force into account.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2021-02-01
    Description: During flooding, the suspended sediment transport usually experiences a wide-range of dilute to hyper-concentrated suspended sediment transport depending on the local flow and ground conditions. This paper assesses the distribution of sediment for a variety of hyper-concentrated and dilute flows. Due to the differences between hyper-concentrated and dilute flows, a linear-power coupled model is proposed to integrate these considerations. A parameterised method combining the sediment size, Rouse number, mean concentration, and flow depth parameters has been used for modelling the sediment profile. The accuracy of the proposed model has been verified against the reported laboratory measurements and comparison with other published analytical methods. The proposed method has been shown to effectively compute the concentration profile for a wide range of suspended sediment conditions from hyper-concentrated to dilute flows. Detailed comparisons reveal that the proposed model calculates the dilute profile with good correspondence to the measured data and other modelling results from literature. For the hyper-concentrated profile, a clear division of lower (bed-load) to upper layer (suspended-load) transport can be observed in the measured data. Using the proposed model, the transitional point from this lower to upper layer transport can be calculated precisely.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2021-02-01
    Description: In situ chemical oxidation using permanganate as an oxidant is a remediation technique often used to treat contaminated groundwater. In this paper, groundwater flow with a full hydraulic conductivity tensor and remediation process through in situ chemical oxidation are simulated. The numerical approach was verified with a physical sandbox experiment and analytical solution for 2D advection-diffusion with a first-order decay rate constant. The numerical results were in good agreement with the results of physical sandbox model and the analytical solution. The developed model was applied to two different studies, using multi-objective genetic algorithm to optimise remediation design. In order to reach the optimised design, three objectives considering three constraints were defined. The time to reach the desired concentration and remediation cost regarding the number of required oxidant sources in the optimised design was less than any arbitrary design.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2021-01-31
    Description: Dam breach has disastrous consequences for the economy and human lives. Floods are one of the most damaging natural phenomena, and some of the most catastrophic flash floods are related to dam collapses. The goal of the present study is to analyse the impact of a possible failure–collapse on a potentially affected area downstream of the existing Bramianos dam on southern Crete Island. HEC-RAS hydraulic analysis software was used to study the dam breach, the flood wave propagation, and estimate the extent of floods. The analysis was performed using two different relief datasets of the same area: a digital elevation model (DEM) taken from very high-resolution orthophoto images (OPH) of the National Cadastre and Mapping Agency SA and a detailed digital surface model (DSM) extracted from aerial images taken by an unmanned aerial vehicle (UAV). Remote sensing data of the Sentinel-2 satellite and OPH were utilised to create the geographic information system (GIS) layers of a thorough land use/cover classification (LULC) for the potentially flooded area, which was used to assess the impact of the flood wave. Different dam breach and flood scenarios, where the water flows over man-made structures, settlements, and olive tree cultivations, were also examined. The study area is dominated mainly by three geological formations with different hydrogeological characteristics that dictated the positioning and structure of the dam and determine the processes that shape the geomorphology and surface roughness of the floodplain, affecting flow conditions. The results show that the impact of a potential dam break at Bramianos dam is serious, and appropriate management measures should be taken to reduce the risk. The water flow downstream of the collapsed dam depends on the water volume stored in the reservoir. Moreover, the comparison of DSM and DEM cases shows that the detailed DSM may indicate more accurately the surface relief and existing natural obstacles such as vegetation, buildings, and greenhouses, enabling more realistic hydraulic simulation results. Dam breach flood simulations and innovative remote sensing data can provide valuable outcomes for engineers and stakeholders for decision-making and planning in order to confront the consequences of similar incidents worldwide.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2021-01-31
    Description: The coastal aquifers of the Mediterranean region are highly susceptible to seawater intrusion due to a combination of challenges such as land subsidence, high aquifer permeability, urbanization, drainage, and an unsustainable use of water during the dry summer months. The present study is focused on a statistical analysis of groundwater data to evaluate the spatial changes of water level and electrical conductivity in the coastal phreatic aquifer of the Emilia-Romagna (Northeast Italy) for the period from 2009 to 2018. Data from 35 wells distributed across the entire regional coastal area are used to establish a temporal trend, as well as correlations between salinity, water table level, and rainfall. Water table and salinity distribution maps for the entire study area are discussed regarding surface geology and water management. Most of the wells are in the beach wedge sand unit, which allows for easy connectivity between groundwater and surface water. Surface water and groundwater salinization are enhanced along the surface water bodies connected to the sea. The lowest water table level occurs in the western and northern parts of the study area, because of the semiconfined behavior of the aquifer. Only in the northernmost, close to the Po River, and in the southernmost parts of the study area does the groundwater remain fresh for the whole period considered due to river aquifer recharge. In the rest of the region, the thickness of freshwater lenses, where present, is less than 4.5 m. The existence of a water table level below sea level and high saline water at the bottom of the aquifer in most of the study area suggest that the aquifer is in unstable hydrodynamic conditions and groundwater quality is not fit for human consumption or for irrigation. This study is the first to provide a regional overview of the state of groundwater level and salinization within the coastal aquifer of the Emilia-Romagna Region; it also suggests that, overall, the salinization trend has slightly decreased from 2009 to 2018.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2021-03-23
    Description: Actual evapotranspiration (ETa) estimations in arid regions are challenging because this process is highly dynamic over time and space. Nevertheless, several studies have shown good results when implementing empirical regression formulae that, despite their simplicity, are comparable in accuracy to more complex models. Although many types of regression formulae to estimate ETa exist, there is no consensus on what variables must be included in the analysis. In this research, we used machine learning algorithms—through implementation of empirical linear regression formulae—to find the main variables that control daily and monthly ETa in arid cold regions, where there is a lack of available ETa data. Meteorological data alone and then combined with remote sensing vegetation indices (VIs) were used as input in ETa estimations. In situ ETa and meteorological data were obtained from ten sites in Chile, Australia, and the United States. Our results indicate that the available energy is the main meteorological variable that controls ETa in the assessed sites, despite the fact that these regions are typically described as water-limited environments. The VI that better represents the in situ ETa is the Normalized Difference Water Index, which represents water availability in plants and soils. The best performance of the regression equations in the validation sites was obtained for monthly estimates with the incorporation of VIs (R2 = 0.82), whereas the worst performance of these equations was obtained for monthly ETa estimates when only meteorological data were considered. Incorporation of remote-sensing information results in better ETa estimates compared to when only meteorological data are considered.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2021-03-30
    Description: Floodplains are threatened ecosystems and are not only ecologically meaningful but also important for humans by creating multiple benefits. Many underlying functions, like nutrient retention, carbon sequestration or water regulation, strongly depend on regular inundation. So far, these are approached on the basis of what are called ‘active floodplains’. Active floodplains, defined as statistically inundated once every 100 years, represent less than 10% of a floodplain’s original size. Still, should this remaining area be considered as one homogenous surface in terms of floodplain function, or are there any alternative approaches to quantify ecologically active floodplains? With the European Flood Hazard Maps, the extent of not only medium floods (T-medium) but also frequent floods (T-frequent) needs to be modelled by all member states of the European Union. For large German rivers, both scenarios were compared to quantify the extent, as well as selected indicators for naturalness derived from inundation. It is assumed that the more naturalness there is, the more inundation and the better the functioning. Real inundation was quantified using measured discharges from relevant gauges over the past 20 years. As a result, land uses indicating strong human impacts changed significantly from T-frequent to T-medium floodplains. Furthermore, the extent, water depth and water volume stored in the T-frequent and T-medium floodplains is significantly different. Even T-frequent floodplains experienced inundation for only half of the considered gauges during the past 20 years. This study gives evidence for considering regulation functions on the basis of ecologically active floodplains, meaning in floodplains with more frequent inundation that T-medium floodplains delineate.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2021-03-24
    Description: As 180-degree meanders are observed in abundance in nature, a meandering channel with two consecutive 180-degree bends was designed and constructed to investigate bed topography variations. These two 180-degree mild bends are located between two upstream and downstream straight paths. In this study, different mean velocity-to-critical velocity ratios have been tested at the upstream straight path to determine the meander’s incipient motion. To this end, bed topography variations along the meander and the downstream straight path were addressed for different mean velocity-to-critical velocity ratios. In addition, the upstream bend’s effect on the downstream bend was investigated. Results indicated that the maximum scour depth at the downstream bend increased as a result of changing the mean velocity-to-critical velocity ratio from 0.8 to 0.84, 0.86, 0.89, 0.92, 0.95, and 0.98 by, respectively, 1.5, 2.5, 5, 10, 12, and 26 times. Moreover, increasing the ratio increased the maximum sedimentary height by 3, 10, 23, 48, 49, and 56 times. The upstream bend’s incipient motion was observed for the mean velocity-to-critical velocity ratio of 0.89, while the downstream bend’s incipient motion occurred for the ratio of 0.78.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2021-03-24
    Description: River bends are one of the common elements in most natural rivers, and secondary flow is one of the most important flow features in the bends. The secondary flow is perpendicular to the main flow and has a helical path moving towards the outer bank at the upper part of the river cross-section, and towards the inner bank at the lower part of the river cross-section. The secondary flow causes a redistribution in the main flow. Accordingly, this redistribution and sediment transport by the secondary flow may lead to the formation of a typical pattern of river bend profile. It is important to study and understand the flow pattern in order to predict the profile and the position of the bend in the river. However, there are a lack of comprehensive reviews on the advances in numerical modeling of bend secondary flow in the literature. Therefore, this study comprehensively reviews the fundamentals of secondary flow, the governing equations and boundary conditions for numerical simulations, and previous numerical studies on river bend flows. Most importantly, it reviews various numerical simulation strategies and performance of various turbulence models in simulating the flow in river bends and concludes that the main problem is finding the appropriate model for each case of turbulent flow. The present review summarizes the recent advances in numerical modeling of secondary flow and points out the key challenges, which can provide useful information for future studies.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2021-03-24
    Description: Currently many countries are struggling to rationalize water quality monitoring stations which is caused by economic demand. Though this process is essential indeed, the exact elements of the system to be optimized without a subsequent quality and accuracy loss still remain obscure. Therefore, accurate historical data on groundwater pollution is required to detect and monitor considerable environmental impacts. To collect such data appropriate sampling and assessment methodologies with an optimum spatial distribution augmented should be exploited. Thus, the configuration of water monitoring sampling points and the number of the points required are now considered as a fundamental optimization challenge. The paper offers and tests metaheuristic approaches for optimization of monitoring procedure and multi-factors assessment of water quality in “New Moscow” area. It is shown that the considered algorithms allow us to reduce the size of the training sample set, so that the number of points for monitoring water quality in the area can be halved. Moreover, reducing the dataset size improved the quality of prediction by 20%. The obtained results convincingly demonstrate that the proposed algorithms dramatically decrease the total cost of analysis without dampening the quality of monitoring and could be recommended for optimization purposes.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2021-03-24
    Description: Urban rainstorm waterlogging is one of the most important problems in urban development and a comprehensive embodiment of urban diseases. China is facing a severe risk of rainstorm waterlogging disasters, which is affecting sustainable development. Urban rainstorm waterlogging in China is caused by many factors, including natural factors and human factors, such as climate warming, unreasonable urban construction, inadequate upgrading of urban fortification standards, etc. Based on the analysis of the current strategies to deal with urban waterlogging around the world, including an increase in surface infiltration, and a reduction in runoff (and its various impacts), this paper holds that the connotation and goal of these measures are highly consistent with the construction of a sponge city in China. Based on the analysis of the problems, including construction of an urban rainwater recovery system, construction of urban rainwater storage facilities, and construction of data platforms faced by China’s sponge city, this paper puts forward the guiding principles of promoting the construction of a sponge city. The guiding principles are to cooperate to deal with climate change and ecological civilization construction, to study the foreign experience, and to unite multiple subjects, integrate multiple elements, design multiple processes, form a joint force, and create an all-round response system to deal with urban rainstorm waterlogging. Then, this paper gives policy recommendations on how to deal with the urban rainstorm waterlogging disasters, which include improving the defense standards, encouraging social participation, popularizing the construction of sponge cities, perfecting the monitoring and early warning system, strengthening the scientific planning of cities, strengthening the ability of dealing with catastrophes in metropolitan areas, the overall planning of cross-regional responses, and enhancing the awareness of decision makers. Finally, this paper expounds the reference significance of urban rainstorm waterlogging control in China to the global audience. This paper explores the significance of comprehensively and scientifically understanding urban rainstorm waterlogging disasters, and provides support for long-term planning and high-quality construction of future safe cities.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2021-03-24
    Description: As a Lagrangian gridless particle method, the MPS (Moving Particle Semi-implicit) method has a wide engineering application. However, for complex 3D flows, unphysical pressure oscillations often occur and result in the failure of simulations. This paper compares the stability enhancement methods proposed by different researchers to develop a 3D, stable MPS method. The results indicate that the proposed methods are incapable of eliminating the particle clustering that leads to instability as the main source in coarser particle spacing cases. An anti-clustering model, referring to the SPH (Smoothed Particle Hydrodynamics) artificial viscosity model, is proposed to further reduce instability. Combining various proposed methods and models, several typical examples are simulated comparatively. The results are compared with those of the VOF (Volume of Fluid) model using commercial software to validate the accuracy and stability of the combination of the proposed methods and models. It is concluded that (1) 3D cases that adopt a high-order Laplacian model and high-order source terms in PPE are more accurate than those adopting the low-order operators; (2) the proposed anti-clustering model can produce a tuned interparticle force to prevent particle clustering and introduce no additional viscosity effects in the flow of the normal state, which plays a very positive role for further stability enhancement of MPS; (3) particle resolution significantly maintains simulation accuracy given the stable algorithms by the combination of stability enhancement methods. The 3D MPS method is coupled with the Euler grid (FLUENT V17 software, ANSYS, Pittsburgh, PA, USA) in two phases. In particular, the 3D MPS algorithm is used to calculate the liquid-phase change from the continuous to the dispersed, and the finite volume method based on the Euler grid is adopted to measure the corresponding gas-phase motion. The atomization of the liquid jet under static air flow is calculated and compared with the results of the VOF method, which can capture the continuous interface.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2021-03-24
    Description: Worldwide river systems are under pressure from human development. River managers need to identify the most important stressors in a stream basin, to propose effective management interventions for river restoration. In the European Union, the Water Framework Directive proposes the ecological status as the management endpoint for these interventions. Many decision support tools exist that use predictive water quality models to evaluate different river management scenarios, but only a few consider a river’s ecological status in this analysis explicitly. This paper presents a novel method, which combines abiotic monitoring data and biological monitoring data, to provide information and insight on why the ecological status does not reach the good status. We use habitat suitability models as a decision support tool, which can identify the most important stressors in river systems to define management scenarios. To this end, we disassemble the ecological status into its individual building blocks, i.e., the community composition, and we use habitat suitability models to perform an ecological gap analysis. In this paper, we present our method and its underlying ecological concepts, and we illustrate its benefits by applying the method on a regional level for Flanders using a biotic index, the Multimetric Macroinvertebrate Index Flanders (MMIF). To evaluate our method, we calculated the number of correctly classified instances (CCI = 47.7%) and the root-mean-square error (RMSE = 0.18) on the MMIF class and the MMIF value. Furthermore, there is a monotonic decreasing relationship between the results of the priority classification and the ecological status expressed by the MMIF, which is strengthened by the inclusion of ecological concepts in our method (Pearson’s R2 −0.92 vs. −0.87). In addition, the results of our method are complementary to information derived from the legal targets set for abiotic variables. Thus, our proposed method can further optimize the inclusion of monitoring data for the sake of sustainable decisions in river management.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2021-03-24
    Description: Floods are naturally occurring extreme hydrological events that affect stream habitats and biota at multiple extents. Benthic macroinvertebrates (BM) are widely used to assess ecological status in rivers, but their resistance and resilience to floods in medium-sized, temperate, lowland rivers in Europe have not been sufficiently studied. In this study, we quantified the effect of a moderate (5-year return period) yet long-lasting and unpredictable flood that occurred in summer 2020 on the BM community of the Jeziorka River in central Poland. To better understand the mechanisms by which the studied flood affected the BM community, we also evaluated the dynamics of hydrological, hydraulic, channel morphology, and water quality conditions across the studied 1300 m long reach. Continuous water level monitoring, stream depth surveying, and discharge measurements. As well, in-situ and lab-based water quality measurements were carried out between March and August 2020. BM communities were sampled three times at eight sites along the reach, once before and twice after the flood. High flow velocities during the flood resulted in stream bed instability leading to sand substrate movement that caused streambed aggradation by up to 0.2 m. Dissolved oxygen and ammonium-nitrogen were major drivers of BM community structure. Taxa richness, abundance, and the BMWP-PL index declined significantly, whereas Shannon evenness and Simpson diversity indices showed no significant change in the first post-flood sampling, as indicated by Kruskal–Wallis and Tukey tests. Non-metric multidimensional scaling (NMDS) analysis showed that community composition was also significantly affected by the flood. Seven weeks after the flood peak (August 2020 sampling), BM communities had fully recovered from the disturbance. The results can serve as a first approximation of the resistance and resilience of BM communities for relevant applications in other medium-sized, low-gradient, temperate rivers.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2021-03-24
    Description: In September 2017, two category-5 hurricanes Irma and Maria swept through the Caribbean Sea in what is now known as the region’s most active hurricane season on record, leaving disastrous effects on infrastructure and people’s lives. In the U.S. Virgin Islands, rain cisterns are commonly used for harvesting roof-top rainwater for household water needs. High prevalence of Legionella spp. was found in the cistern water after the hurricanes. This study carried out a quantitative microbial risk assessment to estimate the health risks associated with Legionella through inhalation of aerosols from showering using water from cisterns after the hurricanes. Legionella concentrations were modeled based on the Legionella detected in post-hurricane water samples and reported total viable heterotrophic bacterial counts in cistern water. The inhalation dose was modeled using a Monte Carlo simulation of shower water aerosol concentrations according to shower water temperature, shower duration, inhalation rates, and shower flow rates. The risk of infection was calculated based on a previously established dose–response model from Legionella infection of guinea pigs. The results indicated median daily risk of 2.5 × 10−6 to 2.5 × 10−4 depending on shower temperature, and median annual risk of 9.1 × 10−4 to 1.4 × 10−2. Results were discussed and compared with household survey results for a better understanding of local perceived risk versus objective risk surrounding local water supplies.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2021-03-24
    Description: Once the first initial ripples have developed, they form according to the actual flow forces and sediment properties. In this paper, a semianalytical approach to determine the length of the developed ripples is presented. The theory assumes initial disturbances at the bed surface and corresponding flow separations resulting from an individual respective boundary layer. What causes the initial rhythmic perturbations is not the subject of this paper. Based on boundary layer theory, this approach explains a possible physical background for the existence and length of developed ripples in cohesion-free sediments. At the same time, the approach provides a distinction from dunes: ripples are sand waves affected by a viscous sublayer, and dunes are sand waves where this is not the case. Applications to Earth, Mars, and Titan are shown.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2021-03-16
    Description: The quantification of driftwood deposition in rivers is important for understanding the total budget of driftwood at the watershed scale; however, it remains unclear how such driftwood storage in rivers contributes to the overall system because of the difficulties in undertaking field measurements. Herein, we perform numerical simulations of driftwood deposition within an idealized river reach with a sand-bed, to describe the role of large-scale bedforms, more specifically, alternate bars, multiple bars, and braiding, in driftwood storage in rivers. The numerical model we propose here is a coupling model involving a Lagrangian-type driftwood model and an Eulerian two-dimensional morphodynamic model for simulating large-scale bedforms (i.e., bars and braiding). The results show that the channel with a braiding pattern provides a wide area with enhanced capacity for deposition of driftwood, characterized by exposed mid-channel or in-channel bars, leading to high driftwood storage. The alternate bar is also a large bedform representing a sediment depositional element in rivers; however, because of the narrow exposed bar area and its downstream-migrating feature during floods, the alternate bars seem to contribute less to driftwood deposition in rivers. This suggests that the role of multiple bars and braiding is critically important for the driftwood deposition in rivers.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2021-03-16
    Description: Salinity gradient energy is a prominent alternative and maintainable energy source, which has considerable potential. Reverse electrodialysis (RED) is one of the most widely studied methods to extract this energy. Despite the considerable progress in research, optimization of RED process is still ongoing. In this study, effects of the number of membrane pairs, ratio of salinity gradient and feed velocity on power generation via the reverse electrodialysis (RED) system were investigated by using Fujifilm cation exchange membrane (CEM Type 2) and FujiFilm anion exchange membrane (AEM Type 2) ion exchange membranes. In the literature, there is no previous study based on a RED system equipped with Fujifilm AEM Type II and CEM Type II membranes that have homogeneous bulk structure. Using 400 µm of intermembrane distance, maximum obtainable power density by 5 pairs of Fujifilm membranes at 1:45 salinity ratio and with a linear flow rate of 0.833 cm/s was 0.426 W/m2.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2021-03-16
    Description: Thermal response curves that depict the probability of occurrence along a thermal gradient are used to derive various species’ thermal properties and abilities to cope with warming. However, different thermal responses can be expected for different portions of a species range. We focus on differences in thermal response curves (TRCs) and thermal niche requirements for four freshwater fishes (Coregonus sardinella, Pungitius pungitius, Rutilus rutilus, Salvelinus alpinus) native to Europe at (1) the global and (2) European continental scale. European ranges captured only a portion of the global thermal range with major differences in the minimum (Tmin), maximum (Tmax) and average temperature (Tav) of the respective distributions. Further investigations of the model-derived preferred temperature (Tpref), warming tolerance (WT = Tmax − Tpref), safety margin (SM = Tpref − Tav) and the future climatic impact showed substantially differing results. All considered thermal properties either were under- or overestimated at the European level. Our results highlight that, although continental analyses have an impressive spatial extent, they might deliver misleading estimates of species thermal niches and future climate change impacts, if they do not cover the full species ranges. Studies and management actions should therefore favor whole global range distribution data for analyzing species responses to environmental gradients.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2021-03-16
    Description: Given its potentialities and characteristics, energy generation, food production, and water availability have a strong interdependency and correlation. Water is needed to produce energy and food, while energy is required to produce water and food. This nexus brings several challenges when scarce water resources must be allocated among competing uses, often in the form of unexpected tradeoffs. Addressing those challenges requires knowledge about the water–food–energy nexus and the associated tradeoffs to support water allocation and management decisions. Those tradeoffs are still not properly understood in the uncertain and stochastic context of water availability. When not properly accounted for, the results are conflicts, loss of investments, environmental impacts, and limited effectiveness of sectoral policies, all of which undermine a country’s development model relying on water and energy security. This paper addresses the competitive uses of recent irrigated agriculture expansion and existing hydropower production in a Brazilian watershed with water conflicts, assessing the economic tradeoffs and water values between energy and irrigated agricultural production under uncertainty. An explicitly stochastic hydro-economic model is used to determine water’s economic value and its variation in space and time. Results indicate that the agricultural benefits outweigh the potential energy losses, and the best course of action should explore an economically compensated reallocation strategy, upon negotiation among users, rather than imposing water supply cutbacks to the agriculture sector.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2021-03-16
    Description: The water footprint (WF) vividly links water resources with virtual water of food, providing a novel perspective on food demand and water resources management. This study estimates the per capita WF of food consumption for six provinces in North China. Then, the study applies the logarithmic mean Divisia index method to decompose the driving forces of their WF changes. Results show that the per capita WF of food consumption in Beijing, Tianjin, and Inner Mongolia increases significantly in 2005–2017, whereas that in the other three provinces in North China varies slightly. All provinces have shown the same trend of food structure changes: the grain decreased, whereas the meat increased. In general, the urban effect was positive, and the rural effect was negative for all regions. The urban effects in Beijing and Tianjin played a leading role, whereas the rural effects in the other four provinces played a leading role from 2005–2009. However, the urban effects in all provinces played a leading role in 2010–2017. The WF efficiency increased in each province, and the effect in urban areas is stronger due to the higher water use efficiency. For most provinces, the consumption structure was positive because the diet shifted toward more meat consumption. The food consumption per capita effect was the major driving force in Beijing and Tianjin due to the increased consumption level, whereas the population proportion effect exerted a weak effect. To alleviate the pressure on water resources, further improving water use efficiency in food production and changing the planting structure should be emphasized for all regions in North China.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2021-03-16
    Description: The resource utilization of excess red mud produced from aluminum production is a current research focus. In this study, novel nano-Fe3O4 modified high-iron red mud material (HRM@nFe3O4) was fabricated using the method of co-precipitation to remove Sb(III) from the aqueous phase. The HRM@nFe3O4 at a nFe3O4:HRM mass ratio of 1:1 had optimal adsorbing performance on Sb(III) in water. Compared with others, the synthetic HRM@nFe3O4 sorbent had a superior maximum Sb(III) adsorption capacity of 98.03 mg·g−1, as calculated by the Langmuir model, and a higher specific surface area of 171.63 m2·g−1, measured using the Brunauer-Emmett-Teller measurement. The adsorption process was stable at an ambient pH range, and negligibly limited by temperature the coexisting anions, except for silicate and phosphate, suggesting the high selectivity toward Sb(III). HRM@nFe3O4 retained more than 60% of the initial adsorption efficiency after the fifth adsorption-desorption cycle. The kinetic data fitted by the pseudo-second-order model illustrated the existence of a chemical adsorption process in the adsorption of Sb(III). Further mechanism analysis results indicated that the complexation reaction played a major role in Sb(III) adsorption by HRM@nFe3O4. This HRM@nFe3O4 adsorbent provides an effective method for the removal of Sb(III) in wastewater treatment and is valuable in the reclamation of red mud.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2021-03-16
    Description: Climate change forcings are having significant impacts in coastal Louisiana today and increasingly affect the future of New Orleans, a deltaic city mostly below sea level, which depends on levee and pumps to protect from a host of water-related threats. Precipitation has increased in the Mississippi River basin generally, increasing runoff, so that in recent years the Mississippi River has been above flood stage for longer periods of time both earlier and later in the year, increasing the likelihood that hurricane surge, traditionally confined to summer and fall, may compound effects of prolonged high water on river levees. The Bonnet Carré Spillway, just upstream of New Orleans has been operated more often and for longer periods of time in recent years than ever before in its nearly 100-year history. Because all rain that falls within the city must be pumped out, residents have been exposed to interior flooding more frequently as high-intensity precipitation events can occur in any season. A sustainable path for New Orleans should involve elevating people and sensitive infrastructure above flood levels, raising some land levels, and creating water storage areas within the city. Management of the lower Mississippi River in the future must include consideration that the river will exceed its design capacity on a regular basis. The river must also be used to restore coastal wetlands through the use of diversions, which will also relieve pressure on levees.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2021-03-16
    Description: The mean sea surface topography of the Ionian and Adriatic Seas has been determined. This was based on six-months of Global Navigation Satellite System (GNSS) measurements which were performed on the Ionian Queen (a ship). The measurements were analyzed following a double-path methodology based on differential GNSS (D-GNSS) and precise point positioning (PPP) analysis. Numerical filtering techniques, multi-parametric accuracy analysis and a new technique for removing the meteorological tide factors were also used. Results were compared with the EGM96 geoid model. The calculated differences ranged between 0 and 48 cm. The error of the results was estimated to fall within 3.31 cm. The 3D image of the marine topography in the region shows a nearly constant slope of 4 cm/km in the N–S direction. Thus, the effectiveness of the approach “repeated GNSS measurements on the same route of a ship” developed in the context of “GNSS methods on floating means” has been demonstrated. The application of this approach using systematic multi-track recordings on conventional liner ships is very promising, as it may open possibilities for widespread use of the methodology across the world.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2021-03-16
    Description: Projections of increased hydrological extremes due to climate change heighten the need to understand and improve the resilience of our water infrastructure. While constructed natural treatment analogs, such as raingardens, wetlands, and aquifer recharge, hold intuitive promise for variable flows, the impacts of disruption on water treatment processes and outcomes are not well understood and limit widespread adoption. To this end, we studied the impact of desiccation and flooding extremes on demonstration-scale shallow, unit process open water (UPOW) wetlands designed for water treatment. System resilience was evaluated as a function of physical characteristics, nitrate removal, photosynthetic activity, and microbial ecology. Rehydrated biomat that had been naturally desiccated re-established nitrate removal consistent with undisrupted biomat in less than a week; however, a pulse of organic carbon and nitrogen accompanied the initial rehydration phase. Conversely, sediment intrusion due to flooding had a negative impact on the biomat’s photosynthetic activity and decreased nitrate attenuation rates by nearly 50%. Based upon past mechanistic inferences, attenuation potential for trace organics is anticipated to follow similar trends as nitrate removal. While the microbial community was significantly altered in both extremes, our results collectively suggest that UPOW wetlands have potential for seasonal or intermittent use due to their promise of rapid re-establishment after rehydration. Flooding extremes and associated sediment intrusion provide a greater barrier to system resilience indicating a need for proactive designs to prevent this outcome; however, residual treatment potential after disruption could provide operators with time to triage and manage the system should a flood occur again.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2021-03-16
    Description: Reservoir sedimentation is a critical issue worldwide, resulting in reduced storage volumes and, thus, reservoir efficiency. Moreover, sedimentation can also increase the flood risk at related facilities. In some cases, drawdown flushing of the reservoir is an appropriate management tool. However, there are various options as to how and when to perform such flushing, which should be optimized in order to maximize its efficiency and effectiveness. This paper proposes an innovative concept, based on an artificial neural network (ANN), to predict the volume of sediment flushed from the reservoir given distinct input parameters. The results obtained from a real-world study area indicate that there is a close correlation between the inputs—including peak discharge and duration of flushing—and the output (i.e., the volume of sediment). The developed ANN can readily be applied at the real-world study site, as a decision-support system for hydropower operators.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2021-03-12
    Description: The increasing soil salinity levels under reclaimed water irrigation have a negative effect on plant growth. Greenhouse experiments were conducted in 2018 and 2019 under reclaimed water–fresh water combined irrigation. After transplanting (Day 1), rice was irrigated with clean water (tap water) for 10 days to facilitate rice root colonisation. Subsequently, rice was irrigated with reclaimed water for 50 days (Day 11 to 60), and then irrigated with clean water. B. subtilis and S. cerevisiae were mixed with clean water (tap water) and irrigated into soil at Day 61. B. subtilis (20 billion colony-forming units/g) and S. cerevisiae (20 billion colony-forming units/g) were mixed at the following proportions: 5 g and 0 (J1), 3.75 g and 1.25 g (J2), 2.5 g and 2.5 g (J3), 1.25 g and 3.75 g (J4), and 0 and 5 g (J5), respectively; rice treated with reclaimed water (CK) and clean water (J0) with no microorganisms applied were also used. We measured NO3--N and NH4+-N concentrations and electrical conductivity (EC) in the soil at 0–5, 5–15, and 15–25 cm layers; root activity; and malondialdehyde (MDA), soluble sugar, superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and glutamine synthetase (GS) activity in leaves at Day 71. B. subtilis and S. cerevisiae combination could promote rice physiological indices, and B. subtilis had a greater effect than S. cerevisiae. There are obvious differences in the physiological performance and soil N between 2018 and 2019 due to the EC of reclaimed water. Redundancy analysis revealed that soil NO3−-N and the mass of B. subtilis applied were major factors influencing leaf physiological indices. Five grams of B. subtilis is recommended to facilitate rice growth after irrigation with reclaimed water. Our research provides a new agronomic measure for the safe utilisation of reclaimed water.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2021-03-12
    Description: Beavers have lived in the territory of Poland since the beginning of the Holocene, as testified by bone remains found in archaeological sites of different ages. The area inhabited by these animals has experienced continuing transformations of terrain relief, geological structure, hydrology and plant cover. In Poland, beavers are partially protected and their population has spread in virtually every part of the country (except in the highest mountain ranges). The authors of this paper wish to present the results of field works carried out since 2006 in the Tuchola Forest (Polish Plain). This paper aims to identify the potential sediments of relict beaver ponds and their sedimentological features. The studies are also backed up with a description of radiocarbon dating of samples. The results indicate that beavers used to live in the Tuchola Forest in the Middle Ages, as shown by the radiocarbon dates and sequences of mineral–organic deposits found in exposures and geological boreholes. The spatial distribution of organic and mineral deposits in wider sections of river valleys can be explained by the avulsion of the riverbed downstream of the pond and by the distribution of ponds in the Gołyjonka valley. The discovery of relict beaver pond sediments suggests that the activity of these mammals in the Middle Ages played a major part in shaping the landscape of the valley. The results of studies clearly indicate that analyses of the valley sediment facies of small watercourses should take into account the role beavers played in the past in shaping the landscape of the analysed valley. This highlights the insufficiency of studies concerning the activity of beavers in river valleys.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2021-03-13
    Description: The most appropriate method to protect settlements and economically important sites from flood hazard, is the implementation of flood protection measures in stream catchments and protected localities, which contribute to reduce the peak flow and distribution of the flood wave over a longer period of time. If such measures are not realistic or ineffective, it is necessary to focus on flood protection directly on the area of the protected side or its vicinity. Where the lag time between the flood threat detection and actual flood onset is short, one possible measure is to increase the capacity of the watercourse, very often in combination with other flood mitigation measures in the protected area. The engineering approach to flood protection is the subject of many scientific research studies. Permission for flood protection structures depends on their environmental impact assessment (EIA), according to Law no. 24/2002 Coll. on Environmental Impact Assessment in the Slovak Republic, annex no. 8 (list of activities subject to EIA). Based on the EIA, it is possible to select the best alternative of flood protection, i.e., the alternative with the lowest risk impact on the environment. This paper aims to analyse the flood protection measures along the Lukavica stream (central Slovakia), applying hydraulic models. The best alternative with the lowest impact on the environment, assessed using the risk analysis method, consists of detention reservoir construction. An effective combination of environmental impact assessment and hydraulic modelling contribute to the selection of an effective flood protection measure in the territory.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2021-02-17
    Description: The present work aims to study the electrochemical (EC) process applied for the removal of contaminants of emergent concern (CECs) from wastewater after secondary treatment and the effect of the process on the total culturable microorganisms. The EC experiments were performed in a cylindrical open reactor with 500 mL of effluent, and a fixed current density of 8 mA/cm² was applied through mixed metal oxide electrodes. The experiments were conducted in different sets. In the first round (Set 1), the effluent sample was spiked with three CECs (200 ppb each): caffeine (CAF), carbamazepine (CBZ), and oxybenzone (OXY). For the best treatment period, 6 h, electrodegradation rates ranged from 41 ± 7% for CAF to 95 ± 6% for OXY, with an 87% removal of total culturable microorganisms. In the second round (Set 2), aiming to assess EC process efficiency in a more complex CEC mixture, the effluent was spiked with six more CECs (200 ppb each): diclofenac (DCF), triclosan (TCS), bisphenol A (BPA), 17β-estradiol (E2), 17α-ethinylestradiol (EE2), and ibuprofen (IBU), giving a total of nine CECs. In this case, the EC process allowed decreasing the CEC content by 19–100% (below the limit of detection), depending on the effluent samples, and the culturable microorganisms by 99.98% after a 6 h treatment. By contributing to CEC degradation and microorganism removal, the EC process proved to be a viable remediation and disinfection technology for secondary effluent from wastewater treatment plants.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2021-02-17
    Description: Developing accurate stream maps requires both an improved understanding of the drivers of streamflow spatial patterns and field verification. This study examined streamflow locations in three semiarid catchments across an elevation gradient in the Colorado Front Range, USA. The locations of surface flow throughout each channel network were mapped in the field and used to compute active drainage densities. Field surveys of active flow were compared to National Hydrography Dataset High Resolution (NHD HR) flowlines, digital topographic data, and geologic maps. The length of active flow declined with stream discharge in each of the catchments, with the greatest decline in the driest catchment. Of the tributaries that did not dry completely, 60% had stable flow heads and the remaining tributaries had flow heads that moved downstream with drying. The flow heads were initiated at mean contributing areas of 0.1 km2 at the lowest elevation catchment and 0.5 km2 at the highest elevation catchment, leading to active drainage densities that declined with elevation and snow persistence. The field mapped drainage densities were less than half the drainage densities that were represented using NHD HR. Geologic structures influenced the flow locations, with multiple flow heads initiated along faults and some tributaries following either fault lines or lithologic contacts.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2021-02-17
    Description: Groundwater stored in aquifers experiences a wide variety of natural, induced and/or anthropogenic disturbances. Among them, groundwater extraction is the main disturbance that affects most of the aquifers in the world. Aquifer’s resilience, understood as the potential of the aquifer to sustain disturbances on the long term and to guarantee essential qualities and functions, provides a key tool when assessing sustainable groundwater management alternatives. The aim of this work is to illustrate an aquifer resilience framework that can support groundwater sustainable management. A theoretical framework is based on the identification of the key variables that parameterize the quantitative and qualitative responses of the groundwater flow system to pumping. An example from the literature based in Denmark is provided as an illustration of the proposed framework. The results show that long-term high quality data are essential to make a step further in aquifers dynamic responses. The quantitative understanding of the aquifer’s behavior before, during and after groundwater extraction provides a valuable source of information in order to identify thresholds of change (tipping points, transitions or regime shifts) which could permit pro-active groundwater management decisions. Moreover, a deeper understanding on the aquifer’s dynamics provides useful information in order to avert threats that may put the sustainability of the system at risk.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2021-02-02
    Description: Intensive development of many industries, including textile, paper or plastic, which consume large amounts of water and generate huge amounts of wastewater-containing toxic dyes, contribute to pollution of the aquatic environment. Among many known methods of wastewater treatment, adsorption techniques are considered the most effective. In the present study, the weakly basic anion exchangers such as Amberlyst A21, Amberlyst A23 and Amberlyst A24 of the polystyrene, phenol-formaldehyde and polyacrylic matrices were used for C.I. Direct Yellow 50 removal from aqueous solutions. The equilibrium adsorption data were well fitted to the Langmuir adsorption isotherm. Kinetic studies were described by the pseudo-second order model. The pseudo-second order rate constants were in the range of 0.0609–0.0128 g/mg·min for Amberlyst A24, 0.0038–0.0015 g/mg·min for Amberlyst A21 and 1.1945–0.0032 g/mg·min for Amberlyst A23, and decreased with the increasing initial concentration of dye from 100–500 mg/L, respectively. There were observed auxiliaries (Na2CO3, Na2SO4, anionic and non-ionic surfactants) impact on the dye uptake. The polyacrylic resin Amberlyst A24 can be promising sorbent for C.I. Direct Yellow 50 removal as it is able to uptake 666.5 mg/g of the dye compared to the phenol-formaldehyde Amberlyst A23 which has a 284.3 mg/g capacity.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2021-02-02
    Description: The Bhumibol Dam on Ping River, Thailand, was constructed in 1964 to provide water for irrigation, hydroelectric power generation, flood mitigation, fisheries, and saltwater intrusion control to the Great Chao Phraya River basin. Many studies, carried out near the basin outlet, have suggested that the dam impounds significant sediment, resulting in shoreline retreat of the Chao Phraya Delta. In this study, the impact of damming on the sediment regime is analyzed through the sediment variation along the Ping River. The results show that the Ping River drains a mountainous region, with sediment mainly transported in suspension in the upper and middle reaches. By contrast, sediment is mostly transported as bedload in the lower basin. Variation of long-term total sediment flux data suggests that, while the Bhumibol Dam does effectively trap sediment, there was only a 5% reduction in sediment supply to the Chao Phraya River system because of sediment additions downstream.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2021-02-02
    Description: The extraction of physical information about the subsurface ocean from surface information obtained from satellite measurements is both important and challenging. We introduce a back-propagation neural network (BPNN) method to determine the subsurface temperature of the North Pacific Ocean by selecting the optimum input combination of sea surface parameters obtained from satellite measurements. In addition to sea surface height (SSH), sea surface temperature (SST), sea surface salinity (SSS) and sea surface wind (SSW), we also included the sea surface velocity (SSV) as a new component in our study. This allowed us to partially resolve the non-linear subsurface dynamics associated with advection, which improved the estimated results, especially in regions with strong currents. The accuracy of the estimated results was verified with reprocessed observational datasets. Our results show that the BPNN model can accurately estimate the subsurface (upper 1000 m) temperature of the North Pacific Ocean. The corresponding mean square errors were 0.868 and 0.802 using four (SSH, SST, SSS and SSW) and five (SSH, SST, SSS, SSW and SSV) input parameters and the average coefficients of determination were 0.952 and 0.967, respectively. The input of the SSV in addition to the SSH, SST, SSS and SSW therefore has a positive impact on the BPNN model and helps to improve the accuracy of the estimation. This study provides important technical support for retrieving thermal information about the ocean interior from surface satellite remote sensing observations, which will help to expand the scope of satellite measurements of the ocean.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2021-02-01
    Description: The article deals with wet meadow plant communities of the alliance Trifolion pallidi that appear on the periodically inundated or waterlogged sites on the riverside terraces or gentle slopes along watercourses. These plant communities are often endangered by inappropriate hydrological interventions or management practices. All available vegetation plots representing this vegetation type were collected, organized in a database, and numerically elaborated. This vegetation type appears in the southeastern part of the Pannonian Plain, which is still under the influence of the Mediterranean climate; its southern border is formed by southern outcrops of the Pannonian Plain and its northern border coincides with the influence of the Mediterranean climate (line Slavonsko Gorje-Fruška Gora-Vršačke Planine). Numerical analysis established four plant associations—Trifolio pallidi–Alopecuretum pratensis, Ventenato dubii–Trifolietum pallidi, Ranunculo strigulosi–Alopecuretum pratensis, and Ornithogalo pyramidale–Trifolietum pallidi. Each association was elaborated in detail: diagnostic plant species, nomenclature, geographical distribution, climatic and ecological conditions, and possible division into subassociations. Results are presented in a distribution map, figures resulting from numerical analysis, and a synoptic table. The hydrological gradient was found as the most important factor shaping the studied plant communities. The article also brings new field data on this vegetation type, which has not been sampled for decades and is in process of evaluation to be included as a special habitat type in the Habitat Directive.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2021-03-10
    Description: Human pressures on water resources have been suggested as a driver of biological traits that induce changes in native fish populations. This study highlighted the interplay between environmental stress factors, mostly related to flow regulation, and the longitudinal river gradient in biological traits such as the growth, size structure and somatic condition of a sentinel fish, Luciobarbus sclateri. We found an increase in size-related metrics and somatic condition at population levels associated with downstream reaches, although fragmentation and habitat alteration, flow regime alteration and the abundance of non-native fish were also significantly involved in their variability. Age-related parameters and growth were only explained by flow regime alterations and the abundance of non-native fish species. The high plasticity observed in L. sclateri population traits suggests that this is a key factor in the species adaptability to resist in a strongly altered Mediterranean river basin. However, the interplay of multiple stressors plays an important role in fish population dynamics and could induce complex responses that may be essential for long-term monitoring in sentinel species.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2021-03-10
    Description: Since ancient times, the need for healthy water has resulted in the development of various kinds of water supply systems. From early history, civilizations have developed water purification devices and treatment methods. The necessity for fresh water has influenced individual lives as well as communities and societies. During the last two hundred years, intensive and effective efforts have been made internationally for sufficient water quantity and quality. At the same time, human life expectancy has increased all over the globe at unprecedented rates. The present work represents an effort to sketch out how water purity and life expectancy have entangled, thus influencing one another. Water properties and characteristics have directly affected life quality and longevity. The dramatic increase in life expectancy has been, indisputably, affected by the improvement in water quality, but also in other concomitant factors, varying temporally and spatially in different parts of the world throughout the centuries. Water technologies and engineering have an unequivocal role on life expectancy. In some cases, they appear to have taken place earlier than the progress of modern medicine. Among these, improved sanitation, personal hygiene, progress in medicine, and better standards of economic living have played the greatest roles.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2021-03-10
    Description: The current climate change could lead to an intensification of extreme weather events, such as sudden floods and fast flowing debris flows. Accordingly, the availability of an early-warning device system, based on hydrological data and on both accurate and very fast running mathematical-numerical models, would be not only desirable, but also necessary in areas of particular hazard. To this purpose, the 2D Riemann–Godunov shallow-water approach, solved in parallel on a Graphical-Processing-Unit (GPU) (able to drastically reduce calculation time) and implemented with the RiverFlow2D code (version 2017), was selected as a possible tool to be applied within the Alpine contexts. Moreover, it was also necessary to identify a prototype of an actual rainfall monitoring network and an actual debris-flow event, beside the acquisition of an accurate numerical description of the topography. The Marderello’s basin (Alps, Turin, Italy), described by a 5 × 5 m Digital Terrain Model (DTM), equipped with five rain-gauges and one hydrometer and the muddy debris flow event that was monitored on 22 July 2016, were identified as a typical test case, well representative of mountain contexts and the phenomena under study. Several parametric analyses, also including selected infiltration modelling, were carried out in order to individuate the best numerical values fitting the measured data. Different rheological options, such as Coulomb-Turbulent-Yield and others, were tested. Moreover, some useful general suggestions, regarding the improvement of the adopted mathematical modelling, were acquired. The rapidity of the computational time due to the application of the GPU and the comparison between experimental data and numerical results, regarding both the arrival time and the height of the debris wave, clearly show that the selected approaches and methodology can be considered suitable and accurate tools to be included in an early-warning system, based at least on simple acoustic and/or light alarms that can allow rapid evacuation, for fast flowing debris flows.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2021-03-10
    Description: In this paper a scenario-based robust optimization approach is proposed to take demand uncertainty into account in the design of water distribution networks. This results in insight in the trade-off between costs and performance of different designs. Within the proposed approach the designer is able to choose the desired degree of risk aversion, and the performance of the design can be assessed based on the water demand effectively supplied under different scenarios. Both future water demand scenarios and scenarios based on historical records are considered. The approach is applied to the design of a real-life water distribution network supplying part of a city in the Netherlands. From the results the relation between costs and performance for different scenarios becomes evident: a more robust design requires higher design costs. Moreover, it is proven that numerical optimization helps finding better design solutions when compared to manual approaches. The developed approach allows water utilities to make informed choices about how much to invest in their infrastructure and how to design it in order to achieve a certain level of robustness.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2021-03-10
    Description: Maritime spatial planning (MSP) has been developing for years on the basis of international commitments, national legislations, and professional practices. Projects under European Territorial Cooperation have also made an important contribution to its development. They were designed to support EU countries in the implementation of MSP. The projects implemented in Slovenia always covered the entire national sea and coastal zone. In accordance with the MSP Directive, the countries of Northern Adriatic are currently preparing the first generation of maritime spatial plans, largely based on the experience and results gained from these projects. This article presents the results of research aimed at assessing the contribution of the projects to the preparation of the first plan in Slovenia. Using a descriptive research method, a detailed analysis of the results of seven projects was conducted and compared with the content of the draft plan. A comparison was made and the proportion of the results implementation in the draft plan was determined for the following structural elements: development baselines, objectives and guidelines; expert bases; stakeholders and public participation; sectoral interests; administrative competences; international dimension; and databases and analytical tools. A high degree of coherence was found, showing the obvious contribution of the projects at the methodological and structural levels.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2021-03-09
    Description: A distributed-framework hydrologic modeling system (DF-HMS) is a primary and significant component of a distributed-framework basin modeling system (DFBMS), which simulates the hydrological processes and responses after rainfall at the basin scale, especially for non-homogenous basins. The DFBMS consists of 11 hydrological feature units (HFUs) involving vertical and horizontal geographic areas in a basin. Appropriate hydrologic or hydraulic methods are adopted for different HFUs to simulate corresponding hydrological processes. The digital basin generation model is first developed to determine the essential information for hydrologic and hydraulic simulation. This paper mainly describes two significant HFUs contained in the DF-HMS for hydrologic modeling: Hilly sub-watershed and plain overland flow HFUs. A typical hilly area application case study in the Three Gorges area is introduced, which demonstrates DF-HMS’s good performance in comparison with the observed streamflow at catchment outlets.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2021-03-10
    Description: Operational and structural interventions in the field of stormwater management are usually planned based on long-term simulations using rainfall-runoff models. The simulation results are often highly uncertain due to imperfections of the model structure and inevitable uncertainties of input data. The trend towards monitoring of combined sewer overflows (CSO) structures produces more and more data which can be used to replace parts of the models and reduce uncertainty. In this study we use highly resolved online flow and quality monitoring data to optimize static outflow settings of CSO tanks. In a second step, the additional benefit of real time control (RTC) strategies is assessed. In both cases the aim is the reduction of CSO emissions. The methodology is developed on a conceptual drainage system with two CSO tanks and then applied to a case study area in Southern Germany with six tanks. A measured time series of six months is sufficient for reliable optimization results in the conceptual catchment as well as in the case study area system. In the investigated system the choice of the optimization objective (minimum overflow volume or total suspended solids (TSS) load) had no significant influence on the result. The presented method is particularly suitable for areas in which reliable monitoring data are available, but hydrological parameters of the catchment areas are uncertain. One strength of the proposed approach lies in the accurate representation of the distribution of emissions between the individual CSO structures over an entire system. This way emissions can be fitted to the sensitivity of the receiving water body at the specific outlets.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2021-03-10
    Description: The sustainable and efficient use of water resources has gained wide social concern, and the key point is to investigate the virtual water trade of the water-scarcity region and optimize water resources allocation. In this paper, we apply a multi-regional input-output model to analyze patterns and the spillover risks of the interprovincial virtual water trade in the Yellow River Economic Belt, China. The results show that: (1) The agriculture and supply sector as well as electricity and hot water production own the largest total water use coefficient, being high-risk water use sectors in the Yellow River Economic Belt. These two sectors also play a major role in the inflow and outflow of virtual water; (2) The overall situation of the Yellow River Economic Belt is virtual water inflow, but the pattern of virtual water trade between eastern and western provinces is quite different. Shandong, Henan, Shaanxi, and Inner Mongolia belong to the virtual water net inflow area, while the virtual water net outflow regions are concentrated in Shanxi, Gansu, Xinjiang, Ningxia, and Qinghai; (3) Due to higher water resource stress, Shandong and Shanxi suffer a higher cumulative risk through virtual water trade. Also, Shandong, Henan, and Inner Mongolia have a higher spillover risk to other provinces in the Yellow River Economic Belt.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2021-03-10
    Description: The use of non-physical barriers, particularly based on acoustic and luminous stimuli has been historically used to influence the behavior of fish, mainly for fishing purposes. Nowadays, behavioral barriers and guidance systems have been developed, not only to deter movements of fish, but also to promote behavioral responses with the objective of native fish protection, in particular the potamodromous species, reducing their mortality in the hydraulic structures of dams and guiding them towards transposition systems or to replacement habitats in regularized water bodies. This review details the use of acoustic and luminous systems and their evolution in recent years (Scopus 2012–2019) for the development of selective behavioral barriers for fish. We found that recent technologies try to identify new acoustic and luminous sensory ranges. Ambient sound, sound of predators or luminous spectral bands with different wavelengths have been used to selectively stimulate target and non-target species, in order to improve the effectiveness of repulsive/attractive systems for fish. Guidelines for future research in the area are also present.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2021-03-10
    Description: Water availability is endangering the production, quality, and economic viability of growing wine grapes worldwide. Climate change projections reveal warming and drying trends for the upcoming decades, constraining the sustainability of viticulture. In this context, a great research effort over the last years has been devoted to understanding the effects of water stress on grapevine performance. Moreover, irrigation scheduling and other management practices have been tested in order to alleviate the deleterious effects of water stress on wine production. The current manuscript provides a comprehensive overview of the advances in the research on optimizing water management in vineyards, including the use of novel technologies (modeling, remote sensing). In addition, methods for assessing vine water status are summarized. Moreover, the manuscript will focus on the interactions between grapevine water status and biotic stressors. Finally, future perspectives for research are provided. These include the performance of multifactorial studies accounting for the interrelations between water availability and other stressors, the development of a cost-effective and easy-to-use tool for assessing vine water status, and the study of less-known cultivars under different soil and climate conditions.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2021-03-15
    Description: Cambodia has too much water during the wet season, and too little water remains in the dry season, which drives a relentless cycle of floods and droughts. These extremes destroy crops, properties, infrastructure, and lives and contribute to poverty. Thus, water management is key to the development of Cambodia. This article seeks to answer the question why Cambodia is vulnerable to floods and drought and how these conditions undermine the country’s development. It also examines what can be done to improve the country’s water resource management and the livelihoods of its population. The article examines water resource availability in Cambodia, its management regimes, and the policy implications in answering these research questions. The article looks at three case studies: first, the Stung Chreybak irrigation scheme in the Tonle Sap region; second, the Lower Sesan 2 Dam (LS2) in the Sesan, Srepok, and Sekong (3S) basin in Cambodia; and third, the transboundary water management in the Mekong Delta. It concludes that water management has been equated to irrigation management. However, the irrigation system in Cambodia has been inadequate to cope with the tremendous volume of water. Furthermore, water management has been complicated by the hydropower dams in the Upper Mekong region and the rubber dams in Vietnam’s Mekong Delta. These contribute to high water insecurity in Cambodia.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2021-03-09
    Description: High discharges at hydropower plants (HPP) may mask fishway attraction flows and, thereby, prevent fishes from locating and using fishways critical for their access to upstream spawning and rearing habitats. Existing methods for determining attraction flows are either based on simple guidelines (e.g., a proportion of HPP discharge) that cannot address the spatial and temporal complexity of tailrace flow patterns or complicated studies (e.g., combinations of detailed hydraulic and biological investigations) that are expensive and time-consuming. To bridge this gap, we present a new, intermediate approach to reliably determine attraction flows for technical fishways at small to medium-sized waterways (mean annual flow up to 400 m3/s). Fundamental to our approach is a design criterion that the attraction flow should maintain its integrity as it propagates downstream from the fishway entrance to beyond the highly turbulent zone characteristic of HPP tailraces to create a discernable migration corridor connecting the fishway entrance to the downstream river. To implement this criterion, we describe a set of equations to calculate the width of the entrance and the corresponding attraction discharge. Input data are usually easy to obtain and include geometrical and hydraulic parameters describing the target HPP and its tailrace. To confirm our approach, we compare model results to four sites at German waterways where the design of attraction flow was obtained by detailed experimental and numerical methods. The comparison shows good agreement supporting our approach as a useful, intermediate alternative for determining attraction flows that bridges the gap between simple guidelines and detailed hydraulic and biological investigations.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2021-03-10
    Description: Dense nonaqueous phase liquids (DNAPLs) like trichloroethylene (TCE) serve as the most common form of groundwater pollution in the world. Potassium permanganate (KMnO4) is a strong oxidant that can quickly destroy DNAPLs into innocuous products. Slow-release permanganate gel (SRPG), a mixture of colloidal silica (CS) and KMnO4, has been recently developed as novel treatment option for dilute and large plumes of DNAPLs in groundwater. The objective of this study was to characterize and optimize gelling and release properties of a SRPG solution in saturated porous media. It was hypothesized that CS and KMnO4 content of the SRPG constrain gelation and release duration. Batch and column tests showed that gelation could be delayed through manipulation of the KMnO4 content. In column tests, silica content had little effect on the gelation lag stage and release rate but influenced duration of permanganate release. Flow tank tests comparing Bindzil 1440 (B-40) SRPGs with pure KMnO4 solutions under varying media conditions demonstrated that the presence of CS enhanced lateral spread and prolonged release duration of the oxidant.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2021-03-11
    Description: Requalification of low-head ramped weirs through the addition of substrates (retrofitting) has attracted attention in recent years. However, few studies are available on how this measure affects the negotiation of ramped weirs by fish. This study aimed to assess the performance of an experimental ramped weir (3.00 m long with 10% slope; 0.30 m head-drop) to enhance the passage of a potamodromous cyprinid species, the Iberian barbel (Luciobarbus bocagei). Attention was given to testing the effects of the addition of a substrate, in this case cobbles, to the ramp (Nature) vs. a smooth bottom (Control), and discharge (Q; 55 L·s−1 and 110 L·s−1 (or specific discharge per unit width, q = 92 L·s−1·m−1 and 183 L·s−1·m−1)) on fish passage performance. Fish physiological responses to stress and fatigue, measured by glucose and lactate concentrations in blood samples, were also analysed. Results showed that the Nature design generally increased fish movements and successful upstream passages, and enhanced fish passage performance by enabling faster negotiations. Fish movements were also affected by increasing discharge, registering reductions with 110 L·s−1. Results of the physiological parameters indicate that both glucose and lactate concentrations were also influenced by discharge. The outcomes from this study present important information about fish passage performance across low-head ramped weirs and could provide data needed to help biologists and engineers to develop more effective structures to alleviate small instream obstacles.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2021-03-28
    Description: In the present paper, a comparative study of different cylindrical and conical substructures was performed under breaking wave loading with the open-source Computational Fluid Dynamics (CFD) package OpenFoam capable of the development of a numerical wave tank (NWT) with the use of Reynolds-Averaged Navier–Stokes (RANS) equations, the k-ω Shear Stress Transport (k-ω SST) turbulence model, and the volume of fluid (VOF) method. The validity of the NWT was verified with relevant experimental data. Then, through the application of the present numerical model, the distributions of dynamic pressure and velocity in the x-direction around the circumference of different cylindrical and conical substructures were examined. The results showed that the velocity and dynamic pressure distribution did not change significantly with the increase in the substructure’s diameter near the wave breaking height, although the incident wave conditions were similar. Another important aspect of the study was whether the hydrodynamic loading or the dynamic pressure distribution of a conical substructure would improve or deteriorate under the influence of breaking wave loading compared to a cylindrical one. It was concluded that the primary wave load in a conical substructure increased by 62.57% compared to the numerical results of a cylindrical substructure. In addition, the secondary load’s magnitude in the conical substructure was 3.39 times higher and the primary-to-secondary load ratio was double compared to a cylindrical substructure. These findings demonstrate that the conical substructure’s performance will deteriorate under breaking wave loading compared to a cylindrical one, and it is not recommended to use this type of substructure.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2021-03-27
    Description: The Danube is the second-longest river in Europe that is subjected to various man-made alterations, including those related to hydro-power plants. We surveyed and analyzed the presence and abundance of macrophytes in the main channel from 2582 river kilometers (rkm) to 171 rkm. We also assessed selected habitat parameters in the sampled river stretches. Sixty-eight different plant species were recorded along the entire course. Among neophytes, we found Elodea nuttallii, E. canadensis, Vallisneriaspiralis and Azolla filiculoides. Based on similarity analysis, we distinguished 15 plant communities, most of which were defined as associations, which were classified into 5 alliances and represented three vegetation classes, namely vegetation of rooted hydrophytes Potamogetonetea, the vegetation of pleustophytes Lemnetea and vegetation of marshes Phragmitetea. The number and abundance of plant species, as well as plant communities recorded in single stretches, varied along the course. Canonical correspondence analysis (CCA) revealed that environmental parameters explained 21% of plant species composition. CCA runs with neophytes explained 41% of the variance, and current velocity, water transparency, species number and bank structure were significant variables. The present study revealed that the free-running sections of the river are poor in number and abundance of plant species, whereas impounded reaches mainly show an opposite result.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2021-03-27
    Description: Textile wastewater (TW) contains toxic pollutants that pose both environmental and human health risks. Reportedly, some of these pollutants, including NO3−, NO2− and reactive black 5 (RB-5) dye, can be removed via hydrogen-based denitrification (HD); however, it is still unclear how different factors affect their simultaneous removal. This study aimed to investigate the effect of H2 flow rate, the sparging cycle of air and H2, and initial dye concentration on the TW treatment process. Thus, two reactors, an anaerobic HD reactor and a combined aerobic/anaerobic HD reactor, were used to investigate the treatment performance. The results obtained that increasing the H2 flow rate in the anaerobic HD reactor increased nitrogen removal and decolorization removal rates. Further, increasing the time for anaerobic treatment significantly enhanced the pollutant removal rate in the combined reactor. Furthermore, an increase in initial dye concentration resulted in lower nitrogen removal rates. Additionally, some of the dye was decolorized during the HD process via bacterial degradation, and increasing the initial dye concentration resulted in a decrease in the decolorization rate. Bacterial communities, including Xanthomonadaceae, Rhodocyclaceae, and Thauera spp., are presented as the microbial species that play a key role in the mechanisms related to nitrogen removal and RB-5 decolorization under both HD conditions. However, both reactors showed similar treatment efficiencies; hence, based on these results, the use of a combined aerobic/anaerobic HD system should be used to reduce organic/inorganic pollutant contents in real textile wastewater before discharging is recommended.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...