ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Seismology
  • Industrial Chemistry
  • Inorganic Chemistry
  • Massachusetts Institute of Technology and Woods Hole Oceanographic Institution  (3)
  • 2005-2009  (3)
  • 1950-1954
  • 1
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2007
    Description: Oceanic spreading centers are sites of magmatic, tectonic, and hydrothermal processes. In this thesis I present experimental and seismological constraints on the evolution of these complex regions of focused crustal accretion and extension. Experimental results from drained, triaxial deformation experiments on partially molten olivine reveal that melt extraction rates are linearly dependent on effective mean stress when the effective mean stress is low and non-linearly dependent on effective mean stress when it is high. Microearthquakes recorded above an inferred magma reservoir along the TAG segment of the Mid-Atlantic Ridge delineate for the first time the arcuate, subsurface structure of a long-lived, active detachment fault. This fault penetrates the entire oceanic crust and forms the high-permeability pathway necessary to sustain long-lived, high-temperature hydrothermal venting in this region. Long-lived detachment faulting exhumes lower crustal and mantle rocks. Residual stresses generated by thermal expansion anisotropy and mismatch in the uplifting, cooling rock trigger grain boundary microfractures if stress intensities at the tips of naturally occurring flaws exceed a critical stress intensity factor. Experimental results coupled with geomechanical models indicate that pervasive grain boundary cracking occurs in mantle peridotite when it is uplifted to within 4 km of the seafloor. Whereas faults provide the high-permeability pathways necessary to sustain high-temperature fluid circulation, grain boundary cracks form the interconnected network required for pervasive alteration of the oceanic lithosphere. This thesis provides fundamental constraints on the rheology, evolution, and alteration of the lithosphere at oceanic spreading centers.
    Description: Research was funded by a MIT Presidential Fellowship and NSF grants OCE-0095936, OCE-9907224, OCE-0137329, OCE-6892222, and OCE-6897400.
    Keywords: Seismology ; Sea-floor spreading
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution December 1997
    Description: A new tomographic technique is employed to investigate the structure and dynamics of the Pacific upper mantle. We invert band-center travel times of ScS reverberations and frequency-dependent travel times of direct S phases, upper-mantle guided waves such as SS and SSS, and the R1 and G1 surface waves for the 2D composite structure in the plane of two Pacific corridors. The frequency-dependent travel times of the turning and surface waves are measured from all three components of ground motion as phase delays relative to a radially-anisotropic, spherically-symmetric oceanic mantle model, and their 2D Fréchet kernels are constructed by a coupled-mode algorithm. The travel times of the primary ScSn and sScSn phases and their first-order reverberations from the 410 and 660 discontinuities are measured as individual phases and the 2D Fréchet kernels for these band-limited signals are calculated using the paraxial ray approximation. The model parameters include shear-speed variations throughout the mantle, perturbations to radial shear-wave anisotropy in the uppermost mantle, and the topography of the 410 and 660 discontinuities. We construct vertical tomograms through two mantle corridors: one between the Tonga subduction zone and Oahu, Hawaii, which traverses the central Pacific Ocean; and the other between the Ryukyu subduction zone and Oahu, which samples the northern Philippine Sea, the western Pacific, and the entire Hawaiian swell. Tests demonstrate that the data sets for the two corridors resolve the lateral structure in the upper mantle with a scale length of a few hundreds kilometers and greater but that the resolving power decreases rapidly in the lower mantle. The model for the Tonga-Hawaii corridor reveals several interesting features, the most significant being a regular pattern of high and low shear velocities in the upper mantle between Tonga and Hawaii. These variations, which are well resolved by the data set, have a horizontal wavelength of 1500 km, a vertical dimension of 700 km, and an amplitude of about 3%, and they show a strong positive correlation with seafloor topography and geoid-height variations along this corridor. The geoid highs correspond to a series of northwest-trending swells associated with the major hotspots of the Society, Marquesas, and Hawaiian Islands. Where these swells cross the corridor, they are underlain by high shear velocities throughout the uppermost mantle, so it is unlikely that their topography is supported by thermal buoyancy. This result is substantiated by the model from the Ryukyu-Hawaii corridor, which exhibits a prominent, fast region that extends beneath the entire Hawaiian swell. This anomaly, which resides in the uppermost 200-300 km of the mantle, is also positively correlated with the undulations of the Hawaiian-swell height. The other dominant features in the Ryukyu-Hawaii model include the high-velocity subducting slabs beneath the Ryukyu and Izu-Bonin seismic zones, which extend throughout the entire upper mantle; a very low-velocity in the uppermost 160 km of the mantle beneath the northern Philippine Sea, which is ascribed to the presence of extra water in this region; and a pronounced minimum in the amount of radial anisotropy near Hawaii, which is also seen along the Tonga-Hawaii corridor. A joint inversion of the data from the two corridors reveals the same anomaly pattern and clearly demonstrates that the swells in the Central Pacific are underlain by fast velocities. It is therefore implied that the topography of the swells in the central Pacific is supported by a chemical buoyancy mechanism which is generated by basaltic volcanism and the formation of its low-density peridotitic residuum. While the basaltic depletion mechanism can produce high shear velocities in the uppermost 200 km, it cannot explain the depth extent of the fast anomalies beneath the swells which, along Tonga-Hawaii corridor, extend well into the transition zone. It is therefore hypothesized that the central Pacific is underlain by a system of convective rolls that are confined above the 660-km discontinuity. It is likely that these rolls are predominantly oriented in the direction of plate motion (like "Richter rolls ") but the limited depth of the fast anomaly beneath the Hawaiian swell (200-300 km) suggests that their pattern is probably more complicated. Nevertheless, this convection pattern appears to be strongly correlated with the locations of the Tahitian, Marquesan, and Hawaiian hotspots, which raises interesting questions for Morgan's hypothesis that these hotspots are the surface manifestations of deep-mantle plumes.
    Description: This research was supported by the National Science Foundation under grant EAR- 9628351 and by the Defense Special Weapons Agency under grant DSW A-F49620-95-1- 0051.
    Keywords: Seismic tomography ; Seismology ; Upwelling ; Ocean waves
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements of the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2004
    Description: Laterally extensive, well-developed clinoforms have been mapped in Early Cretaceous deposits located in the northeastern 27,000 km2 of the Colvile Basin, North Slope of Alaska. Using public domain 2-D seismic data, well logs, core photographs, and grain size data, depositional geometries within the Nanushuk and Torok formations were interpreted in order to constrain the transport conditions associated with progradation of the shoreline and construction of the continental margin out of detritus shed from the ancestral Brooks Range. Using STRATA, a synthetic stratigraphic modeling package, constructional clinoform geometries similar to those preserved in the North Slope clinoform volume (32,400 km3) were simulated. Sediment flux, marine and nonmarine diffusivities, and basin subsidence were systematically varied until a match was found for the foreset and topset slopes, as well as progradation rates over a 6 milion year period. The ability of STRATA to match the seismically interpreted geometries allows us to constrain measures of possible water and sediment discharges consistent with the observed development of the Early Cretaceous c1inoform suite. Simulations indicate that, in order to reproduce observed geometries and trends using constant input parameters, the subsidence rate must be very small, only a fraction of the most likely rate calculated from the seismic data. Constant sediment transport parameters can successfully describe the evolution of the prograding margin only in the absence of tectonic subsidence. However, further work is needed to constrain the absolute magnitude of these values and determine a unique solution for the NPR-A clinoforms.
    Keywords: Sediment transport ; Seismology ; Drill cores
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...