ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (34,325)
  • MDPI Publishing  (28,792)
  • Hindawi  (5,533)
  • PANGAEA
  • Energy, Environment Protection, Nuclear Power Engineering  (34,325)
Collection
Years
  • 1
    Publication Date: 2020-08-25
    Description: The high-temperature gas-cooled reactor pebble-bed module (HTR-PM) nuclear power plant consists of two nuclear steam supply system modules, each of which drives the steam turbine by the superheated steam flow and is fed by the heated-up water flow. The shared steam/water system induces mutual effects on normal operation conditions and transients of the nuclear power plant, which is worthy of safety concerns and intensive study. In this paper, a coupling code package was developed with the TINTE and vPower codes to understand how the HTR-PM operated. The TINTE code was used to analyze the reactor core and primary circuit, while the vPower code simulated the steam/water flow in the conventional island. Two TINTE models were built and coupled to one vPower model through the data exchange in the steam generator models. Using this code package, two typical transients were simulated by decreasing the primary flow rate or introducing the negative reactivity of one module. Important parameters, including the reactor power, the fuel temperature, and the reactor inlet and outlet helium temperatures of two modules, had been studied. The calculation results preliminarily proved that this code package can be further used to evaluate working performance of the HTR-PM.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-08-25
    Description: The paper presents a conceptual design of a 10 MW multipurpose nuclear research reactor (MPRR) loaded with the low-enriched uranium (LEU) VVR-KN fuel type. Neutronics and burnup calculations have been performed using the REBUS-MCNP6 linkage system code and the ENDF/B-VII.0 data library. The core consists of 36 fuel assemblies: 27 standard fuel assemblies and 9 control fuel assemblies with the uranium density of 2.8 gU/cm3 and the 235U enrichment of 19.75 wt.%. The cycle length of the core is 86 effective full-power days with the excess reactivity of 9600 and 1039 pcm at the beginning of cycle and the end of cycle, respectively. The highest power rate and the highest discharged burnup of fuel assembly are 393.49 kW and 56.74% loss of 235U, respectively. Thermal hydraulics analysis has also been conducted using the PLTEMP4.2 code for evaluating the safety parameters at a steady state of the hottest channel. The maximum temperatures of coolant and fuel cladding are 66.0°C and 83.0°C, respectively. This value is lower than the design limit of 98°C for cladding temperature. Thermal fluxes at the vertical irradiation channels and the horizontal beam ports have been evaluated. The maximum thermal fluxes of 2.5 × 1014 and 8.9 ×1013 n·cm−2·s−1 are found at the neutron trap and the beryllium reflector, respectively.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-08-28
    Description: Although many types of simulated radionuclides have been widely used as a substitute for actual nuclear waste in the studies of nuclear waste solidification, the understanding of the applicability and validity of simulated radionuclides is still insufficient. In particular, the selection and use of simulated radionuclides, which can play a decisive role in the accuracy of the experimental results, still lack unified or integrated references. This paper provides a critical review on the selection, experimental methods, and applicability of the most commonly studied simulated radionuclides, followed by a careful discussion and recommendation of simulated radionuclides suitable for different solidified bodies. The main factors (e.g., temperature, pH, and atmosphere) affecting the choice of simulated radionuclides were analyzed in detail. This work helps to integrate the selection and use of simulated radionuclides, and it will be beneficial for improving the effectiveness of nuclide solidification research.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-08-28
    Description: The thermal hydraulic and neutronics coupling analysis is an important part of the high-fidelity simulation for nuclear reactor core. In this paper, a thermal hydraulic and neutronics coupling method was proposed for the plate type fuel reactor core based on the Fluent and Monte Carlo code. The coupling interface module was developed using the User Defined Function (UDF) in Fluent. The three-dimensional thermal hydraulic model and reactor core physics model were established using Fluent and Monte Carlo code for a typical plate type fuel assembly, respectively. Then, the thermal hydraulic and neutronics coupling analysis was performed using the developed coupling code. The simulation results with coupling and noncoupling analysis methods were compared to demonstrate the feasibility of coupling code, and it shows that the accuracy of the proposed coupling method is higher than that of the traditional method. Finally, the fuel assembly blockage accident was studied based on the coupling code. Under the inlet 30% blocked conditions, the maximum coolant temperature would increase around 20°C, while the maximum fuel temperature rises about 30°C. The developed coupling method provides an effective way for the plate type fuel reactor core high-fidelity analysis.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-08-28
    Description: The influences of doping amounts of TiO2 on the structure and electrical properties of In2O3 films were experimentally studied. In this study, titanium-doped indium oxide (ITiO) conductions were deposited on glass substrate by the dual-target-type radio frequency magnetron sputtering (RFS) system under different conditions of Ti-doped In2O3 targets, from Ti-0.5 wt% to Ti-5.0 wt%, along with 10 mTorr and 300 W pressure of RF power control that was used as a cost-effective transparent electrochemiluminescence (ECL) cell. From this process, the correlation between structural, optical, and electrical properties is reported. It was found that the best 1.14×10−4 Ω cm of resistivity was from Ti-2.5 wt% with the highest carrier concentration (1.15 × 1021 cm-3), Hall mobility (46.03 cm2/V·s), relatively transmittance (82%), and ECL efficiency (0.43 lm·W-1) with well crystalline structured and smooth morphology. As a result, researchers can be responsible for preparing ITiO thin films with significantly improved microstructure and light intensity performance for the effectiveness of the display devices, as well as its simple process and high performance.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-08-28
    Description: Electric valves have significant importance in industrial applications, especially in nuclear power plants. Keeping in view the quantity and criticality of valves in any plant, it is necessary to analyze the degradation of electric valves. However, it is difficult to inspect each valve in conventional maintenance. Keeping in view the quantity and criticality of valves in any plant, it is necessary to analyze the degradation of electric valves. Thus, there exists a genuine demand for remote sensing of a valve condition through nonintrusive methods as well as prediction of its remaining useful life (RUL). In this paper, typical aging modes have been summarized. The data for sensing valve conditions were gathered during aging experiments through acoustic emission sensors. During data processing, convolution kernel integrated with LSTM is utilized for feature extraction. Subsequently, LSTM which has an excellent ability in sequential analysis is used for predicting RUL. Experiments show that the proposed method could predict RUL more accurately compared to other typical machine learning and deep learning methods. This will further enhance maintenance efficiency of any plant.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-08-28
    Description: The geometries, adsorption energies, and electronic structures of Cs, Sr, and Ag atoms on matrix graphite surface with point defects were calculated and analyzed using the density functional theory (DFT) and the Perdew–Burke–Ernzerhof (PBE) formulation of the generalized gradient approximation (GGA). Three different types of point defects, i.e., single vacancy and “bridge” and “spiro” interstitials are considered using approximate van der Waals (vdW) correction methods. The results of adsorption energies show that the metal fission products of Cs, Sr, and Ag are more stable on single vacancy defects than “bridge” or “spiro” interstitial defects. This is further confirmed by the analysis of electronic structures, such as charge density difference (CDD) and density of state (DOS). All these results indicate that dangling bonds play an important role in the adsorption behaviors of metallic fission products on matrix graphite.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-08-28
    Description: A rapid decarbonisation of power systems is underway in order to limit greenhouse gas emissions and meet carbon-reduction targets. Renewable energy is a key ingredient to meet these targets; however, it is important that national power systems still maintain energy security with increasing levels of renewable penetration. The operating potential of renewable generation at times of peak demand (a critical time for power system stress) is not well understood. This study therefore uses a multidecadal dataset of national demand, wind power, and solar power generation to identify the meteorological conditions when peak demand occurs and the contribution of renewables during these events. Wintertime European peak power demand events are associated with high atmospheric pressure over Russia and Scandinavia and are accompanied by lower than average air temperatures and average wind speeds across Europe. When considering power demand extremes net of renewable power production, the associated meteorological conditions are shown to change. There is considerable spatial variability in the dates of national peak demand events and the amount of renewable generation present. Growth in renewable generation has the potential to reduce peak demands. However, these impacts are also not uniform with much larger reductions in peak demand seen in Spain than in central Europe. The reanalysis-derived energy models have allowed recent peak demand events to be put into a long-term context.
    Print ISSN: 2314-4386
    Electronic ISSN: 2314-4394
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-07-18
    Description: This research article discloses how a uniquely structured fuel additive can easily be mixed with commercially available diesel fuel to produce an extremely stable nanoemulsion fuel. Even when using an ultralow dose (125 ppm), the additive still creates a large and catalytically active surface area using billions of nanosized water droplets (4 nanometers). No metallic or organometallic compounds were used. When used in heavy duty diesel engines, treated fuel significantly improves vehicle fuel economy. Extensive verification testing was carried out using multiple fleets of heavy duty diesel trucks operating for up to two years under “real-world” driving conditions. Testing used 538 heavy duty trucks and 15 different vehicle fleets. Test vehicles used 475,000 litres of treated fuel and covered a total of 14 million kilometres. Fleet testing was supervised by one of the premier European testing agencies (TNO Quality Services BV). Raw fuel economy data was collected and analyzed by an independent consulting agency andd showed a combined average weighted fuel savings of 9.7%. Diesel engine CO2 emissions are one of the many contributory causes of global warming. Unfortunately, new engine fuel economy technologies can take 10 years to have a 50% impact (typically 5% per year, as older vehicles are slowly replaced with new models). However, using the additive would immediately improve the combustion properties of fuel being used in these vehicles with the potential to reach up to 90% of the entire diesel vehicle population within about 60 days.
    Print ISSN: 2090-1968
    Electronic ISSN: 2090-1976
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-08-30
    Description: Energy shortage is the main problem while preparing food at the university in Ethiopia. Baking of injera consumes a lot of firewood due to the nature of baking mitad and layout of the system. The daily average firewood consumption is 8600 kg which is equivalent to 790.3 m3 of gas. In this study, an investigation of energy yield from food waste is examined by assessing the daily waste generation rate from the university student cafeteria and configuring the baking stove (mitad) that utilizes biogas energy. CFD is used to investigate the performance and heat distribution of baking mitad. In the study, the measured average daily biodegradable food waste and kitchen waste generation rate in the campus is around 863 kg/day. The conversion of this food waste using the anaerobic digestion system yields 43.2 m3 biogas per day. Utilizing the daily biogas generated for baking injera improves the overall food making process and reduces firewood consumption by 5.4%. This biogas energy yield is considered to be utilized for baking injera in the kitchen. The designed biogas mitad (stove) does not generate smoke due to the type of fuel used and configuration of baking mitad. Furthermore, the stove has an insulation mechanism considered to conserve the heat loss to the surrounding. Generally, the utilization of the biogas system and integration of the biogas injera baking stove will improve the overall food processing mechanism in the university.
    Print ISSN: 2356-735X
    Electronic ISSN: 2314-615X
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2020-07-15
    Description: Solar photovoltaic (PV) and solar thermal systems are most widely used renewable energy technologies. Theoretical study indicates that the energy conversion efficiency of solar photovoltaic gets reduced about 0.3% when its temperature increases by 1°C. In this regard, solar PV and thermal (PVT) hybrid systems could be a solution to draw extra heat from the solar PV panel to improve its performance by reducing its temperature. Here, we have designed a new type of heat exchanger for solar PV and thermal (PVT) hybrid systems and have studied the performance of the system. The PVT system has been investigated in comparison with an identical solar PV panel at outdoor condition at Dhaka, Bangladesh. The experiments show that the average improvement of open circuit voltage (Voc) is 0.97 V and the highest improvement of Voc is 1.3 V. In addition, the overall improvement of output power of solar PV panel is 2.5 W.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2020-07-07
    Description: The presence of elevated concentrations of carbon dioxide, hydrogen sulfide, ammonia, and trace impurities in biogas affect its caloric value as well as causes corrosion and is extremely toxic. There are various methods in existence for removal of these impurities, but most are chemically based and expensive and are limited in use. In our work, cryptogams (moss) integrated with soil and biochar packed in a filter have been employed for simultaneous removal of CO2, H2S, and NH3, from biogas. Different soil types rich in metallic oxides at different masses of 100 g, 150 g, and 200 g with a fixed mass of moss and biochar were tested in an on-site experiment to determine the removal efficiency (RE) and sorption capacity (SC). The adsorption dynamics of the filters were investigated at two flow rates, 80 ml/min and 100 ml/min, by determining removal efficiency. For the contribution of each substrate, sorption capacity and breakthrough time were determined by considering 5 g of each substrate that made up the filter. The soils with a high content of extractable cations showed excellent adsorption capacity for H2S by about 20 g S/100 g, which was higher than other adsorbents tested. It was found that integrated biofilter made up of bed arrangement of the soil, biochar, and moss plant improved the quality of biogas with SC of 11 g S and RE of 93% for H2S, 72% for NH3, and 68% for CO2.
    Print ISSN: 2356-735X
    Electronic ISSN: 2314-615X
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2020-07-10
    Description: Though the solar photovoltaic (PV) module is used for power production, it usually works at high temperatures, decreasing its efficiency and therefore its output. So if an effective cooling method is to be implemented, it would reduce the heat from the solar PV module and increase its power production. Significant research in water cooling on both top and bottom surfaces of the PV module widen the scope for uniform cooling with constant module temperature throughout at any instant. In this work, uniform flow is maintained by means of overflow water from a tank fitted on the top of the PV module. Experiments were carried out with and without cooling. Performance parameters in terms of power output and efficiency have been presented for the PV module without cooling and cooling with three different mass flow rates. The results show that there is a significant rise in efficiency of the PV module by reducing its temperature. An accelerated output power of 23 W has been observed for a higher mass flow rate of 5.3 kg/min which is 15% higher than the photovoltaic module operating without cooling. Results were compared with previous researchers’ work and found to be a good enhancement. Theoretical results agree well with experiments.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2020-07-08
    Description: Electrorefining is a key step in pyroprocessing. The solid cathode processing is necessary to separate the salt from the cathode of the electrorefiner since the uranium deposit in a solid cathode contains electrolyte salt. Moreover, it is very important to increase the throughput of the salt separation system due to the high uranium content of the spent nuclear fuel and high salt fraction of uranium dendrites. Therefore, in this study, the effect of deposit on the evaporation of the adhered salt in a uranium deposit was investigated by using the samples of salt in the uranium deposit and salt in the deposit of the surrogate material for the effective separation of the salt. It was found that the salt evaporation rate is dependent on the deposit type and bulk density in the crucible. Additionally, the evaporation rate was found to be lower when the deposit structure is complex; the rate also decreases as the bulk density of the deposit is increased owing to the retardation of the salt vapour transport process. It was concluded that the mass transfer of the salt vapour is an important parameter for the achievement of a high throughput performance in the salt distillation process.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2020-07-07
    Description: We intend to report an interesting phenomenon related to the different interfacial transfer processes between ellipsoidal-like ZnO (E-ZnO) and rod-like ZnO (R-ZnO) nanoheterojunctions witness by the nanosecond time-resolved transient photoluminescence (NTRT-PL) spectra. Fristly, E-ZnO and R-ZnO nanoarchitectures were fabricated via facilitating the electrochemical route; and then, they decorated it with dispersed Au nanoparticles (NPs) by the methods of ion-sputtering deposition, constituting Au/E-ZnO and Au/R-ZnO Schottky-heterojunction nanocomplex, which is characterized by SEM, XRD, Raman analysis, and UV-vis absorption spectra. Steady-state photoluminescence and NTRT-PL spectra of as-fabricated Au/E-ZnO and Au/R-ZnO nanocomposites were probed for interfacial charge transfer process under 266 nm femtosecond (fs) light irradiation. Simultaneously, a distinct diversification for the NTRT-PL spectra is observed, closely associating with oxygen vacancies (Vo), which is confirmed by X-ray photoelectron spectroscopy (XPS) and electron spin resonance (ESR) spectra. Furthermore, Au NPs act as an “annular bridge” and “transit depot” for interfacial charge transfer through local surface plasmon resonance (LSPR) effect and Schottky barrier, respectively, which is identified by NTRT-PL and time-resolved PL (TRPL) decay spectrum. Moreover, this mechanism is responsible for the enhanced photoelectrochemical (PEC) performances of methyl orange (MO) photodegradation under UV light irradiation.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2020
    Description: Correct extraction of the equivalent circuit model parameters of photovoltaic modules is of great significance for power prediction, fault diagnosis, and system optimization of photovoltaic power generation systems. Although there are many methods developed to extract the equivalent circuit model parameters of the photovoltaic module, it is still challenging to ensure the stability and operational efficiency of the extract method. In order to effectively extract the parameters of photovoltaic modules, this paper proposes a hybrid algorithm combining analytical methods and differential evolution algorithms for the extraction parameters of PV module. Firstly, the analytical method is applied to simplify the equivalent circuit model and improve the efficiency of the algorithm. Then, the adaptive algorithm is used to adjust the parameters of the differential evolution algorithm. Through the algorithm proposed in this paper, the parameters of the equivalent circuit model of the photovoltaic module can be extracted by the open-circuit voltage, short-circuit current, and maximum power point current and voltage provided by the manufacturer. The proposed method is applied to the extraction of the parameters of the dual-diode equivalent circuit model of different types of photovoltaic modules. The reliability and computational efficiency of the proposed algorithm are verified by comparison and analysis.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2020
    Description: This paper focuses on fluid forces acting on a confined cylinder subjected to axial flow in application to fuel assembly dynamic behavior. From the literature, it is difficult to estimate the damping induced by the flow. Therefore, it is proposed to study numerically the damping fluid forces on a cylinder for various parameters. It has been observed that it increases with the smaller confinement and with the presence of an obstacle and decreases when the Reynolds number increases. Larger values correspond to a greater contribution of pressure forces. Dynamic simulations are compared to the steady ones and give different values, but the order of magnitude and general trend remain the same. Therefore, steady simulations are suitable to have a rough estimation of drag coefficients in dynamics.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2020
    Description: Chad is like many African countries with no meteorological station at the moment to measure solar radiation throughout the country. Thus, theoretical models are used to estimate incident solar radiation. These models are established in correlation form. Our objective was to present a model, which allows the determination of the solar component on two surfaces (horizontal and inclined). This model allowed us to determine, over time, the component of global, direct, and diffuse solar radiation over a period that will cover the different seasons of the year. The calculation is done according to Klein’s days over all the months of the year. The hourly results of the global, direct, and diffuse radiation obtained for all the planes going from January to December are satisfactory compared to the results of the other authors quoted in the literature, which give the maximum and minimum values very close to theirs. These results allowed us to validate the applicability of this model in a climate other than the desert climate.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2020
    Description: Bifacial solar cells based on organic-inorganic perovskite are fabricated with a laminating process. The structure of the devices is ITO/SnO2/CH3NH3PbI3/NiO/ITO, in which both electrodes are the transparent ITO layer. Therefore, the device can receive light from both sides. By laminating the two half-devices, ITO/SnO2/CH3NH3PbI3 and CH3NH3PbI3/NiO/ITO, at high temperature with pressure, the merging of the middle perovskite layers is enhanced. The optimized bifacial PSCs show a Voc of 0.85 V, FF of 0.58, Jsc of 17.53 mA/cm2, and PCE of 8.47%. The photovoltaic performance varies when the light is illuminated from different sides of the bifacial PSCs. With illumination from the SnO2 side, the Voc and Jsc of the PSCs are apparently higher than those from the NiO side, suggesting more severe electron-hole recombination at the NiO/perovskite interface than at the SnO2/perovskite interface.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2020
    Description: The performance of seventeen sunshine-duration-based models has been assessed using data from seven meteorological stations in Croatia. Conventional statistical indicators are used as numerical indicators of the model performance: mean absolute percentage error (MAPE), mean bias error (MBE), mean absolute error (MAE), and root-mean-square error (RMSE). The ranking of the models was done using the combination of all these parameters, all having equal weights. The Rietveld model was found to perform the best overall, followed by Soler and Dogniaux-Lemoine monthly dependent models. For three best-performing models, new adjusted coefficients are calculated, and they are validated using separate dataset. Only the Dogniaux-Lemoine model performed better with adjusted coefficients, but across all analysed locations, the adjusted models showed improvement in reduced maximum percentage error.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2020
    Description: The aluminized layer of 321 stainless steel was treated by laser shock processing (LSP). The effects of constituent distribution and microstructure change of the aluminized layer in 321 stainless steel on creep performance at high temperature were investigated. SEM and EDS results reveal that aluminized coating is mainly composed of an Al2O3 outer layer, the transition layer of the Fe-Al phase, and the diffusion layer. Additionally, LSP conducted on coating surface not only improves the density of the layer structure, resulting in an increment on the bonding strength of both infiltration layer and substrate, but also leaves higher residual compressive stress in the aluminized layer which improves its creep life effectively. Experimental results indicate that the microhardness of the laser-shocked region is improved strongly by the refined grains and the reconstruction of microstructures. Meanwhile, the roughness and microhardness of aluminized steel are found to increase with the laser impact times. On the other hand, the intermetallic layers, whose microstructure is stable enough to inhibit crack initiation, reinforce strength greatly. The anticreep life of aluminized sample with three times LSP was increased by 232.1% as compared to aluminized steel, which could attribute to the increased dislocation density in the peened sample as well as the decrease of creep voids in size and density.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2020
    Description: Radiation-induced defects are responsible for solar cell degradation. The effects of radiation and annealing on the defects of a GaAs/Ge solar cell are modeled and analyzed in this paper. The electrical performance and spectral response of solar cells irradiated with 150 keV proton are examined. Then, thermal annealing was carried out at 120°C. We found that the proportion of defect recovery after annealing decreases with increasing irradiation fluence. The minority carrier lifetime increases with decreasing defect concentration, which means that the electrical performance of the solar cell is improved. We calculated the defect concentration and minority carrier lifetime with numerical simulation and modeled an improved annealing kinetic equation with experimental results.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2020
    Description: The maximum power point tracking (MPPT) is a strategy that allows imposing the PV array operation point on the maximum power point (MPP) or close to it under any environmental condition. The conventional incremental conductance (INC) algorithm is the most popular algorithm. But due to the fixed step size, its response speed is low under the rapid change of the solar irradiation level or load resistance. In this paper, a new MPPT technique is proposed to enhance the response speed. It consists of two stages: (1) the computing stage and (2) the regulating stage. The computing stage includes the coarse positioning operation and fine positioning operation. And an initial value of the duty cycle is generated in the computing stage, according to the characteristics of the DC-DC converter and the characteristics of the curve. The regulating stage regulates the duty cycle of the DC-DC converter with a small step size, which can improve the tracking efficiency. And the computing stage can enhance the response speed. A simulation comparison of the proposed MPPT technique with other techniques is carried out in MATLAB/Simulink under different scenarios. The simulation results reveal that the response of the proposed algorithm is 4.6 times faster than that of the INC under these scenarios, and the proposed algorithm has higher efficiency.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2020
    Description: Improving the performance of pool boiling with critical heat flux of pool boiling and enhancing the coefficient of heat transfer through surface modification technique have gained a lot of attention. These surface modifications can be done at different scales using various techniques. However, along with the performance improvement, the durability and stability of the surface modification are very crucial. Laser machining is an attractive option in this aspect and is gaining a lot of attention. In the present experimentation research work, pool boiling attributed performance of copper-grooved surfaces obtained through picosecond laser machining method is investigated. The performance of the modified surfaces was compared with the plain surface serving as reference. In this, three square grooved patterns with the same pitch (100 μm) and width (100 μm) but different depths (30, 70, and 100 μm) were investigated. Different depths were obtained by varying the scanning speed of the laser machine. In addition to the microchannel effect, the grain structuring during the laser machining process creates additional nucleation sites which has proven its effectiveness in improving the pool boiling performance. In all aspects, the pool boiling performance of the grooved laser-textured surface has showed increased surface characterisation as compared with the surface of copper.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2020
    Description: For nuclear reactor physics, uncertainties in the multigroup cross sections inevitably exist, and these uncertainties are considered as the most significant uncertainty source. Based on the home-developed 3D high-fidelity neutron transport code HNET, the perturbation theory was used to directly calculate the sensitivity coefficient of keff to the multigroup cross sections, and a reasonable relative covariance matrix with a specific energy group structure was generated directly from the evaluated covariance data by using the transforming method. Then, the “Sandwich Rule” was applied to quantify the uncertainty of keff. Based on these methods, a new SU module in HNET was developed to directly quantify the keff uncertainty with one-step deterministic transport methods. To verify the accuracy of the sensitivity and uncertainty analysis of HNET, an infinite-medium problem and the 2D pin-cell problem were used to perform SU analysis, and the numerical results demonstrate that acceptable accuracy of sensitivity and uncertainty analysis of the HNET are achievable. Finally, keff SU analysis of a 3D minicore was analyzed by using the HNET, and some important conclusions were also drawn from the numerical results.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2020
    Description: Many experiments have been done by authors to study the influence of the natural ventilation through openings on fire behaviour in compartments. It has been revealed that fire will be influenced by the size of existing openings which can be an open window, an open door, or both of them. Concerning the last case, the literature does not give any information about the impact of the arrangement of these openings on the behaviour of fire. The present paper aims then to carry out a comparative study of the disposition of the window compared to the door, on the behaviour of fire in a compartment. To achieve that objective, fire experiments were conducted in a reduced scale room of ​​dimensions 1.20 m  1.20 m  1.02 m, which can be modulated into two configurations. The first one named “PFC configuration” is the case where the open door and the open window are in nonopposite walls. The second one named “PFO configuration” is the case where these both openings are in opposite walls. After having performed several fire tests in both configurations using the same amount of diesel fuel as fire source, results revealed that the fuel burns faster in the PFC configuration compared to that in the PFO configuration. This is due to a global mass loss rate of against, respectively. Beyond a difference of 20°C observed on the maximal temperature of burned gases located at ceiling, results also revealed the production of ghosting flames in the PFO configuration.
    Print ISSN: 2090-1968
    Electronic ISSN: 2090-1976
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2020
    Description: In Belgium, and many other countries, rooftop solar panels are becoming a ubiquitous form of decentralised energy production. The increasing share of these distributed installations however imposes many challenges on the operators of the low-voltage distribution grid. They must keep the voltage levels and voltage balance on their grids in check and are often regulatory required to provide sufficient reception capacity for new power producing installations. By placing solar panels in different inclinations and azimuth angles, power production profiles can possibly be shifted to align more with residential power consumption profiles. In this article, it is investigated if the orientation of solar panels can have a mitigating impact on the integration problems on residential low voltage distribution grids. An improved simulation model of a solar panel installation is constructed, which is used to simulate the impact on a residential distribution grid. To stay as close to real-life conditions as possible, real irradiation data and a model of an existing grid are used. Both the developed model as the results on grid impact are evaluated.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2020
    Description: As an important chemical raw material, ammonia is mainly produced by the traditional Haber-Bosch process, which has certain limitations such as high energy consumption, high safety responsibility, and severe pollution, thereby having negative impacts on ecosystem. The synthesis of ammonia from dinitrogen at ambient temperature and pressure is one of the most attractive topics in the field of chemistry. As a new two-dimensional nanomaterial, MXene has excellent electrochemical properties and is a potential catalytic material for electrocatalytic nitrogen fixation. In this review, we firstly introduce the crystal, electronic structures of two-dimensional MXenes and summarize the synthesis methods, N2 reduction, and simulation computation, as well as have insight into the challenges of MXenes, which shed light on the development of highly efficient MXene-based electrocatalysts in the reduction of N2 to ammonia.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2020
    Description: The cold accumulation problem can lead to performance degradation of heat pumps. This paper presents the design and optimization of a solar-assisted storage system to solve this issue. A ground source heat pump (GSHP) project was established using the transient system simulation program (TRNSYS) based on a ground heat exchange theoretical model, which was validated by a previously established experiment in Beijing. The Beijing, Harbin, and Zhengzhou regions were used in numerical simulations to represent three typical cities where buildings require space heating (a cold region, a severe cold region, and a hot summer and cold winter region, respectively). System performance was simulated over periods of ten years. The simulation results showed that the imbalance efficiencies in the Beijing, Harbin, and Zhengzhou regions are 55%, 79%, and 38%, respectively. The annual average soil temperature decreases 7.3°C, 11.0°C, and 5.3°C during ten years of conventional GSHP operation in the Beijing, Harbin, and Zhengzhou regions, respectively. Because of the soil temperature decrease, the minimum heating coefficient of performance (COP) values decrease by 23%, 46%, and 11% over the ten years for GSHP operation in these three regions, respectively. Moreover, the simulation data show that the soil temperature would still be decreasing if based on the previous solar energy area calculation method. Design parameters such as the solar collector size are optimized for the building load and average soil temperature in various cold regions. Long-term operation will test the matching rate of the compensation system with the conventional GSHP system. After the system is optimized, the solar collector area increases of 20% in the Beijing region, 25% in the Harbin region, and 15% in the Zhengzhou region could help to maintain the annual average soil temperature balance. The optimized system could maintain a higher annual average COP because of the steady soil temperature. It provides a method for the design of a solar collector area which needs to be determined in the seasonal heat storage solar ground source heat pump system.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2020
    Description: The new Structural Seismic Isolation System (SSIS) intends to provide high safety for important structures such as nuclear power plants, offshore oil platforms, and high-rise buildings against near-fault and long-period earthquakes. The presented SSIS structure foot base and foundation contact surfaces have been designed as any curved surfaces (spherical, elliptical, etc.) depending on the earthquake-soil-superstructure parameters, and these contact surfaces have been separated by using elastomeric (lead core rubber or laminated rubber bearings with up to 4-second period) seismic isolation devices. It would allow providing inverse pendulum behavior to the structure. As a result of this behavior, the natural period of the structure will possess greater intervals which are larger than the predominant period of the majority of the possible earthquakes including near-fault zones. Consequently, the structure can maintain its serviceability after the occurrence of strong and long-period earthquakes. This study has investigated the performance of the SSIS for the nuclear containment (SSIS-NC) structure. The finite element model of SISS-NC structure has been developed, and nonlinear dynamic analysis of the model has been conducted under the strong and long-period ground motions. The results have been presented in comparison with the conventional application method of the seismic base isolation devices for nuclear containment (CAMSBID-NC) and fixed base nuclear containment (FB-NC) structures. The base and top accelerations, effective stress, and critical shear stress responses of the SSIS-NC structure are 48.67%, 36.70%, and 32.60% on average lower than those of CAMSBID-NC structure, respectively. The result also confirms that the SSIS-NC structure did not cause resonant vibrations under long-period earthquakes. On the other hand, there is excessive deformation in the isolation layers of CAMSBID-NC structure.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2020
    Description: In this work, a SiO2-TiO2 coating, composed of different numbers of TiO2 and SiO2 layers, was fabricated by a spray-coating technique. The films were deposited onto ignimbrite rock and divided into two groups according to the number of SiO2 layers applied, 10 and 15 layers of SiO2 and 5 layers of TiO2 for each group. The morphology and chemical composition of the synthesized samples were characterized by field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectrometer (EDS), which reveal the successful SiO2-TiO2 coating on ignimbrite. The photocatalytic activities of samples obtained were evaluated toward the decomposition of 3 ppm of methyl orange (MO). Finally, NOx gas degradation was studied. The obtained results evidenced that the SiO2 and TiO2 coating improved the photocatalytic activity of ignimbrite.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2020
    Description: This study observed the influence of magnetic field orientation on the premixed combustion of vegetable oil. The results show that the magnetic field increased the laminar burning velocity because the spin of electron became more energetic and changes the spin of hydrogen proton from para to ortho. The increase of flame speed became larger on vegetable oil with stronger electric poles. The attraction magnetic field gives the strongest effect against the increase of flame speed and makes flame stability limit wider toward lean equivalence ratio. This is because O2 with the paramagnetic nature is pumped more crossing flame from the south pole (S) to north pole (N) whereas the heat energy carried by H2O from the reaction product with the diamagnetic nature is pumped more crossing flame in the N pole to the S pole. This made the combustion close to Lewis number equal to unity, whereas in the repulsion magnetic poles, S-S, more O2 is pumped into the flame while more heat is pumped out of the flame, and thus, combustion in the flame is leaner and reactions are not optimal. Conversely, at N-N poles, more heat carried by H2O was pumped into the flame while more O2 was pumped out of the flame. As a result, combustion in the flame is richer and the reaction is also not optimal. As a consequence, the velocity of the laminar flame at the repelling poles is lower than that of attracting poles.
    Print ISSN: 2090-1968
    Electronic ISSN: 2090-1976
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2020
    Description: Chad is like many African countries with no meteorological station at the moment to measure solar radiation throughout the country. Thus, theoretical models are used to estimate incident solar radiation. These models are established in correlation form. Our objective was to present a model, which allows the determination of the solar component on two surfaces (horizontal and inclined). This model allowed us to determine, over time, the component of global, direct, and diffuse solar radiation over a period that will cover the different seasons of the year. The calculation is done according to Klein’s days over all the months of the year. The hourly results of the global, direct, and diffuse radiation obtained for all the planes going from January to December are satisfactory compared to the results of the other authors quoted in the literature, which give the maximum and minimum values very close to theirs. These results allowed us to validate the applicability of this model in a climate other than the desert climate.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2020
    Description: Bifacial solar cells based on organic-inorganic perovskite are fabricated with a laminating process. The structure of the devices is ITO/SnO2/CH3NH3PbI3/NiO/ITO, in which both electrodes are the transparent ITO layer. Therefore, the device can receive light from both sides. By laminating the two half-devices, ITO/SnO2/CH3NH3PbI3 and CH3NH3PbI3/NiO/ITO, at high temperature with pressure, the merging of the middle perovskite layers is enhanced. The optimized bifacial PSCs show a Voc of 0.85 V, FF of 0.58, Jsc of 17.53 mA/cm2, and PCE of 8.47%. The photovoltaic performance varies when the light is illuminated from different sides of the bifacial PSCs. With illumination from the SnO2 side, the Voc and Jsc of the PSCs are apparently higher than those from the NiO side, suggesting more severe electron-hole recombination at the NiO/perovskite interface than at the SnO2/perovskite interface.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2020
    Description: Residential and commercial buildings consume approximately 60% of the world’s electricity. It is almost impossible to provide a general definition of thermal comfort, because the feeling of thermal comfort is affected by varying preferences and specific traits of the population living in different climate zones. Considering that no studies have been conducted on thermal satisfaction of net-zero energy buildings prior to this date, one of the objectives of the present study is to draw a comparison between the thermal parameters for evaluation of thermal comfort of a net-zero energy building occupants. In so doing, the given building for this study is first optimized for the target parameters of thermal comfort and energy consumption, and, hence, a net-zero energy building is formed. Subsequent to obtaining the acceptable thermal comfort range, the computational analyses required to determine the temperature for thermal comfort are carried out using the Computational Fluid Dynamics (CFD) model. The findings of this study demonstrate that to reach net-zero energy buildings, solar energy alone is not able to supply the energy consumption of buildings and other types of energy should also be used. Furthermore, it is observed that optimum thermal comfort is achieved in moderate seasons.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2020
    Description: The increasing use of photovoltaic systems entails the use of new technologies to improve the efficiency and power quality of the grid. System performance is constantly increasing, but its reliability decreases due to factors such as the uncontrolled operation, the quality of the design and quantity of components, and the use of nonlinear loads that may lead to distortion in the signal, which directly affects the life of the system globally. This article presents an analysis of the reliability of a single-phase full-bridge inverter for active power injection into the grid, which considers the inverter stage with its coupling stage. A comparison between an L filter and an LCL filter, which comprise the coupling stage, is made. Reliability prediction is based on metrics, failure rate, mean time between failures, and total harmonic distortion. The analysis and numerical simulation are performed. Finally, filter considerations are suggested to extend the reliability of the inverter in a photovoltaic system.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2020
    Description: A platinum-reduced graphene oxide thin film composite (Pt@rGO, 100 nm) was prepared on a fluorine-doped tin oxide- (FTO-) coated glass substrate by a screen printing method using a Pt@rGO screen printing paste (0.12% Pt; ). The as-prepared electrode (denoted as Pt@rGO/FTO) was used as the cathode for the assembly of dye-sensitized solar cells (DSSCs). It showed a well-dispersed and high loading of Pt on rGO surface with a particle size distributed around 10 nm. The redox behavior of ferrocene was performed at Pt/FTO, Pt@rGO/FTO, and rGO/FTO electrodes by a cyclic voltammetry (CV) method. The kinetic parameters, in particular, the standard reduction potential (, V), the transfer coefficient (), the heterogeneous rate constant (, cm·s-1), and the diffusion coefficient (, cm2 s-1), were determined by CV data treatment using convolution-deconvolution and fitting methods. The values of ,,, and at Pt@rGO/FTO electrode were, respectively, 326 mV, 0.471, 3.33 cm·s-1, and 4.19 cm2·s-1, equivalent to those of Pt/FTO electrode (340 mV, 0.474, 3.18 cm·s-1, and 4.19 cm2·s-1). The Pt@rGO/FTO electrode exhibited excellent electrocatalytic activity compared to that of Pt thin film (Pt/FTO electrode) prepared from Pt commercial paste. The heterogeneous electron transfer rate constant (cm·s-1) for I3-/I- at Pt@rGO/FTO is 1.3 times faster than that at Pt/FTO. The energy conversion efficiency of the DSSCs assembled from Pt@rGO-DSSC cathode reached 7.0%, an increase of 20.7% over the commercial Pt-based cathode (Pt-DSSC, 5.8%). The rGO component in the Pt@rGO composite plays two important roles: (i) facilitating the electron transfer between Pt NPs catalyst and the FTO substrate via the bandgap effect and (ii) the enlargement catalytic surface area of Pt NPs via the loading effect. The rGO material has, therefore, potential to replace the Pt content and improve the performance of the DSSC device.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2020
    Description: We are developing a practical-scale mechanical decladder that can slit nuclear spent fuel rod-cuts (hulls + pellets) on the order of several tens of kgf of heavy metal/batch to supply UO2 pellets to a voloxidation process. The mechanical decladder is used for separating and recovering nuclear fuel material from the cladding tube by horizontally slitting the cladding tube of a fuel rod. The Korea Atomic Energy Research Institute (KAERI) is improving the performance of the mechanical decladder to increase the recovery rate of pellets from spent fuel rods. However, because actual nuclear spent fuel is dangerously toxic, we need to develop simulated spent fuel rods for continuous experiments with mechanical decladders. We describe procedures to develop both simulated cladding tubes and simulated fuel rod (with physical properties similar to those of spent nuclear fuel). Performance tests were carried out to evaluate the decladding ability of the mechanical decladder using two types of simulated fuel (simulated tube + brass pellets and zircaloy-4 tube + simulated ceramic fuel rod). The simulated tube was developed for analyzing the slitting characteristics of the cross section of the spent fuel cladding tube. Simulated ceramic fuel rod (with mechanical properties similar to the pellets of actual PWR spent fuel) was produced to ensure that the mechanical decladder could slit real PWR spent fuel. We used castable powder pellets that simulate the compressive stress of the real spent UO2 pellet. The production criteria for simulated pellets with compressive stresses similar to those of actual spent fuel were determined, and the castables were inserted into zircaloy-4 tubes and sintered to produce the simulated fuel rod. To investigate the slitting characteristics of the simulated ceramic fuel rod, a verification experiment was performed using a mechanical decladder.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2020
    Description: This paper focuses on fluid forces acting on a confined cylinder subjected to axial flow in application to fuel assembly dynamic behavior. From the literature, it is difficult to estimate the damping induced by the flow. Therefore, it is proposed to study numerically the damping fluid forces on a cylinder for various parameters. It has been observed that it increases with the smaller confinement and with the presence of an obstacle and decreases when the Reynolds number increases. Larger values correspond to a greater contribution of pressure forces. Dynamic simulations are compared to the steady ones and give different values, but the order of magnitude and general trend remain the same. Therefore, steady simulations are suitable to have a rough estimation of drag coefficients in dynamics.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2020
    Description: Coupling supercritical carbon dioxide (S-CO2) Brayton cycle with Gen-IV reactor concepts could bring advantages of high compactness and efficiency. This study aims to design proper simple and recompression S-CO2 Brayton cycles working as the indirect cooling system for a mediate-temperature lead fast reactor and quantify the Brayton cycle performance with different heat rejection temperatures (from 32°C to 55°C) to investigate its potential use in different scenarios, like arid desert areas or areas with abundant water supply. High-efficiency S-CO2 Brayton cycle could offset the power conversion efficiency decrease caused by low core outlet temperature (which is 480°C in this study) and high compressor inlet temperature (which varies from 32°C to 55°C in this study). A thermodynamic analysis solver is developed to provide the analysis tool. The solver includes turbomachinery models for compressor and turbine and heat exchanger models for recuperator and precooler. The optimal design of simple Brayton cycle and recompression Brayton cycle for the lead fast reactor under water-cooled and dry-cooled conditions are carried out with consideration of recuperator temperature difference constraints and cycle efficiency. Optimal cycle efficiencies of 40.48% and 35.9% can be achieved for the recompression Brayton cycle and simple Brayton cycle under water-cooled condition. Optimal cycle efficiencies of 34.36% and 32.6% can be achieved for the recompression Brayton cycle and simple Brayton cycle under dry-cooled condition (compressor inlet temperature equals to 55°C). Increasing the dry cooling flow rate will be helpful to decrease the compressor inlet temperature. Every 5°C decrease in the compressor inlet temperature will bring 1.2% cycle efficiency increase for the recompression Brayton cycle and 0.7% cycle efficiency increase for the simple Brayton cycle. Helpful conclusions and advises are proposed for designing the Brayton cycle for mediate-temperature nuclear applications in this paper.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2020
    Description: Atmospheric dispersion modelling and radiological safety analysis have been performed for a postulated accident scenario of a generic VVER-1000 nuclear power plant using the HotSpot Health Physics code. The total effective dose equivalent (TEDE), the respiratory time-integrated air concentration, and the ground deposition concentration are calculated considering site-specific meteorological conditions. The results show that the maximum TEDE and ground deposition concentration values of 3.69E – 01 Sv and 3.80E + 06 kBq/m2 occurred at downwind distance of 0.18 km from the release point. This maximum TEDE value is recorded within a distance where public occupation is restricted. The TEDE values at distances of 5.0 km and beyond where public occupation is likely to be found are far below the annual regulatory limits of 1 mSv from public exposure in a year even in the event of worse accident scenario as set in IAEA Safety Standard No. GSR Part 3; no action related specifically to the public exposure is required. The released radionuclides might be transported to long distances but will not have any harmful effect on the public. The direction of the radionuclide emission from the release point is towards the north east. It is observed that the organ with the highest value of committed effective dose equivalent (CEDE) appears to be the thyroid. It was followed by the bone surface, lung, red marrow, and lower large intestine wall in order of decreasing CEDE value. Radionuclides including I-131, I-133, Sr-89, Cs-134, Ba-140, Xe-133, and Xe-135 were found to be the main contributors to the CEDE.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2020
    Description: A method for solidifying spent tributyl phosphate and kerosene (TBP/OK) organic liquids in a phosphate acid-based geopolymer (PAG) was investigated. The TBP/OK emulsion containing tween 80 (T80), TBP/OK organic liquids, and H3PO4 was prepared. The TBP/OK emulsion was mixed with metakaolin to obtain solidified TBP/OK forms (SPT). The compressive strength of the SPT was up to 59.19 MPa when the content of TBP/OK was 18%. The loss of compressive strength of SPT was less than 10% after immersion and less than 25% after freeze-thaw treatment. The final setting time was 40.0 h, and the shrinkage of SPT was nearly 3%. The leaching test indicated that the release of TBP/OK from hardened SPT was limited. Characterization of SPT suggested that solidification of TBP/OK using PAG occurred by physical encapsulation.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2020
    Description: A novel calculation method of specific surface area of tetrahedral foam metal is established. The expressions of the two basic parameters of the foam metal with respect to porosity and pore size are derived by using the geometrical relationship of this model; consequently, the specific surface area of the metal foam is easily calculated. The theoretical calculation data are compared with the experimental results; it shows that the specific surface area of various porous metals, such as nickel foam and copper foam prepared by electrodeposition and aluminum foam produced by high-pressure infiltration casting, can be well calculated by the formula proposed in this paper. Compared with other similar equations, the calculation results of this method possess lower deviation and greater practicability.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2020
    Description: The present experimental study focuses on the energy storage performance of Therminol 55-TiO2 nanofluids for the absorption of solar energy. Photothermal conversion efficiency is enhanced using Fresnel lens and secondary reflectors with a glass-type evacuated absorber tube. The focal length of the Fresnel lens is 150 mm, and that of the secondary reflector is 70 mm. The optical absorbance, extinction coefficient, and thermal conductivity of nanofluids at 100, 250, 350, and 500 ppm are reported. The optical path length of the energy storage medium is 1 cm. The optical performance of the nanofluids is analyzed in the range of 400 to 800 nm. Compared to base fluid, the prepared concentrations show higher absorbance in the measured range of wavelength. The optimum concentration is found to be 250 ppm, and its specific heat is measured in the temperature range of 27 to 117°C and is found to vary from 1.85 to 2.19 J/g °C. The thermal conductivity of the maximum concentration of nanofluid is 0.134 W/mK. The optical absorbance test confirms the stability of nanofluids. Maximum temperature and photothermal conversion efficiency are obtained.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2020
    Description: Recently, we have witnessed the rapid development of techniques on upgrading energy efficiency for wireless sensor networks (WSN). With the improvement of the detection range and the detection intensity, the lifetime of wireless sensor networks (WSN) is still limited by sensor node batteries (BA). Due to the need for wireless sensor network energy optimization, the power supply side has been putting forward higher requirements, and the traditional wireless sensor network with energy supplement has difficulty in meeting this development trend. The game and potential game concepts were introduced to take economics into account. Taking the wireless sensor network (WSN) with photovoltaic (PV) array charging and mobile-charging car (MCC) as an example, a running optimization model based on potential game is proposed, and the existence of Nash equilibrium has been proven. The iterative solution is completed by communication between the players, and the energy utilization rate is effectively improved. This paper verifies that potential game theory can be used to improve the feasibility and efficiency of wireless sensor network energy optimization.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2020
    Description: In the last decade, the urgent need to environmental protection has promoted the development of new materials with potential applications to remediate air and polluted water. In this work, the effect of the TiO2 thin layer over MoS2 material in photocatalytic activity is reported. We prepared different heterostructures, using a combination of electrospinning, solvothermal, and spin-coating techniques. The properties of the samples were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray diffraction (XRD), nitrogen adsorption-desorption isotherms, UV-Vis diffuse reflectance spectroscopy (UV-Vis-DRS), and X-ray photoelectron spectroscopy (XPS). The adsorption and photocatalytic activity were evaluated by discoloration of rhodamine B solution. The TiO2-MoS2/TiO2 heterostructure presented three optical absorption edges at 1.3 eV, 2.28 eV, and 3.23 eV. The high adsorption capacity of MoS2 was eliminated with the addition of TiO2 thin film. The samples show high photocatalytic activity in the visible-IR light spectrum.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2020
    Description: The need to consume less and better energy pushes more and more to find efficient solutions at the individual end-user and community levels. The concept of an energy community is becoming increasingly popular, and recently, many studies try to demonstrate how an aggregation of end-users, which produces energy according to a distributed generation concept, is a mechanism able to overcome the increasingly tight constraints imposed by the electricity market, both for the end-user and for the network and market operators. In this context, the paper is aimed at verifying the convenience for both end-user and aggregator sides to operate in an aggregate form considering the new tariff scenario imposed in some European countries like Italy.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2020
    Description: Correct extraction of the equivalent circuit model parameters of photovoltaic modules is of great significance for power prediction, fault diagnosis, and system optimization of photovoltaic power generation systems. Although there are many methods developed to extract the equivalent circuit model parameters of the photovoltaic module, it is still challenging to ensure the stability and operational efficiency of the extract method. In order to effectively extract the parameters of photovoltaic modules, this paper proposes a hybrid algorithm combining analytical methods and differential evolution algorithms for the extraction parameters of PV module. Firstly, the analytical method is applied to simplify the equivalent circuit model and improve the efficiency of the algorithm. Then, the adaptive algorithm is used to adjust the parameters of the differential evolution algorithm. Through the algorithm proposed in this paper, the parameters of the equivalent circuit model of the photovoltaic module can be extracted by the open-circuit voltage, short-circuit current, and maximum power point current and voltage provided by the manufacturer. The proposed method is applied to the extraction of the parameters of the dual-diode equivalent circuit model of different types of photovoltaic modules. The reliability and computational efficiency of the proposed algorithm are verified by comparison and analysis.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2020
    Description: In this paper, the acoustic emission technique was used to study the signal during the tensile damage of 321 stainless steel for solar thermal power generation. It was found that the peak frequency can effectively distinguish different types of signals during the tensile test. The interference signals generated during the tensile test are effectively resolved by combining the amplitude-peak frequency distribution map and the energy-peak frequency distribution map. The amplitude-time map of the acoustic emission signal is successfully divided into three stages by using peak frequency parameter.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2020
    Description: An increase in the operating temperature of photovoltaic (PV) panels caused by high levels of solar irradiation can affect the efficiency and lifespan of PV panels. This study uses numerical and experimental analyses to investigate the reduction in the operating temperature of PV panels with an air-cooled heat sink. The proposed heat sink was designed as an aluminum plate with perforated fins that is attached to the back of the PV panel. A comprehensive computational fluid dynamics (CFD) simulation was conducted using the software ANSYS Fluent to ensure that the heat sink model worked properly. The influence of heat sinks on the heat transfer between a PV panel and the circulating ambient air was investigated. The results showed a substantial decrease in the operating temperature of the PV panel and an increase in its electrical performance. The CFD analysis in the heat sink model with an air flow velocity of 1.5 m/s and temperature of 35°C under a heat flux of 1000 W/m2 showed a decrease in the PV panel’s average temperature from 85.3°C to 72.8°C. As a consequence of decreasing its temperature, the heat sink increased the open-circuit photovoltage () and maximum power point () of the PV panel by 10% and 18.67%, respectively. Therefore, the use of aluminum heat sinks could provide a potential solution to prevent PV panels from overheating and may indirectly lead to a reduction in CO2 emissions due to the increased electricity production from the PV system.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2020
    Description: This study synthesized and characterized Ag-doped ZnO thin films. Doped ZnO powders were synthesized using the sol-gel method, and thin films were fabricated using the doctor blade technique. The Ag content was determined by optical emission spectrometers with inductively coupled plasma (ICP plasma). Additionally, X-ray diffraction, Raman spectroscopy, Atomic Force Microscopy (AFM), diffuse reflectance, and X-ray photoelectron spectroscopy (XPS) measurements were used for physicochemical characterization. Finally, the photocatalytic degradation of methylene blue (MB) was studied under visible irradiation in aqueous solution. The Langmuir-Hinshelwood model was used to determine the reaction rate constant of the photocatalytic degradation. The physicochemical characterization showed that the samples were polycrystalline, and the diffraction signals corresponded to the ZnO wurtzite crystalline phase. Raman spectroscopy verified the ZnO doping process. The AFM analysis showed that roughness and grain size were reduced after the doping process. Furthermore, the optical results indicated that the presence of Ag improved the ZnO optical properties in the visible range, and the Ag-doped ZnO thin films had the lowest band gap value (2.95 eV). Finally, the photocatalytic degradation results indicated that the doping process enhanced the photocatalytic activity under visible irradiation, and the Ag-doped ZnO thin films had the highest MB photodegradation value (45.1%), as compared to that of the ZnO thin films (2.7%).
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2020
    Description: Several algorithms have been developed for building-attached photovoltaic system (BAPV) planning in educational institute based on PV capacity. Fewer studies on optimization algorithms for BAPV system planing on campus have been reported which considers a technoeconomic assessment. Therefore, a well-known robust algorithm is used as an optimization technique of BAPV system and considers technoeconomic assessment on campus. This paper presents a combination of analytical hierarchy process (AHP) with fuzzy theory (fuzzy AHP) for selecting a suitable and optimal design of BAPV system on academic campus. The BAPV system design is based on roof area and load profile at the project site. Five BAPV systems have been designed using five different types of PV. The design was comprehensively assessed by experts through a questionnaire with pairwise comparison model. Fuzzy AHP used to consider the qualitative and quantitative assessments that can affect the selection process. The comprehensive assessment in criteria consists of sizing systems, technical, economic, and environmental perspectives as criteria. The perspective is divided into 13 subcriteria. The results show degree of importance from the criteria-based fuzzy AHP as follows: technical 〉 economic 〉 environment 〉 sizing system. Based on the assessment of criteria and subcriteria, design with monocrystalline is most suitable and polycrystalline as the least suitable design for BAPV system connected to grid and battery energy storage system in case study.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2020
    Description: In this paper, the acoustic emission technique was used to study the signal during the tensile damage of 321 stainless steel for solar thermal power generation. It was found that the peak frequency can effectively distinguish different types of signals during the tensile test. The interference signals generated during the tensile test are effectively resolved by combining the amplitude-peak frequency distribution map and the energy-peak frequency distribution map. The amplitude-time map of the acoustic emission signal is successfully divided into three stages by using peak frequency parameter.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2020
    Description: An increase in the operating temperature of photovoltaic (PV) panels caused by high levels of solar irradiation can affect the efficiency and lifespan of PV panels. This study uses numerical and experimental analyses to investigate the reduction in the operating temperature of PV panels with an air-cooled heat sink. The proposed heat sink was designed as an aluminum plate with perforated fins that is attached to the back of the PV panel. A comprehensive computational fluid dynamics (CFD) simulation was conducted using the software ANSYS Fluent to ensure that the heat sink model worked properly. The influence of heat sinks on the heat transfer between a PV panel and the circulating ambient air was investigated. The results showed a substantial decrease in the operating temperature of the PV panel and an increase in its electrical performance. The CFD analysis in the heat sink model with an air flow velocity of 1.5 m/s and temperature of 35°C under a heat flux of 1000 W/m2 showed a decrease in the PV panel’s average temperature from 85.3°C to 72.8°C. As a consequence of decreasing its temperature, the heat sink increased the open-circuit photovoltage () and maximum power point () of the PV panel by 10% and 18.67%, respectively. Therefore, the use of aluminum heat sinks could provide a potential solution to prevent PV panels from overheating and may indirectly lead to a reduction in CO2 emissions due to the increased electricity production from the PV system.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2020
    Description: This study synthesized and characterized Ag-doped ZnO thin films. Doped ZnO powders were synthesized using the sol-gel method, and thin films were fabricated using the doctor blade technique. The Ag content was determined by optical emission spectrometers with inductively coupled plasma (ICP plasma). Additionally, X-ray diffraction, Raman spectroscopy, Atomic Force Microscopy (AFM), diffuse reflectance, and X-ray photoelectron spectroscopy (XPS) measurements were used for physicochemical characterization. Finally, the photocatalytic degradation of methylene blue (MB) was studied under visible irradiation in aqueous solution. The Langmuir-Hinshelwood model was used to determine the reaction rate constant of the photocatalytic degradation. The physicochemical characterization showed that the samples were polycrystalline, and the diffraction signals corresponded to the ZnO wurtzite crystalline phase. Raman spectroscopy verified the ZnO doping process. The AFM analysis showed that roughness and grain size were reduced after the doping process. Furthermore, the optical results indicated that the presence of Ag improved the ZnO optical properties in the visible range, and the Ag-doped ZnO thin films had the lowest band gap value (2.95 eV). Finally, the photocatalytic degradation results indicated that the doping process enhanced the photocatalytic activity under visible irradiation, and the Ag-doped ZnO thin films had the highest MB photodegradation value (45.1%), as compared to that of the ZnO thin films (2.7%).
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2020
    Description: The maximum fuel temperature under accident condition is the most important parameter of inherently safe characteristics of HTR-PM, and the DLOFC accident may lead to a peak accident fuel temperature. And there are a variety of uncertainty sources in the maximum fuel temperature calculations, and thus the contributions of these uncertainty sources to the final calculated maximum fuel temperature should be quantified to check whether the peak value exceed the technological limit of 1620°C or not. Eight uncertainty input parameters are selected for inclusion in this uncertainty study, and their associated 2 standard deviation uncertainties and probability density functions are specified. Then, the DLOFC thermal analyses and uncertainty analysis are performed with the home-developed ATHENA and CUSA. The numerical results indicate that the pebble-bed effective conductivity and the decay heat contribute the most of the uncertainty in the DLOFC maximum fuel temperature while this peak fuel temperature is most sensitive to the initial reactor power and the decay heat. In short, uncertainties in these selected eight parameters lead to the two standard deviation (2σ) uncertainty of ±77.6°C (or 5.2%) around the mean value of 1493°C for the maximum fuel temperature under DLOFC accident of HTR-PM. At the same time, the LHS-SVDC method of CUSA is recommended to propagate uncertainties in inputs and 100–200 model simulations seem to be sufficient to get an uncertainty prediction with full confidence.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2020
    Description: This study investigates the continuous transition from flame-spreading to stabilized combustion near the blow-off limit in opposed forced flow by using expanding solid fuel duct that makes distribution of oxidizer velocity in the axial direction. The stabilized combustion is a diffusion flame that appears in the Axial-Injection End-Burning Hybrid Rocket. The boundary between flame-spreading and stabilized combustion has not been investigated in detail. Polymethyl methacrylate (PMMA) rectangular ducts were used as a fuel, and gaseous oxygen was used as an oxidizer. All firing tests were conducted at atmospheric pressure. The diffusion flame traveled in the opposed-flow field where the oxidizer velocity increases continuously in the upstream direction. The combustion mode changed when oxidizer velocity at the flame tip exceeded a certain value. The oxidizer velocity used in this experiment ranges from 0.6 to 32.8 m/s. Experimental results show that a threshold oxidizer velocity of the transition can be determined. In this study, the threshold velocity was 26.4 m/s.
    Print ISSN: 2090-1968
    Electronic ISSN: 2090-1976
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2020
    Description: Best-Estimation Plus Uncertainty (BEPU) analysis method can provide more information to improve the reliability of calculation results than the safety analysis with conservative assumption. And the statistical sampling-based uncertainty and sensitivity analysis methods are widely used in practical applications of the multiphysics, multiscale coupling nuclear reactor system. In this paper, a novel and efficient sampling method for inputs with normal and uniform distributions is introduced and a systematic theory for uncertainty and sensitivity analysis is established based on the classical statistical theory. Then the Code of Uncertainty and Sensitivity Analysis (CUSA) is updated based on these new strategies. For applications, the explicit and implicit effects for resonance and nonresonance isotopes are studied in depth, and a simple UO2 pin cell is considered to examine the performance of CUSA and the total uncertainty and sensitivity analysis abilities. The numerical results indicate that the implicit sensitivity analysis model and the uncertainty quantification functions developed in CUSA are correct and can be used for sensitivity and uncertainty analysis in nuclear reactor calculations. Even more important, the LHS-SVDC is recommended to propagate the uncertainties in multigroup cross sections.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2020
    Description: The thermomechanical fatigue (TMF) behaviors of spray-deposited SiCp-reinforced Al-Si alloy were investigated in terms of the size of Si particles and the Si content. Thermomechanical fatigue experiments were conducted in the temperature range of 150-400°C. The cyclic response behavior indicated that the continuous cyclic softening was exhibited for all materials, and the increase in SiC particles size and Si content aggravated the softening degree, which was attributed to dislocation generation due to differential thermal contraction at the Al matrix/Si phase interface or Al matrix/SiC particle interface. Meanwhile, the TMF life and stress amplitude of SiCp/Al-7Si composites were greater than those of Al-7Si alloy, and increased with the increasing SiC particle size, which was associated with “load sharing” of the direct strengthening mechanism. The stress amplitude of 4.5μmSiCp/Al-Si composite increased as the Si content increased; however, the influence of Si content on the TMF life was not so significant. The TMF failure mechanism revealed that the crack mainly initiated at the agglomeration of small-particulate SiC and the breakage of large-particulate SiC, and the broken primary Si and the exfoliated eutectic Si accelerated the crack propagation.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2020
    Description: A simple model was developed to predict the survival behavior of E. coli subjected to UV disinfection in a Taylor-Couette reactor. The model includes the CFD evaluation of the counterrotating toroidal vortices developed within the annular space of two coaxial cylinders. The UV lamp was located within the diameter of the internal rotating cylinder. The residence time of the bacteria near the UV lamp is, therefore, a function of both the size of the vortex and its angular velocity. The effect of angular velocity on the formation of counterrotating toroidal vortices and their impact on the kinetics of UV microbial inactivation was experimentally evaluated. The kinetics of microbial inactivation follow an apparent first-order kinetic equation between 300 and 2000 revolutions per minute. Therefore, in this range of angular velocities, a set of values (indirectly taking into account the hydrodynamic pattern and UV irradiance) was obtained for a given concentration of bacteria. Then, the set of values was correlated with the range of angular velocities applied using the polynomial equation. A value can be obtained for an unknown angular velocity through the polynomial equation. Therefore, a simulation curve of microbial inactivation can be obtained from the first-order kinetic equation. The efficiency of bacteria removal improves depending on the angular velocity applied. A good agreement is observed between the simulation of the survival behavior of the microorganisms subjected to UV disinfection with the experimental data.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2020-04-20
    Description: In this work, we examine the relationship between different energy commodity spot prices. To do this, multivariate stochastic models with and without external random interventions describing the price of energy commodities are developed. Random intervention process is described by a continuous jump process. The developed mathematical model is utilized to examine the relationship between energy commodity prices. The time-varying parameters in the stochastic model are estimated using the recently developed parameter identification technique called local lagged adapted generalized method of moment (LLGMM). The LLGMM method provides an iterative scheme for updating statistic coefficients in a system of generalized method of moment/observation equations. The usefulness of the LLGMM approach is illustrated by applying to energy commodity data sets for state and parameter estimation problems. Moreover, the forecasting and confidence interval problems are also investigated (U.S. Patent Pending for the LLGMM method described in this manuscript).
    Print ISSN: 2356-735X
    Electronic ISSN: 2314-615X
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2020-04-09
    Description: A nonuniform and high-strength heat flux load would reduce the working efficiency, safety, and in-service life of a cavity receiver. Four types of concave quartz windows, including conical, spherical, sinusoidal, and hyperbolic tangent, were proposed to be used in the cylindrical cavity receiver of a solar dish concentrator system, which can improve the flux uniformity and reduce the peak concentration ratio of the receiver. For each concave quartz window, 36 structural schemes were offered. Based on the Monte Carlo ray-tracing method, the results showed that the nonuniformity coefficient of the receiver was 0.68 and the peak concentration ratio was 1320.21 by using a plane quartz window. At the same time, when the receiver is in the best optical performance, it is the receiver with sinusoidal, conical, spherical, and hyperbolic tangent quartz windows, respectively. The optical efficiency of the receiver with the above four types of quartz windows was basically the same as that of the receiver with the plane quartz window, but their nonuniformity coefficients were reduced to 0.31, 0.35, 0.36, and 0.39, respectively, and the peak concentration ratio was reduced to 806.82, 841.31, 853.23, and 875.89, respectively. Obviously, the concave quartz window was better than the plane quartz window in improving the flux uniformity. Finally, a further study on the sinusoidal quartz window scheme of all of the above optimal parameter schemes showed that when the installation position of the receiver relative to the dish concentrator was changed, the flux uniformity of the receiver could continue to improve. When the surface absorptivity of the receiver was reduced, the optical efficiency would be reduced. For the parabolic dish concentrator with different focal distance, the concave quartz window can also improve the uniformity of the flux distribution of the cylindrical cavity receiver.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2020-05-15
    Description: Modeling and simulation of a photovoltaic solar system play a significant role in understanding its behavior in various environmental conditions. Utilization of the datasheet information in modeling and simulation of the PV system correlates the experimental data and the theory that instigate the mathematical predictions of an actual system. A single-diode model gives a simple, fast, and straightforward way of depicting the PV system performance. We have developed a new approach of determining the five unknown parameters of a single-diode model using manufacturer’s data at three main points: the open circuit point (OCP), short circuit point (SCP), and the maximum power point (MPP) of the IV and PV curves. The ideality factor (A) and the diode saturation current (Io) are the key unknown parameters that greatly affect the reduplication of the three main points. The purpose of this study is to evaluate the ideality factor using simple calculation procedure starting from its optimal value (Ao) and other values within the proximity of Ao. The optimal value is obtained by assumptions of negligible series resistance (Rs) and very large shunt resistance (Rsh). Therefore, the choice of the other ideality factors in the neighborhood of its optimal value gives rise to different values of Rs, Rsh, and Iph that are more realistic in an experimental setup. Positive values of Rsh and Rs have been iteratively obtained by utilizing data at maximum power point combined with open and short circuit data. The five unknown parameters have been determined in the proximity of Ao and have been used to plot the PV curve with accuracy and precision of less than 0.5% error of maximum power and less than 0.1% error of Voc of manufacturer’s data. The proposed method has been implemented using fast, simple, and accurate procedures using GNU Octave programming software to calculate Ao, Io, Rs, Rsh, and Iph and to execute both Rs-Rsh and PV characteristic equations of BP3235T, KC200GT, BP-SX 150, and MSX60 PV modules. The reduced steps employed in the algorithm improve execution speed, thereby reducing the computation time.
    Print ISSN: 2314-4386
    Electronic ISSN: 2314-4394
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2020-05-13
    Description: The Ethiopian government looked towards renewable energy resources to generate electrical power for the current demand of the country. 85% of the total population of the country lives in rural areas and uses fossil fuel for their domestic uses. Using fossil fuel poses a danger for users and the environment. And the government of Ethiopia planned to electrify 85% of the rural community with abundant available renewable resources around the community. Therefore, identifying potential locations for solar PV with GIS is a decision support tool for proposing suitable sites to the government. The solar PV suitability analysis provides optimal locations for solar PV power plant installations. To find suitable locations for solar PV, factors that affect suitability were identified and weighted using analytical hierarchy processes. Then, the weighted values and reclassified values were multiplied together to produce the final suitability map for solar PV. Due to site unsuitability, solar PV generation efficiency drops and may malfunction. By identifying the most suitable locations, a solar PV power plant is optimally located. Therefore, the objective of this study was to find the most suitable sites in the South Gondar Zone for generating power from solar PV. The suitability of the study area for a solar PV power plant is 86.5%. Eighty-six (86%) of the criteria considered in the study area were found to be suitable for optimal location of solar PV power plant. Most of the suitable areas were found in the western part of the zone. The nature of topography is a key factor in generating solar energy; it affects the solar irradiance coming to the solar PV panel surface.
    Print ISSN: 2356-735X
    Electronic ISSN: 2314-615X
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2020-03-31
    Description: This work is part of the dynamic of proposing a solution to the problem of access to electricity in Chad, which has a rate of access to electricity of 3%. N’Djamena has significant solar potential that can be harnessed to generate electricity. In this paper, we present a theoretical study of the performances of the Dish/Stirling system with the purpose of producing electricity, based on a mathematical model taking into account each of the subparts of the system (concentrator, solar cavity receiver, and Stirling engine). Hydrogen is preferred to helium as the working fluid for operating the Stirling engine at high temperatures. This coupled model made it possible to estimate the monthly average of the electric power produced by this modular system and also its overall solar electricity yield.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2020-04-15
    Description: A series of TiO2, TiO2/Pd, and TiO2/PdO hollow sphere photocatalysts was successfully prepared via a combination of hydrothermal, sol-immobilization, and calcination methods. The structure and optical properties of the as-prepared samples were characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, Brunauer-Emmett-Telleranalysis, Barrett-Joyner-Halenda measurement, and UV-Vis diffuse reflectance spectroscopy. The photocatalysis efficiencies of all samples were evaluated through the photocatalytic degradation of rhodamine B under visible light irradiation. Results indicated that TiO2/PdO demonstrated a higher photocatalytic activity (the photocatalytic degradation efficiency could reach up to 100% within 40 min) than the other samples and could maintain a stable photocatalytic degradation efficiency for at least four cycles. Finally, after using different scavengers, superoxide and hydroxyl radicals were identified as the primary active species for the effectiveness of the TiO2/PdO photocatalyst.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2020-06-29
    Description: Passive containment cooling system (PCCS) is an important passive safety facility in the large advanced pressurized water reactor. Using the physical laws, such as gravity and buoyancy, the water film/air countercurrent flow is formed in the external annular channel to keep inside temperature and pressure below the maximum design values. Due to the large curvature radius of the annular channel, one of the short arc segments is taken out, as a rectangular channel, to analyze the main water film evaporation heat transfer characteristics. Two numerical methods are used to predict the water film evaporative mass flow rate during the heat transfer process in the large-scale rectangular channel with asymmetric heating when the water film temperature is not saturated. At the same time, these numerical simulation results are validated by the experiment which is set up to study water film/air countercurrent flow heat transfer on a vertical back heating plate with 5 m in length and 1.2 m in width. It is shown that the maximum deviation between numerical simulation and experiment is 30%. In addition, the influences on these parameters, such as heat flux, evaporative mass flow rate, and water film thickness, are evaluated under the different tilted angles of the rectangular channel and horizontal plane, water/air inlet flow rates, water/air inlet temperatures, heating surface temperatures, and air inlet relative humidities. All these results can provide a good guidance for the design of PCCS in the future.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2020-04-17
    Description: This paper addresses the use of nanogrid technology in resolving the issue of blanket load shedding for domestic consumers. This is accomplished by using different load management techniques and load classification and utilizing maximum solar energy. The inclusion of DC-based load in basic load and DC inverter load in regular load and scheduling of the burst load during the hours of maximum solar PV generation bring novelty in this work. The term “nanogrid” as a power structure remains ambiguous in various publications so far. An effort has been done in this paper to present a concise definition of nanogrid. Demand side load management is one of the key features of nanogrid, which enables end users to know major characteristics about their energy consumption during peak and off-peak hours. A microgrid option with nanogrid facility results in a more reliable system with overall improvement in efficiency and reduction in carbon emission. PV plants produce DC power; when used directly, the loss will automatically be minimized to 16%. The AC/DC hybrid nanogrid exhibits 63% more efficiency as compared to AC-only nanogrid and nearly 18% more efficiency as compared to DC-only nanogrid. Smart load shifting smoothens the demand curve 54% more adequately than during conventional load shifting. Simulation results show that real-time pricing is more economical than flat rate tariff for a house without DG, whereas flat rate results are more economical when DG are involved in nanogrids. 12.67%-21.46% saving is achieved if only flat rates are used for DG in nanogrid instead of real-time pricing.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2020-06-13
    Description: The electrical infrastructure around the globe is expanding at a rapid rate for the sake of fulfilling power demands in the domestic, commercial and entertainment industries aiming to boost the living standards. In this regard, renewable energy sources (RES) are globally accepted potential candidates for maintaining inexhaustible, clean, and reliable electricity with a supplementary feature of economic prospect. The efficiency of power distribution at reduced cost to the consumers can be further enhanced by introducing a two-way billing system so-called net-metering which has the potential to overcome issues such as voltage regulation, power blackouts, overstressed grid and need for expensive storage systems thereby making it beneficial for the grid and the end user. This envisioning has encouraged the Government of Pakistan to install net-metering infrastructure at places which accommodate surplus renewable energy reserves. According to the Electric Power Act 1997, the National Electric Power Regulatory Authority (NEPRA) issued the net-metering rules and regulations in September 2015 by the endorsement of Federal Government which allowed the distribution companies in Pakistan to buy surplus electricity units generated by the consumers in order to partly reimburse the units imported from the utility grid. The aim behind this research work is to promote renewable energy utilization through net-metering mechanism in order to achieve maximum power. The export of units from consumer side to utility grid and vice versa can be made through bidirectional energy meter. In this paper, a solar net-metering analysis has been carried out on ETAP software to determine its benefits in a distribution network. Different scenarios have been investigated, and it is concluded that solar net-metering technique has multiple influential benefits, e.g., improvement in voltage regulation, reduction in transmission and distribution losses, increase in power availability, less billing to consumers, and reduction of loading on utility grid.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2020-07-16
    Description: We have developed a computationally efficient simulation model for the optimization of redirecting electrical front contacts for multijunction solar cells under concentration, and we present its validation by comparison with experimental literature results. The model allows for fast determination of the maximum achievable efficiency under a wide range of operating conditions and design parameters such as the contact finger redirecting capability, period and width of the fingers, the light concentration, and the metal and emitter sheet resistivity. At the example of a state-of-the-art four-junction concentrator solar cell, we apply our model to determine ideal operating conditions for front contacts with different light redirection capabilities. We find a 7% relative efficiency increase when enhancing the redirecting capabilities from 0% to 100%.
    Print ISSN: 2314-4386
    Electronic ISSN: 2314-4394
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2020-07-15
    Description: In the four decades since China’s reform and opening up, China has been playing an active role in global value chain (GVC) due to its abundant resources. China has gained enormous benefits from opening up, but has also suffered huge energy costs in the process. In this study, we incorporated global value chains and energy consumption into a unified analysis framework and calculated the energy total-factor productivity (ETFP) of China’s industry and the degree of participation in GVC. In addition, in order to discover the contradictions and problems between China's participation in global value chains and the improvement of total energy factor productivity, the panel smooth transformation model (PSTR) was used to empirically test the nonlinear relationship between the ETFP and the degree of participation in GVC in China. From the analysis results, GVC participation, as well as the subdivided shallow GVC participation and deep GVC participation, first promoted the effect on ETFP and then suppressed it, showing an inverted U-shaped single threshold characteristic. The results indicated that in the progress of starting to participate in the GVC, the effect of technological progress of the GVC overweighed the scale effect of energy consumption, resulting in the growth of ETFP. However, due to the gradual reduction of technology dividends and the “low-end lock-in” situation, China was placed in the value chain by the developed countries, and the technological effect was gradually smaller than the scale effect of energy consumption. As a result, the increase in the total-factor productivity of energy was inhibited. At the same time, in the further examination of industry heterogeneity, the inverted U-shaped influence trend was more significant in high energy-consuming industries. The conclusions of this study can provide a new perspective and policy focus for China's participation in GVC to achieve the goal of increasing ETFP.
    Print ISSN: 2314-4386
    Electronic ISSN: 2314-4394
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2020-06-03
    Description: Rapid 3D radiation field evaluation is the key point of occupational dose optimization for design and operation of nuclear power plant. Based on the requirement analysis from designers and operators of nuclear power plant, three key technical issues are identified and solved through the development of the RPOS system, which are rapid calculation of 3D radiation field, reconstruction of the calculated 3D radiation field based on measured data, and occupational dose optimization based on 3D radiation field. Operational measurements of dose rate from in-service nuclear power plants are used to test the RPOS system, which shows that accurate 3D radiation field can be rapidly generated by the RPOS system and effectively used on the occupational dose optimization for on-site workers. The applications of the established rapid 3D radiation field evaluation technique on HPR1000 unit design provide evidence on its feasibility in a large scale, the improvement of radiation protection design efficiency and the enhancement of ALARA assessment and justification for nuclear power plants.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2020-05-31
    Description: The prediction of flow and heat transfer characteristics of liquid sodium with CFD technology is of significant importance for the design and safety analysis of sodium-cooled fast reactor. The accuracies and uncertainties of the CFD models should be evaluated to improve the confidence of the numerical results. In this work, the uncertainties from the turbulent model, boundary conditions, and physical properties for the flow and heat transfer of liquid sodium were evaluated against the experimental data. The results of uncertainty quantization show that the maximum uncertainties of the Nusselt number and friction coefficient occurred in the transition zone from the inlet to the fully developed region in the circular tube, while they occurred near the reattachment point in the backward-facing step. Furthermore, in backward-facing step flow, the maximum uncertainty of temperature migrated from the heating wall to the geometric center of the channel, while the maximum uncertainty of velocity occurred near the vortex zone. The results of sensitivity analysis illustrate that the Nusselt number was negatively correlated with the thermal conductivity and turbulent Prandtl number, while the friction coefficient was positively correlated with the density and Von Karman constant. This work can be a reference to evaluate the accuracy of the standard k-ε model in predicting the flow and heat transfer characteristics of liquid sodium.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2020-07-21
    Description: This article starts by introducing the ongoing South Africa electricity crisis followed by thermoelectricity, in which eighteen miscellaneous applicable case studies are structurally analysed in detail. The aim is to establish best practices for the R&D of an efficient thermoelectric (TE) and fuel cell (FC) CCHP system. The examined literature reviews covered studies that focused on the thermoelectricity principle, highlighting TE devices’ basic constructions, TEGs and TECs as well as investigations on the applications of thermoelectricity with FCs, whereby thermoelectricity was applied to recover waste heat from FCs to boost the power generation capability by ~7–10%. Furthermore, nonstationary TEGs whose generated power can be increased by pulsing the DC-DC power converter showed that an output power efficiency of 8.4% is achievable and that thicker TEGs with good area coverage can efficiently harvest waste heat energy in dynamic applications. TEG and TEC exhibit duality and the higher the TEG temperature difference, the more the generated power—which can be stabilised using the MPPT technique with a 1.1% tracking error. A comparison study of TEG and solar energy demonstrated that TEG generates more power compared to solar cells of the same size, though more expensively. TEG output power and efficiency in a thermal environment can be maximised simultaneously if its heat flux is stable but not the case if its temperature difference is stable. The review concluded with a TEC LT-PEM-FC hybrid CCHP system capable of generating 2.79 kW of electricity, 3.04 kW of heat, and 26.8 W of cooling with a total efficiency of ~77% and fuel saving of 43.25%. The presented research is the contribution brought forward, as it heuristically highlights miscellaneous thermoelectricity studies/parameters of interests in a single manuscript, which further established that practical applications of thermoelectricity are possible and can be innovatively applied together with FC for efficient CCHP applications.
    Print ISSN: 2356-735X
    Electronic ISSN: 2314-615X
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2020-06-17
    Description: The energy density of canode materials for lithium-ion batteries has a major impact on the driving range of electric vehicles. In order to study the charge-discharge characteristics and application feasibility of Li-NiMnCo lithium-ion batteries for vehicles, a series of charge and discharge experiments were carried out with different rates of Li-NiMnCo lithium-ion batteries (the ratio of nickel, cobalt, and manganese was 5 : 2 : 3) in constant-current-constant-voltage mode. Firstly, a set of charge-discharge experiments were performed on different types of single-cell lithium-ion batteries. The results show that, under temperature conditions, the charge and discharge voltage-capacity curves of the four different types of Li-NiMnCo lithium batteries mentioned in the paper are not much different, and the charge-discharge characteristic curves are similar, indicating that different types of batteries with the same material composition have similar charge and discharge characteristics. Subsequently, a series of charge and discharge tests with different rates were conducted on such ternary lithium batteries. The characteristic curves with different charge-discharge rates indicate that this new type of ternary lithium battery has high current charge and discharge capability and is suitable for use in new energy electric vehicles. In addition, by analyzing the voltage-SOC curve under different magnification conditions, it is known that there is an approximate linear relationship between the battery voltage value and the SOC within a certain SOC range. The SOC value can be evaluated by the battery voltage, which should be controlled within a reasonable range to avoid overcharge or overdischarge of battery, thereby, causing permanent damage to the battery.
    Print ISSN: 2356-735X
    Electronic ISSN: 2314-615X
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2020-07-20
    Description: The source term for the JRTR research reactor is derived under an assumed hypothetical severe accident resulting in generation of the most severe consequences. The reactor core is modeled based on the reactor technical design specifications, and the fission products inventory is calculated by using the SCALE/TRITON depletion sequence to perform burnup and decay analyses via coupling the NEWT 2-D transport lattice code to the ORIGEN-S fuel depletion code. Fifty radioisotopes contributed to the evaluation, resulting in a source term of 3.7 × 1014 Bq. Atmospheric dispersion was evaluated using the Gaussian plume model via the HOTSPOT code. The plume centerline total effective dose (TED) was found to exceed the IAEA limits for occupational exposure of 0.02 Sv; the results showed that the maximum dose is 200 Sv within 200 m from the reactor, under all the weather stability classes, after which it starts to decrease with distance, reaching 0.1 Sv at 1 km from the reactor. The radiation dose plume centerlines continue to the exceed international basic safety standards annual limit of 1 mSv for public exposure, up to 80 km from the reactor.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2020-07-17
    Description: Solar trackers represent an essential tool to increase the energy production of photovoltaic modules compared to fixed systems. Unlike previous technologies where the aim is to keep the solar rays perpendicular to the surface of the module and obtain a constant output power, this paper proposes the design and evaluation of two controllers for a two-axis solar tracker, which maintains the power that is produced by photovoltaic modules at their nominal value. To achieve this, mathematical models of the dynamics of the sun, the solar energy obtained on the Earth’s surface, the two-axis tracking system in its electrical and mechanical parts, and the solar cell are developed and simulated. Two controllers are designed to be evaluated in the solar tracking system, one Proportional-Integral-Derivative and the other by Fuzzy Logic. The evaluation of the simulations shows a better performance of the controller by Fuzzy Logic; this is because it presents a shorter stabilization time, a transient of smaller amplitude, and a lower percentage of error in steady-state. The principle of operation of the solar tracking system is to promote the orientation conditions of the photovoltaic module to generate the maximum available power until reaching the nominal one. This is possible because it has a gyroscope on the surface of the module that determines its position with respect to the hour angle and altitude of the sun; a data acquisition card is developed to implement voltage and current sensors, which measure the output power it produces from the photovoltaic module throughout the day and under any weather conditions. The results of the implementation demonstrate that a Fuzzy Logic control for a two-axis solar tracker maintains the output power of the photovoltaic module at its nominal parameters during peak sun hours.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2020-07-18
    Description: The unique structure of two-dimensional molybdenum disulfide (MoS2) with rich active sites makes it a promising catalyst, whereas it also brings structural instability. Surfactant-assisted synthesis of MoS2 can be regarded as a simple way to regulate the microstructure. In this work, the surfactant additives were adopted to optimize the microstructure of MoS2/sepiolite nanocomposite, and the effects of surfactants type and concentration were investigated. For the sample prepared with 1 mol/L sodium dodecyl benzene sulfonate (SDBS), it exhibits the highest intensity for the peak of MoS2 at 14.2°, highly dispersed MoS2 nanosheet on the sepiolite, the lowest absorption intensity of Rhodamine B (RhB) at 553 nm of the wavelength, and the highest photocatalytic activity which is 2.5 times and 4.2 times higher than those prepared with 1 mol/L hexadecyl trimethyl ammonium bromide (CTAB) and 1 mol/L polyvinyl pyrrolidone (PVP) after a 150-minute irradiation, respectively. The above results suggest SDBS is the optimal surfactant to optimize the microstructure of MoS2/sepiolite nanocomposite. This work could provide new insights into the fabrication of high-quality MoS2-based nanocomposite.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2020-06-25
    Description: Decentralized power generation efficaciously merges technological advances in a rapidly changing face of power networks introducing new power system components, advanced control, renewable sources, elegant communication, and web technology paving the way for the so called smart grids. Distributed generation technology lies at the intersection point of power systems, power electronics, control engineering, renewable energy, and communication systems which are not mutually exclusive subjects. Key features of renewable integration in a distribution network include loss minimization, voltage stability, power quality improvement, and low-cost consumption resulting from abundant natural resources such as solar or wind energy. In this research work, a case study has been carried out at a 132 kV grid station of Layyah, Pakistan, which has active losses, reactive losses, low power factor, low voltage on the demand side, and overloaded transformers and distribution lines. As a result, power outage issue is frequent on the consumer side. To overcome this issue, a simulation of load flow of this system is performed using the Newton-Raphson method due to its less computational time, fewer iterations, fast convergence, and independence from slack bus selection. It finds the harsh condition in which there were 23 overloaded transformers, 38 overloaded distribution lines, poor voltage profile, and low power factor at the demand side. There is a deficit of 24 MW in the whole system along with 4.58 MW active and 12.30 MVAR reactive power losses. To remove power deficiency, distributed generation using solar plants is introduced to an 11 kV distribution system with a total of 24 units with each unit having a capacity of 1 MW. Consequently, active and reactive power losses are reduced to 0.548 MW and 0.834 MVAR, respectively. Furthermore, the voltage profile improves, the power factor enhances, and the line losses reduce to a great extent. Finally, overloaded transformers and distribution lines also return to normal working conditions.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2020-05-31
    Description: The majority of the Ethiopian population lives in rural areas and uses wood for domestic energy consumption. Using wood and fuel for domestic uses accounts for deforestation and health problems, which is also dangerous for the environment. The Ethiopian government has been planning to generate power from available renewable resources around the community. Therefore, determining the water surface potential of energy harvesting with floating solar photovoltaic system by using geographic information system is used to support decision-makers to use high potential areas. To identify useable areas for floating solar photovoltaic, factors that affect the usability were identified and weighted by using Analytical Hierarchy Processes. Thus, weighted values and reclassified values were multiplied to do the final usability map of floating solar photovoltaic with ArcGIS software. Due to the improper location of floating solar photovoltaic, efficiency is dropped. Therefore, the objective of this study was to identify the most usable surface of water bodies in Amhara regional, state irrigation dams for generating electrical power. The usability of the water surface for floating solar photovoltaic power plant was 63.83%, 61.09%, and 57.20% of Angereb, Rib, and Koga irrigation dams, respectively. The majority of the usable areas were found in the middle of the water surface. Nature water surface is a key factor in generating solar energy; it affects the floating solar photovoltaic and irradiance coming to the solar photovoltaic panel surface.
    Print ISSN: 2356-735X
    Electronic ISSN: 2314-615X
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2020-06-05
    Description: Over 17% of the world’s population lack access to electricity, the majority being in rural areas of sub-Saharan Africa and South Asia. Microgrid technologies are a promising solution towards rural and remote area electrification; however, ever-increasing electricity demand remains a big challenge leading to pronounced power outages. Demand-side management is an indispensable tool towards addressing the challenges. This paper employs a mathematical model based on incentives and time-of-use rates to simulate daily power usage pattern of residential customers using data collected from an isolated village Ngurdoto solar microgrid, Arusha, Tanzania. Customer responsiveness on the increase in price was evaluated based on the concept of price elasticity of demand. Using two demand response strategies, namely, load shifting (LS) and scheduled load reduction (SLR), the results reveal that LS can achieve up to 4.87% energy-saving, 19.23% cost-saving, and about 31% and 19% peak reduction and power factor improvement, respectively. SLR method resulted in about 19% energy-saving, 49% cost-saving, and 24% power factor improvement. Thus, the results presented in this study may lead to a more efficient and stable system than the current state in developing countries’ utility.
    Print ISSN: 2314-4386
    Electronic ISSN: 2314-4394
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2020-06-26
    Description: In pebble-bed high temperature gas-cooled reactor, gaps widely exist between graphite blocks and carbon bricks in the reactor core vessel. The bypass helium flowing through the gaps affects the flow distribution of the core and weakens the effective cooling of the core by helium, which in turn affects the temperature distribution and the safety features of the reactor. In this paper, the thermal hydraulic analysis models of HTR-10 with bypass flow channels simulated at different positions are designed based on the flow distribution scheme of the original core models and combined with the actual position of the core bypass flow. The results show that the bypass coolant flowing through the reflectors enhances the heat transfer of the nearby components efficiently. The temperature of the side reflectors and the carbon bricks is much lower with more side bypass coolant. The temperature distribution of the central region in the pebble bed is affected by the bypass flow positions slightly, while that of the peripheral area is affected significantly. The maximum temperature of the helium, the surface, and center of the fuel elements rises as the bypass flow ratio becomes larger, while the temperature difference between them almost keeps constant. When the flow ratio of each part keeps constant, the maximum temperature almost does not change with different bypass flow positions.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2020-09-19
    Description: Arsenic trisulfide (As2S3) has been found to be an excellent glass former at high temperature and pressure. However, there is still some scarcity for the elastic and phonon behavior of the orpiment phase. By using the Dreiding force field of the geometry optimization computations, we investigated the elastic constants, mechanical moduli, and the phonon dispersion of orpiment As2S3 under the pressure from 0 to 5 GPa. Some results of the elastic parameters of orpiment-As2S3 at 0 GPa are consistent with the experimental data. The phonon dispersions for orpiment As2S3 under pressure are also reasonable with previous calculations.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2020-09-22
    Description: CAP1400 nuclear island structure is an advanced and novel nuclear power plant structure. In order to explore the seismic response characteristics of CAP1400 nuclear island structure on soft rock sites, a three-dimensional refined nonlinear seismic response analysis model was established for a soft rock foundation-nuclear island structure system using ABAQUS software. The influences of the input ground motion intensity and the frequency spectrum characteristics on the acceleration, relative displacement, and floor response spectrum, as well as the critical shear wave velocity of nonbedrock sites for CAP1400 nuclear island structure, were proposed. The results suggested that the increasing amplitude of the peak acceleration and relative displacement of nuclear island structure decreased as the soft rock site entered a nonlinear state, and the high-frequency components of the input ground motion became more abundant. Specifically, the earthquake response was the largest at the cooling water tank on the top of the shield building, which was the focus of the seismic research on nuclear island structure. Due to the influence of the ground motion frequency spectrum characteristics and the nonbedrock site effect, the peak acceleration, peak relative displacement, and acceleration response spectrum of the nuclear island structure showed different changing trends for the near-field and far-field ground motions. Based on the influence of the site shear wave velocity on the seismic response of nuclear island structure, it was recommended that the critical shear wave velocity of nonbedrock sites for CAP1400 nuclear island structure should be 1250 m/s, and the nuclear island structure-foundation dynamic interaction could be ignored at this time. The research conclusions could provide some technical support and theoretical basis for the construction and seismic performance research of CAP1400 and other nuclear power plants.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2020-09-22
    Description: Solar resource data derived from satellite imagery are widely available nowadays, either as an open-source or paid database. This article is intended to assess open-source databases, which cover the region of Indonesia. Here, four known solar resource databases, which spatially cover the Indonesian archipelago, have been used, namely, Prediction of Worldwide Energy Resource (POWER), Surface Solar Radiation–Heliosat-East (SARAH-E), CM SAF Cloud, Albedo, Radiation edition 2 (CLARA-A2), and SolarGIS. In addition, a minor portion of the Meteonorm database by Meteotest, around five sample points across Indonesia, has been assessed in terms of coherency to the four mentioned databases. Correlation coefficient and relative bias of the multiyear monthly mean annual cycle global horizontal irradiation (GHI) between pairs of databases are inspected. Three out of four databases are then validated through the available irradiation ground measurement data provided by the World Radiation Data Centre (WRDC). The correlation between each pair varies mostly between 0.7 and 1, which shows that the four databases to a certain extent agree on how the intermonthly variation would behave throughout the year. On the other hand, the validation result reveals that the three databases, i.e., POWER, CLARA-A2, and SARAH-E, are suffering from positive bias error ranging from 3% to 7%. Despite that fact, the correlation between measured and estimated values is still acceptable with SARAH-E showing the best performance among the three. Careful selections and adjustment enable the possibility of these databases to be utilized as a tool for depicting interannual and intermonthly variations of solar irradiation throughout the Indonesian archipelago.
    Print ISSN: 2314-4386
    Electronic ISSN: 2314-4394
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2020-09-22
    Description: Cu2Zn1−yFeySnS4-based solar cells with different mole fractions of iron have been analyzed using numerical simulations in this study. The analysis deals with the effect of the iron content on the overall electrical performance of solar cells. Results revealed that the Voc is affected by the increase of the iron content even if it improves the other parameters. We found that the CZFTS solar cell with a mole fraction of iron equal to 1 (CFTS) showed the best results in terms of power conversion efficiency (PCE). Moreover, variations of several structural and physical parameters of the buffer CdS and the best absorber CFTS on the overall electrical characteristics of the cell were investigated. Simulations showed promising results with PCE of 20.35%, Jsc of 26.09 mA/cm2, Voc of 0.93 V, and FF of 83.93%. The results obtained can serve as a basis for the design and manufacture of high-efficiency CZFTS solar cells.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2020-09-23
    Description: Solar energy is a renewable type, clean, and inexhaustible which is sufficiently available on the Algerian territory. The energy received daily on a horizontal surface of 1 m2 is in the order of 5 kWh over almost the whole Algerian territory; the duration of sunshine surpasses 2000 hours annually and can reach 3900 hours on the highlands and the Sahara. The importance of this work is based on exploiting solar energy to produce electricity. This study is based on the experimental exploitation of solar energy using solar tree’s prototype suggestion. This new model is focused to replace the leaf of a tree by the solar cell, starting by examining the solar field and physical phenomenon related with it; the description of cell photovoltaic comes after; and finally, the dimension of the solar system and the experimental studies are virtually released in the University of M’sila. In this work, a prototype of new artificial solar tree is proposed experimentally by using material available in the local market: 25 solar panels, metal support, electrical queues, regulator, and battery. The results highlight a power improvement in the case of the proposed new model (solar tree) compared to the traditional one provided (solar panel), for the specified time range between 8 am and 2:30 pm. On the other hand, the traditional model values improve if the time dimension is extended from 2:30 pm to 6:00 pm. This is due to the temperature of the region and the presence of interstellar spaces between the cells of the solar tree.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2020-09-17
    Description: This paper presents a new multi-photovoltaic panel measurement and analysis system (PPMAS) developed for measurement of atmospheric parameters and generated power of photovoltaic (PV) panels. Designed system presented with an experimental study evaluates performance of four new and four 5-year-old PV panel technologies which are based on polycrystalline (Poly), monocrystalline (Mono), copper indium selenide (CIS), and cadmium telluride (CdTe) in real time, under same atmospheric conditions. The PPMAS system with the PV panels is installed in Yildirim Beyazit University, Ankara Province, in Turkey. The designed PPMAS consists of three different subsystems which are (1) photovoltaic panel measurement subsystem (PPMS), (2) meteorology measurement subsystem (MMS), and (3) data acquisition subsystem (DAS). PPMS is used to measure the power generation for PV panels. MMS involves different types of sensors, and it is designed to determine atmospheric conditions including wind speed, wind direction, outdoor temperature, humidity, ambient light, and panel temperatures. The measured values by PPMS and MMS are stored in a database using DAS subsystem. In order to improve the measurement accuracy, PPMS and MMS are calibrated. This study also focuses on outdoor testing performances of four new and four 5-year-old PV panels. Average monthly panel efficiencies are estimated as 8.46%, 8.11%, 5.65%, and 3.88% for new Mono, new Poly, new CIS, and new CdTe PV panels, respectively. Moreover, average monthly panel efficiencies of old panels are calculated as 8.22%, 7.85%, 5.35%, and 3.63% in the same order. Test results obtained from the experimental system are also statistically examined and discussed to analyze the performance of PV panels in terms of monthly panel efficiencies.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2020-09-24
    Description: The experiments are carried out in a three-dimensional channel with a screw conveyor, which plays the role of granular drives for the granular flow system and determines the injection of granular in the test target section. The jam-to-dense transition of granular flow is studied with the different inclination angle. The results show that, with a fixed diameter of hopper orifice and initial filling position, there is a change from jam to dense when the inclination angle larger than 22°. Variation of the flow rate with elevated frequency of the screw conveyor is further studied. The flow pattern is changed from dilute to dense with increasing rotation frequency of the screw rod. When the rotation frequency is larger than 5 Hz, the flow is dense. The dynamic balance of the interface between dilute to dense granular is observed in the main target section. We further research the dynamic interface by measuring the highest and lowest location with time and also simulate the gravity flow rate and screw conveyor flow rate with EDEM. From the results, we find that the interface between dilute flow and dense flow is influenced by the combined action of crew conveyor flow and dense gravity flow.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2020-09-25
    Description: Uncertainty analyses of fission product yields are indispensable in evaluating reactor burnup and decay heat calculation credibility. Compared with neutron cross section, there are fewer uncertainty analyses conducted and it has been a controversial topic by lack of properly estimated covariance matrix as well as adequate sampling method. Specifically, the conventional normal-based sampling method in sampling large uncertainty independent fission yields could inevitably generate nonphysical negative samples. Cutting off these samples would introduce bias into uncertainty results. Here, we evaluate thermal neutron-induced U-235 independent fission yields covariance matrix by the Bayesian updating method, and then we use lognormal-based sampling method to overcome the negative fission yields samples issue. Fission yields uncertainty contribution to effective multiplication factor and several fission products’ atomic densities at equilibrium core of pebble-bed HTGR are quantified and investigated. The results show that the lognormal-based sampling method could prevent generating negative yields samples and maintain the skewness of fission yields distribution. Compared with the zero cut-off normal-based sampling method, the lognormal-based sampling method evaluates the uncertainty of effective multiplication factor and atomic densities are larger. This implies that zero cut-off effect in the normal-based sampling method would underestimate the fission yields uncertainty contribution. Therefore, adopting the lognormal-based sampling method is crucial for providing reliable uncertainty analysis results in fission product yields uncertainty analysis.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2020-08-11
    Description: Copper indium gallium selenide (CIGS) thin-film battery has high photoelectric conversion efficiency, better spectral dispersion ability, and weak light-adsorption characteristics, as well as shape and size flexibility. CIGS-BIPV (building integrated photovoltaic) has attracted more and more research attention with the advantages of good curvature, form and color diversity, and broad application prospects. This paper uses the classical “Porter’s Five Forces Model” to make a preliminary analysis of the competitiveness of CIGS-BIPV products. A more specific competitiveness analysis model is further built with the index modeling method, and the competitiveness of CIGS-BIPV products is thoroughly analyzed from qualitative and quantitative perspectives. Six primary research indicators are used, i.e., safety index, building aesthetics index, economic index, energy-saving and environmental protection index, innovation index, and sales force index. The weight analysis of index modeling shows that compared with a glass curtain wall, exterior stone, and silica-based BIPV, CIGS-BIPV is characterized by high product competitiveness, acceptable cost, attractive appearance, environmental benignity, high technical quality, and certain economic benefits. The product competitiveness of CIGS-BIPV could be further enhanced through the construction and promotion of sales channels.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2020-07-31
    Description: Tremendous work has been done in the Light Water Reactor (LWR) Modelling and Simulation (M&S) uncertainty quantification (UQ) within the framework of the Organization for Economic Cooperation and Development (OECD)/Nuclear Energy Agency (NEA) LWR Uncertainty Analysis in Modelling (UAM) benchmark, which aims to investigate the uncertainty propagation in all M&S stages of the LWRs and to guide uncertainty and sensitivity analysis methodology development. The Best-Estimate Plus Uncertainty (BEPU) methodologies have been developed and implemented within the framework of the LWR UAM benchmark to provide a realistic predictive simulation capability without compromising the safety margins. This paper describes the current status of the methodological development, assessment, and integration of the BEPU methodology to facilitate the multiscale, multiphysics LWR core analysis. The comparative analysis of the results in the stand-alone multiscale neutronics phase (Phase I) is first reported for understanding the general trend of the uncertainty of core parameters due to the nuclear data uncertainty. It was found that the predicted uncertainty of the system eigenvalue is highly dependent on the choice of the covariance libraries used in the UQ process and is less sensitive to the solution method, nuclear data library, and UQ method. High-to-Low (Hi2Lo) model information approaches for multiscale M&S are introduced for the core single physics phase (Phase II). In this phase, the other physics (fuel and moderator), providing feedback to neutronics M&S in a LWR core, and time-dependent phenomena are considered. Phase II is focused on uncertainty propagation in single physics models which are components of the LWR core coupled multiphysics calculations. The paper discusses the link and interactions between Phase II to the multiphysics core and system phase (Phase III), that is, the link between uncertainty propagation in single physics on local scale and multiphysics uncertainty propagation on the core scale. Particularly, the consistency in uncertainty assessment between higher-fidelity models implemented in fuel performance codes and the rather simplified models implemented in thermal-hydraulics codes, to be used for coupling with neutronics in Phase III is presented. Similarly, the uncertainty quantification on thermal-hydraulic models is established on a relatively small scale, while these results will be used in Phase III at the core scale, sometimes with different codes or models. Lastly, the up-to-date UQ method for the coupled multiphysics core calculation in Phase III is presented, focusing on the core equilibrium cycle depletion calculation with associated uncertainties.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2020-08-01
    Description: Self-irradiation can affect durability of glasses used to immobilize high-level nuclear waste (HLW). The stability of glasses can also be indirectly affected by the radiolytic changes in contact water leading to decrease in its pH although this is unlikely to occur for disposal systems where the interaction of groundwater with glass is delayed to times when radiation dose rates are decreased to levels insignificant to cause such effects. Besides, interaction of the water influenced by radiation with other repository protective elements (container and bentonite) will suppress the radiolytic changes. Literature analysis shows practical absence or very weak effect of self-irradiation on structure and characteristics of borosilicate glasses with typical content of nuclear waste. Data for aluminophosphate glass used in Russia have showed that, after γ-irradiation with a dose of 6.2·107 Gy, the leaching rates of elements were decreased approximately twice relatively to pristine samples.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2020-07-28
    Description: CH3NH3PbI3-xClx has been studied experimentally and has shown promising results for photovoltaic application. To enhance its performance, this study investigated the effect of varying thickness of FTO, TiO2, and CH3NH3PbI3-xClx for a perovskite solar cell with the structure glass/FTO/TiO2/CH3NH3PbI3-xClx/Spiro-OMeTAD/Ag studied using SCAPS-1D simulator software. The output parameters obtained from the literature for the device were 26.11 mA/cm2, 1.25 V, 69.89%, and 22.72% for Jsc, Voc, FF, and η, respectively. The optimized solar cell had a thickness of 100 nm, 50 nm, and 300 nm for FTO, TiO2, and CH3NH3PbI3-xClx layers, respectively, and the device output were 25.79 mA/cm2, 1.45 V, 78.87%, and 29.56% for Jsc, Voc, FF, and η, respectively, showing a remarkable increase in FF by 8.98% and 6.84% for solar cell efficiency. These results show the potential of fabricating an improved CH3NH3PbI3-xClx perovskite solar cell.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2020-08-13
    Description: Photovoltaic solar energy is one of the most important renewable energy sources. However, the production of this energy is nonlinear and varies depending on atmospheric parameters. Therefore, the operating point of the photovoltaic panel (PV) does not always coincide with the maximum power point (MPP). A mechanism that allows the research of the maximum power point known as maximum power point tracking (MPPT) algorithm is then needed to yield the maximum power permanently. This paper presents an intelligent control technique based on the ESC (Extremum Seeking Control) method for MPPT under varying environmental conditions. The proposed technique is an improvement of the classical ESC algorithm with an additional loop in order to increase the convergence speed. A detailed stability analysis is given not only to ensure a faster convergence of the system towards an adjustable neighborhood of the optimum point but also to confirm a better robustness of the proposed method. In addition, simulation results using Matlab/Simulink environment and experimental results using Arduino board are presented to demonstrate that the proposed modified ESC method performs better than the classical ESC under varying atmospheric conditions.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2020-08-05
    Description: Titanium dioxide (TD) and graphene oxide (GO) were synthesized by sol-gel and improved Hummers method, respectively. This study shows the results of the incorporation through four different conditions (sol-gel, sol-gel and ultrasonic, annealed, and UV radiation, C1 to C4, respectively). It was observed that a homogeneous incorporation of TD on sheets of GO was obtained satisfactorily. The composites of TiO2/GO were characterized using different techniques such as X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), energy dispersive X-ray spectroscopy (EDS), Raman spectroscopy, and infrared spectroscopy (IR). The photocatalytic activity of the composites was determined from the degradation of the dye azo tartrazine using UV and solar radiation. The best incorporation of TD nanoparticles on GO was obtained with condition C3 (thermal incorporation method) at a temperature of 65°C. This shows a uniformity in the size and shape of the TD as well as an excellent adherence to the sheet of GO. This addition is accomplished by ionic bonding in the presence of electrostatic Coulomb forces. The C3 composite degraded the tartrazine dye using UV radiation and sunlight. With the latter, the degradation time was three times faster than using UV light.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2020-08-05
    Description: Improving the efficiency of photocatalytic water splitting to produce hydrogen is currently a hot topic in research. TiO2 nanosheets are a good carrier of photocatalytic materials and have become attractive materials in the new century because of their high active surface exposure characteristics and special morphology. Considering the advantages and disadvantages of conventional chemical and physical methods that are used for preparing TiO2 nanosheets, an optimized scheme for the preparation of TiO2 nanosheets via hydrothermal calcination was proposed. X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and UV-visible diffuse reflection absorption spectra (DRS) were used to characterize the structure and morphology of the TiO2 nanosheets, and differences in the photocatalytic water splitting hydrogen production activity of the different calcination temperatures were compared. The suitable calcination temperature of the TiO2 nanosheets was 400°C, and the hydrogen production rate was 270 μmol/h, which indicated that the sheet structure was beneficial for improving the photocatalytic water splitting hydrogen production performance of the material. It is hoped that this work will support the regulation of the surface morphology and surface modification of nanomaterials.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2020-08-18
    Description: This work is aimed at achieving a simple and reduced-cost configuration of photovoltaic (PV) water pumping system (PVWPS) using an induction motor with high efficiency. The proposed PV system is composed of two stages of converters which the first one ensures the maximum power point by controlling the duty ratio of boost converter using variable step size incremental conductance (VSS INC) technique. Fuzzy logic control based on direct torque control is proposed to serve the purpose of operating an induction motor. Moreover, the combining of these proposed control strategies has been never discussed. The proposed control scheme is modeled and simulated in detail under MATLAB/Simulink software to evaluate its performance under fast variations of irradiance and daily climatic profile. The obtained simulation results using the suggested control strategies are compared to those using the most used method in the literature (variable step size perturb and observe (VSS P&O) algorithm). The simulation results indicate that the proposed PVWPS performed best in terms of the time of response; pumped water, flux ripples, and the stator currents are reduced.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2020-08-17
    Description: Ghana thought of nuclear energy early in the 1960s but has not been able to realize this dream of generating electricity from nuclear power. Ghana’s electricity generation dates back to the Gold Coast era where the main source of electricity supply (isolated diesel generators) was owned by industrial establishments, municipalities, and other institutions. The electricity sector has developed over the years and has diversified its power generation development to take advantage of available and sustainable sources of energy, mainly hydro, natural gas, liquefied petroleum products, and renewables. These sources sought to increase the electricity production capacity in the country, but unfortunately, it has not been able to catch up with the rate of economic growth, urbanization, industrialization, and rural electrification projects. This has led to Ghana’s persistent energy crisis, with inadequate and unpredictable power supply coupled with erratic and prolonged cuts of electricity to homes, industries, and businesses which is now colloquially referred to in the local parlance as “dumsor.” The Government of Ghana and key stakeholders have therefore decided to add nuclear energy to the energy mix of the country to complement the country’s two main energy sources being hydro and thermal electricity. The details of the developments in the electricity sector leading to the choice of nuclear energy as the best solution for Ghana have been outlined.
    Print ISSN: 2356-735X
    Electronic ISSN: 2314-615X
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2020-08-17
    Description: Grid extension from the distribution network is being used to meet the demand for rural electricity all over the world. Due to the extra cost of extending electric lines to rural villages, it is not feasible as the installing and commissioning costs are directly related to several constraints such as distance from the main grid, the land location, utilities to be used, and the size of the approximate load. Consequently, it becomes a challenge to apply technoeconomic strategies for rural electrification. Therefore, considering the above issues of rural electrification through grid power, the renewable energy system can be an attractive solution. This research analyzes different types of loads considering domestic, industrial, and agricultural requirements for a remote village in a developing country like Bangladesh. In this paper, four types of demand scenarios are developed considering the income level of inhabitants of the village. The investigation identifies the optimal scope for renewable energy-based electrification and provides a suitable technoeconomic analysis with the help of HOMER software. The obtained results show that a combined architecture containing solar panel, diesel generator, and battery power is a viable solution and economically beneficial. The optimal configuration suggested for the primary scenario consists of 25 kW diesel generators to fulfill the basic demand. The hybrid PV-diesel-battery system becomes the optimal solution while the demand restriction is removed for secondary, tertiary, and full-option scenarios. Commercial and productive loads are considered in the load profile for these three scenarios of supply. For the primary scenario of supply, the electricity cost remains high as $0.449/kWh. On the other hand, the lowest electricity cost ($0.30/kWh) is obtained for the secondary scenario. Although the suggested optimal PV-diesel-battery might not reduce the cost of electricity (COE) and NPC significantly, it is capable to reduce dependency on diesel utilization. Hence, the emission of carbon is reduced due to less utilization of diesel that helps to minimize the greenhouse effect on the environment.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...