ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-01-30
    Description: Abstract
    Description: The Austrian Geoid 2008 is the official geoid model for Austria provided by the Austrian Federal Office for Metrology and Surveying (BEV). This model describes the transformation surface (EPSG:9276) between ellipsoidal heights w.r.t. the GRS80 ellipsoid (EPSG:4937) and orthometric heights (EVRF2000 Austrian, EPSG:9274). The grid is defined in ETRS89 (EPSG:4258), covering the area within 46.3° 〈 latitude 〈 49.1° and 9.5° 〈 longitude 〈 17.3°, with a spacing of 1.5' in latitude and 2.5' in longitude. The model is based on 14001 gravity anomaly values, 672 deflections of the vertical and 170 GPS/levelling observations. The computation was performed in the framework of a remove-restore procedure, modelling the long wavelengths of the gravity field by the EIGEN-GL04S global model, and the short wavelengths by the Airy-Heiskanen model with a standard density of 2670 kg/m3. A digital terrain model with a resolution of 44 x 49 m was assembled as a combination of regional Austrian and Swiss models, as well as SRTM for the neighboring countries. The Least Squares Collocation (LSC) technique was used for the geoid computation, interpolating the empirical covariance of the residual quantities by the Tscherning-Rapp analytic covariance model. Special care was devoted to the optimal relative weighting of the input data, namely to the noise covariance models, especially concerning the GPS/levelling observations. The resulting hybrid geoid model was assessed by comparing it with independent GPS/levelling information, leading to an estimated accuracy of the order of 2-3 cm over the whole Austrian territory. The model is also available at the BEV open data portal, and more information about it can be found on the BEV website. The geoid model is provided in ISG format 2.0 (ISG Format Specifications), while the file in its original data format is available at the model ISG webpage.
    Description: Other
    Description: The International Service for the Geoid (ISG) was founded in 1992 (as International Geoid Service - IGeS) and it is now an official service of the International Association of Geodesy (IAG), under the umbrella of the International Gravity Field Service (IGFS). The main activities of ISG consist in collecting, analysing and redistributing local and regional geoid models, as well as organizing international schools on the geoid determination (Reguzzoni et al., 2021).
    Keywords: Geodesy ; Geoid model ; ISG ; Least Squares Collocation ; Austria ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEODETICS 〉 GEOID CHARACTERISTICS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-01-30
    Description: Abstract
    Description: The Austrian Geoid 2008 is the official geoid model for Austria provided by the Austrian Federal Office for Metrology and Surveying (BEV). This model describes the transformation surface (EPSG:9277) between ellipsoidal heights w.r.t. the Bessel ellipsoid (datum MGI, EPSG:9267) and orthometric heights (EVRF2000 Austrian, EPSG:9274). The grid is defined in MGI (EPSG:4312), covering the area within 46.3° 〈 latitude 〈 49.1° and 9.5° 〈 longitude 〈 17.3°, with a spacing of 1.5' in latitude and 2.5' in longitude. The model is based on 14001 gravity anomaly values, 672 deflections of the vertical and 170 GPS/levelling observations. The computation was performed in the framework of a remove-restore procedure, modelling the long wavelengths of the gravity field by the EIGEN-GL04S global model, and the short wavelengths by the Airy-Heiskanen model with a standard density of 2670 kg/m3. A digital terrain model with a resolution of 44 x 49 m was assembled as a combination of regional Austrian and Swiss models, as well as SRTM for the neighboring countries. The Least Squares Collocation (LSC) technique was used for the geoid computation, interpolating the empirical covariance of the residual quantities by the Tscherning-Rapp analytic covariance model. Special care was devoted to the optimal relative weighting of the input data, namely to the noise covariance models, especially concerning the GPS/levelling observations. The resulting hybrid geoid model was assessed by comparing it with independent GPS/levelling information, leading to an estimated accuracy of the order of 2-3 cm over the whole Austrian territory. The model is also available at the BEV open data portal, and more information about it can be found on the BEV website. The geoid model is provided in ISG format 2.0 (ISG Format Specifications), while the file in its original data format is available at the model ISG webpage.
    Description: Other
    Description: The International Service for the Geoid (ISG) was founded in 1992 (as International Geoid Service - IGeS) and it is now an official service of the International Association of Geodesy (IAG), under the umbrella of the International Gravity Field Service (IGFS). The main activities of ISG consist in collecting, analysing and redistributing local and regional geoid models, as well as organizing international schools on the geoid determination (Reguzzoni et al., 2021).
    Keywords: Geodesy ; Geoid model ; ISG ; Least Squares Collocation ; Austria ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEODETICS 〉 GEOID CHARACTERISTICS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-08
    Description: Abstract
    Description: The Iquique Local Network (ILN), a temporal network of broadband and short period seismic stations has been operating in Northern Chile since 2009. The aim of this installation was to locally densify the permanent seismic installation of the Integrated Plate Boundary Observatory in Chile (IPOC), with the main goal to decrease the magnitude of detected earthquake, to improve the hypocentral location accuracy, to allow a more accurate investigation of seismic source parameters, and to analyse proposed seismogenic structures of the Northern Chile seismic gap. The network setup evolved with time, with different geometries at different installation phases, aiming to study different seismicity features. In the first phase, started in 2009 and operational since 2010 until autumn 2013, the network had a sparse configuration, targeting a broad region extending from 19.5° S in the North to approximately 21.3° S South of Iquique. In the following stage, operational until fall 2017, most broadband stations were rearranged into a small aperture seismic array (PicArray) close to the village of Pica, to monitor with array techniques the shallow seismicity at the plate interfacer, intermediate and deep focus seismicity. Waveform data are available from the GEOFON data centre, under network code IQ, and arefully open.
    Keywords: geophysics ; seismology ; seismic noise ; earthquakes ; seismic hazard ; broad band ; velocity ; displacement ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~1T
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-11-03
    Description: Abstract
    Description: SeisComP is a seismological software for data acquisition, processing, distribution and interactive analysis. The seismological software package has evolved within a decade from pure acquisition modules to a fully featured real-time earthquake monitoring software. The SeedLink protocol for seismic data transmission has been the core of SeisComP from the very beginning. Later additions included simple, purely automatic event detection, location and magnitude determination capabilities. Especially within the development of the 3rd-generation SeisComP, also known as SeisComP3 automatic processing capabilities have been augmented by graphical user interfaces (GUIs) for visualization, rapid event review and quality control.Communication between the modules is achieved using a dedicated messaging system that allows distributed computing and remote review. For seismological metadata exchange export/import tools to/from QuakeML and FDSN StationXML are available, which also provide convenient interfaces with 3rd-party software. The initial SeisComP3 development took place at GFZ between 2006 and 2008 within the GITEWS project (German Indonesian Tsunami Early Warning System) and continued with increasing engagement of gempa GmbH, a software company established by the initial development team of the GFZ.
    Keywords: real-time ; data ; processing ; earthquakes ; monitoring ; fdsn ; standards ; seismology ; C++ ; python ; AGPL ; open ; EARTH SCIENCE SERVICES 〉 DATA ANALYSIS AND VISUALIZATION ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; EARTH SCIENCE
    Language: English
    Type: Software
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    GFZ Data Services
    Publication Date: 2024-01-26
    Description: Abstract
    Description: As part of the INDEPTH IV passive-source experiment from May 2007 until October 2008, 50 broadband seismographs (35 from GIPP, Germany and 15 from SEIS-UK) were deployed along two profiles across the Kunlun mountains and the Jinsha river suture in northeast Tibet. The aims of the project are to determine the crust and upper mantle structure beneath northeast Tibet, detect the sharpness of any steps in major crustal boundaries (e.g. Moho) and detect how deep major faults penetrate in order to examine the viability of the crustal flow hypothesis. The data from the 35 GIPP seismographs are archived at GEOFON at https://geofon.gfzpotsdam.de/waveform/archive/network.php?ncode=XO The data from the 15 SEIS-UK seismographs are archived at the IRIS-DMC at http://ds.iris.edu/mda/XO?timewindow=2007-2009. Waveform data are available from the GEOFON data centre, under network code XO.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Earth structure ; Tibet ; passive seismology ; Monitoring system ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~200G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    GFZ Data Services
    Publication Date: 2024-02-23
    Description: Abstract
    Description: A temporary local seismic network was installed in the basin of Norcia (Italy) in January 2009 and operated until May 2009. Several recordings collected by the network are earthquakes of the 2009, Mw 6.3 L'Aquila seismic sequence. The seismic equipments consisted of fifteen Earth-Data Loggers (24 bit) connected to Mark L4-3D sensors (1Hz). The stations continuously recorded at a rate of 100 samples per second, and the timing was provided by a GPS link. Waveform data are available from the GEOFON data centre.
    Keywords: Seismic waveforms ; Monitoring system ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: Approximately 80 GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-23
    Description: Abstract
    Description: The Teisseyre-Tornquist Zone (TTZ) as part of the Trans-European Suture Zone (TESZ) is one of the most prominent suture zones in Europe separating the young Palaeozoic platform from the much older Precambrian East European craton. The knowledge of deep structure of the TESZ is very important for the understanding of various tectonic processes in Europe. The PASSEQ 2006-2008 seismic experiment was performed thanks to a big international effort of 17 institutions from 10 countries. A total of 139 three-component temporary short-period and 49 temporary broadband seismic stations provided continuous recordings between May 2006 and June 2008 with the main period of recordings during 2007, in an array about 1200 km long and 400 km wide running from Germany through the Czech Republic and Poland to Lithuania. The average spacing between all stations was about 60 km, attaining about 20 km in the central part. The configuration of the seismic network was a compromise among needs of different seismic methods. The dense central profile allows the use of modern passive 2-D imaging techniques, while the distribution of broadband sensors was designed for surface wave and receiver function studies of the upper mantle down to the transition zone in a wide frequency range. Waveform data is fully open, with network code 7E.
    Keywords: Seismic waveforms, PASSEQ ; Germany ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: Approx 1684 GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-04-26
    Description: Abstract
    Description: Main aim of the project was to investigate the local seismicity (distribution and kinematics) within and around the Fergana basin and the Southern Tien Shan in Southern Kyrgistan. In order to achieve this goal a temporary local network was installed between 2009 and 2010. The results derived from this project contributed to decipher the relationship between geodynamics, neotectonic block structures and the occurrence of landslides in this region. Waveform data is available from the GEOFON data centre, under network code 6C, and is fully open.
    Keywords: EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS ; Passive seismic ; Seismometers ; Velocity ; MiniSEED ; GIPP
    Type: Dataset , Seismic Network
    Format: ~300G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...