ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.04. Geology::04.04.09. Structural geology  (17)
  • 04.08. Volcanology  (9)
  • Seismogenic sources  (4)
  • Società Geologica Italiana  (20)
  • Wiley  (9)
Collection
  • 1
    Publication Date: 2024-04-08
    Description: Vulcano is one of the seven volcanic islands composing the Aeolian Islands archipelago (Southern Italy), which also includes three other active volcanoes. The island was orig-inally a stratovolcano like Stromboli; afterwards, its shape turned towards a complex structure composed of several volcanic landforms of different sizes. This is due to the great variability of the tectonic and volcanic phenomena, presently showing a volcano made by two calderas, a lava dome complex and two small active cones. The largest of them is the tuff cone of La Fossa, hosted in the middle of a 3- km-wide caldera struc-ture (La Fossa caldera), whose borders are visible on the southern and western sides of the island. Its last eruption occurred in 1888–1890. At present, Vulcano is charac-terized by weak shallow seismicity and intense fumarolic activity mainly concentrated within the crater of the La Fossa cone and along its rims during a recent unrest phase started in 2021, and measured with a multiparametric monitoring network.
    Description: Published
    Description: 471-487
    Description: OSV4: Preparazione alle crisi vulcaniche
    Description: JCR Journal
    Keywords: Aeolian Islands, Vulcano ; multihazard ; plumbing system ; unrest ; volcanic history ; stratigraphy ; tectonics ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-01-11
    Description: Mt Etna has made headlines over the last weeks and months with spectacular eruptions, some of them highly explosive. This type of paroxysmal eruptive behaviour is characteristic of Etna’s activity over the past few decades and so it is no surprise that Etna is among the most active volcanoes worldwide. Etna is well-known for its extraordinary geology and due to its repeated eruptive activity it provides a continuous supply of new scientific opportunities to understand the inner workings of large basaltic volcanic systems. In addition to its scientific value, Etna is also a world famous tourist attraction and has been listed as a UNESCO World Heritage site in 2013 for its geological and cultural value and not least for its fine agricultural products. Etna’s status as an iconic volcano is not a recent phenomenon; in fact, Etna has been a literary fixture for at least 3000 years, giving rise to many ancient myths and legends that mark it as a special place, deserving of human respect. From the ancient eruptions to the latest events in February–April 2021, people try to explain and understand the processes that occur within and beneath the volcano. In this article, we briefly summarize the recent eruptive activity of Etna as well as the ancient myths and legends that surround this volcano, from the underground forge of Hephaestus to the adventures of Odysseus, all the way to the benefits and dangers the volcano provides to those living on its flanks today.
    Description: Published
    Description: 141-149
    Description: 2TM. Divulgazione Scientifica
    Description: N/A or not JCR
    Keywords: Etna, mythology, 2021 paroxysms, economy ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-06-22
    Description: Silicic calderas are volcanic systems whose unrest evolution is more unpredictable than other volcano types because they often do not culminate in an eruption. Their complex structure strongly influences the post-collapse volcano-tectonic evolution, usually coupling volcanism and ground deformation. Among such volcanoes, the Campi Flegrei caldera (southern Italy) is one of the most studied. Significant long- and short-term ground deformations characterize this restless volcano. Several studies performed on the marinecontinental succession exposed in the central sector of the Campi Flegrei caldera provided a reconstruction of ground deformation during the last 15 kyr. However, considering that over one-third of the caldera is presently submerged beneath the Pozzuoli Gulf, a comprehensive stratigraphic on-land-offshore framework is still lacking. This study aims at reconstructing the offshore succession through analysis of high-resolution single and multichannel reflection seismic profiles and correlates the resulting seismic stratigraphic framework with the stratigraphy reconstructed on-land. Results provide new clues on the causative relations between the intra-caldera marine and volcaniclastic sedimentation and the alternating phases of marine transgressions and regressions originated by the interplay between ground deformation and sea-level rise. The volcano-tectonic reconstruction, provided in this work, connects the major caldera floor movements to the large Plinian eruptions of Pomici Principali (12 ka) and Agnano Monte Spina (4.55 ka), with the onset of the first post-caldera doming at ~10.5 ka. We emphasize that ground deformation is usually coupled with volcanic activity, which shows a self-similar pattern, regardless of its scale. Thus, characterizing the long-term deformation history becomes of particular interest and relevance for hazard assessment and definition of future unrest scenarios.
    Description: Published
    Description: 855-882
    Description: 1V. Storia eruttiva
    Description: JCR Journal
    Keywords: offshore stratigraphy ; seismic units ; La Starza succession ; volcanism, ; 04.08. Volcanology ; 04.04. Geology ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-11-09
    Description: The Pico do Fogo volcano, in the Cape Verde Archipelago off the western coasts of Africa, has been the most active volcano in the Macaronesia region in the Central Atlantic, with at least 27 eruptions during the last 500 years. Between eruptions fumarolic activity has been persisting in its summit crater, but limited information exists for the chemistry and output of these gas emissions. Here, we use the results acquired during a field survey in February 2019 to quantify the quiescent summit fumaroles’ volatile output for the first time. By combining measurements of the fumarole compositions (using both a portable Multi-GAS and direct sampling of the hottest fumarole) and of the SO2 flux (using near-vent UV Camera recording), we quantify a daily output of 1060±340 tons CO2, 780±320 tons H2O, 6.2±2.4 tons H2S, 1.4±0.4 tons SO2 and 0.05±0.022 tons H2. We show that the fumarolic CO2 output from Pico do Fogo exceeds (i) the time-averaged CO2 release during 2015-type recurrent eruptions and (ii) is larger than current diffuse soil degassing of CO2 on Fogo Island. When compared to worldwide volcanoes in quiescent hydrothermal-stage, Pico do Fogo is found to rank among the strongest CO2 emitters. Its substantial CO2 discharge implies a continuous deep supply of magmatic gas from the volcano’s plumbing system (verified by the low but measurable SO2 flux), that becomes partially affected by water condensation and sulphur scrubbing in fumarolic conduits prior to gas exit. Variable removal of magmatic H2O and S accounts for both spatial chemical heterogeneities in the fumarolic field and its CO2-enriched mean composition, that we infer at 64.1±9.2 mol. % H2O, 35.6±9.1 mol. % CO2, 0.26±0.14 mol. % total Sulfur (St), and 0.04±0.02 mol. % H2.
    Description: Published
    Description: 325-340
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Keywords: Pico do Fogo volcano ; Cape Verde ; Volcanic gases ; CO2 output ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-06-14
    Description: The eruption of Mt. Etna which occurred on December 24th 2018 was characterized by strombolian activity and fire fountains, emitted by the New South-East Crater and along a fissure that propagated towards the SE. The influence of volcanic emissions on atmospheric deposition was clearly detectable at several kilometres from the source. Wet and dry (bulk) deposition samples were collected each month, through a network of eleven collectors, in the areas of Milazzo, and Priolo between June 2018 and June 2019. They were analysed for major ions and trace elements concentrations. The pH values range from 3.9 to 8.3, while the EC values range from 7 to 396 μS cm-1. An extensive neutralization of the acidity has been recognised mainly due to the suspended alkaline dust particles, which have a buffering role in rainwater. A high load of Na+ and Cl- was observed at all sites, related to the closeness of the study areas to the coast, showing a high positive correlation (R2 = 0.989) along the line of Na+/Cl- ratio in seawater. During the eruption, the volcanic plume was carried by the winds for long distance (more than 300 km) affecting the area of Priolo but not that of Milazzo, which was upwind with respect to Mt. Etna. The impact of volcanic HF was clearly recognised in the samples collected after the eruption. Volcanic SO2 and HCl had a lower impact due to the overwhelming input of anthropogenic sulfate and marine chloride. On the contrary, the signature of the Mt. Etna eruption can be well recognised in the high concentrations of certain trace elements in the samples collected immediately after the eruption. The strongest contrast between affected and non-affected samples was recognised in Al, Cd, and especially in the volatile elements Tl and Te, which are typically enriched in volcanic emissions. The results showed that volcanic eruptions might have a relevant effect on the atmospheric chemistry and on the composition of rainwater up to distances of 80 km from the emission vents.
    Description: Published
    Description: 341-358
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: rainwater ; fluoride ; trace elements ; volcanic emissions ; 01. Atmosphere ; 03. Hydrosphere ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-11-09
    Description: This work presents chemical and isotopic (δ13C-CO2, δ13C-CH4, 3He, 4He, 20Ne, 40Ar, 36Ar, δ18O and δD) data on fluid discharges from the Colpitas-Taapaca volcanic-hydrothermal system, located close to the Taapaca Volcanic Complex, with the aim to investigate the physical-chemical conditions of the fluid source and to provide a preliminary evaluation of the geothermic potential of the study area. Colpitas thermal springs (to 56 °C) and part of the cold springs (≤18°C) from this area have a Na+-Cl- composition and Total Dissolved Solids (TDS) values (from 6,059 to 19,118 mg/L). Putre springs also show a Na+-Cl- composition, TDS values up to 7,887 mg/L, and outlet temperatures from 21 to 31 °C. Colpitas cold springs, with a Ca2+-SO4 2- composition and relatively low TDS values (≤1,350 mg/L), are likely produced by interaction of shallow water with uprising H2S-rich hydrothermal gases. This process is likely also controlling the chemistry of Jurase thermal springs, which have the highest outlet temperatures of the study area (up to 68 °C), a Ca2+-SO4 2- composition and TDS values ≤2,355 mg/L. Eventually, Las Cuevas springs have temperatures up to 36 °C, a Na+-HCO3 - composition and low TDS values (≤1,067 mg/L), typical features of springs related to a shallow aquifer. The δ18OH 2O and δD-H2O values indicate that all waters have a dominant meteoric origin. Enrichments in 18O and D shown by Colpitas and Putre thermal waters are likely due to steam loss and waterrock interaction, masking a possible direct steam contribution from magmatic degassing. Gas emissions from Colpitas bubbling pools are dominated by CO2, with significant concentrations of CH4, H2S and H2. The Rc/Ra values (up to 2.04) of Colpitas gases indicate a significant contribution of magmatic to mantle He, whereas the high CO2/3He ratios, combined with δ13C-CO2 values ranging from -7.66 to -5.63 ‰ vs. PDB, imply a dominant crustal CO2 source, mostly involving limestone. Estimated temperatures based on the composition of waters and gases from Colpitas are up to 215 °C. Higher temperatures (240 °C) are estimated for Putre thermal waters, although these waters, as well as those from Jurase and Las Cuevas, are too immature for a reliable application of geothermometric techniques. Based on the theoretical reservoir temperature and the measured Cl total output, the thermal energy released from Colpitas thermal area is estimated at up to 13.9 Mw. Such results suggest the occurrence of a promising heat source, possibly related to Taapaca volcanic complex, and encourage the development of future research based on combined geophysical and geochemical approaches, in order to provide a reliable evaluation of the geothermal potential of the whole area.
    Description: Published
    Description: 359-373
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Keywords: Colpitas-Taapaca geothermal system ; Fluid geochemistry ; volcanic-hydrothermal system ; geothermal potential ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-03-09
    Description: Mixed‐mode fluid‐filled cracks represent a common means of fluid transport within the Earth's crust. They often show complex propagation paths which may be due to interaction with crustal heterogeneities or heterogeneous crustal stress. Previous experimental and numerical studies focus on the interplay between fluid over-pressure and external stress but neglect the effect of other crack parameters. In this study, we address the role of crack length on the propagation paths in the presence of an external heterogeneous stress field. We make use of numerical simulations of magmatic dike and hydrofracture propagation, carried out using a two‐dimensional boundary element model, and analogue experiments of air‐filled crack propagation into a transparent gelatin block. We use a 3‐D finite element model to compute the stress field acting within the gelatin block and perform a quantitative comparison between 2‐D numerical simulations and experiments. We show that, given the same ratio between external stress and fluid pressure, longer fluid‐filled cracks are less sensitive to the background stress, and we quantify this effect on fluid‐filled crack paths. Combining the magnitude of the external stress, the fluid pressure, and the crack length, we define a new parameter, which characterizes two end member scenarios for the propagation path of a fluid‐filled fracture. Our results have important implications for volcanological studies which aim to address the problem of complex trajectories of magmatic dikes (i.e., to forecast scenarios of new vents opening at volcanoes) but also have implications for studies that address the growth and propagation of natural and induced hydrofractures.
    Description: Published
    Description: 2064–2081
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Keywords: Magmatic dykes ; hydrofractures ; Numerical symulations ; Analogue experiments ; 04.08. Volcanology ; 05.05. Mathematical geophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-07-14
    Description: Archaeological exavations,undertaken since 2004 for the construction of the new Naples subway
    Description: Published
    Description: 542-557
    Description: 1V. Storia eruttiva
    Description: JCR Journal
    Keywords: A.D.79 eruption ; compositional data analysis ; geoarchaeology ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-03-26
    Description: Some researchers view radon emissions as a precursor to earthquakes, especially those of high magnitude [e.g., Wang et al., 2014; Lombardi and Voltattorni, 2010], but the debate in the scientific community about the applicability of the gas to surveillance systems remains open. Yet radon “works” at Italy’s Mount Etna, one of the world’s most active volcanoes, although not specifically as a precursor to earthquakes. In a broader sense, this naturally radioactive gas from the decay of uranium in the soil, which has been analyzed at Etna in the past few years, acts as a tracer of eruptive activity and also, in some cases, of seismic–tectonic phenomena. To deepen the understanding of tectonic and eruptive phenomena at Etna, scientists analyzed radon escaping from the ground and compared those data with measurements gathered continuously by instrumental networks on the volcano. Here Etna is a boon to scientists—it’s traced by roads, making it easy to access for scientific observation. Dense monitoring networks, managed by the Istituto Nazionale di Geofisica e Vulcanologia, Catania–Osservatorio Etneo (INGV-OE), have been continuously observing the volcano for more than 40 years. This continuous dense monitoring made the volcano the perfect open-air laboratory for deciphering how eruptive activity may influence radon emissions.
    Description: This work was supported by the Mediterranean Supersite Volcanoes (MED-SUV) project, which has received funding from the European Union’s Seventh Framework Programme for research, technological development, and demonstration under grant agreement 308665.
    Description: Published
    Description: 7
    Description: 4V. Processi pre-eruttivi
    Description: N/A or not JCR
    Keywords: Radon ; seismic activity ; Etna ; volcanic activity ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-12-11
    Description: For any scientist working in seismotectonics, the Calabrian Arc represents the most challenging area of Italy. Lying on top of a subduction zone, it is characterised by a complex geological structure largely inherited from the early stages of the collision between the Africa and Eurasia plates. The current and extremely vigorous seismogenic processes, although generated by a mechanism driven by the subduction, are no longer a direct consequence of plate convergence. About one fourth of the largest Italian earthquakes concentrates in a narrow strip of land (roughly 200x70 km) corresponding to the administrative region of Calabria. The present-day seismicity, both shallow and deep, provides little help in detecting the most insidious seismogenic structures, nor does the available record of GPS-detected strains. In addition to its fierce seismicity, the Calabrian Arc also experiences uplift at rates that are the largest in Italy, thus suggesting that active tectonic processes are faster here than elsewhere in the country. Calabrian earthquakes are strong yet inherently elusive, and even the largest of those that have occurred over the past two centuries do not appear to have caused unambiguous surface faulting. The identified active structures are not sufficient to explain in full the historical seismicity record, suggesting that some of the main seismogenic sources still lie unidentified, for instance in the offshore. As a result, the seismogenic processes of Calabria have been the object of a lively debate at least over the past three decades. In this work we propose to use the current geodynamic framework of the Calabrian Arc as a guidance to resolve the ambiguities that concern the identification of the presumed known seismogenic sources, and to identify those as yet totally unknown. Our proposed scheme is consistent with the location of the largest earthquakes, the recent evolution of the regions affected by seismogenic faulting, and the predictions of current evolutionary models of the crust overlying a W-dipping subduction zone.
    Description: Published
    Description: 365-388
    Description: 4IT. Banche dati
    Description: JCR Journal
    Description: open
    Keywords: Calabrian Arc ; Calabrian earthquakes ; Seismotectonics ; Seismogenic sources ; DISS database ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2021-09-08
    Description: A diffuse fragmentation of the Nubia-Eurasia tectonic boundary, due to the propagation of distinct extensional belts, has characterised the post-collision evolution of the region. In this frame, the Hyblean Plateau was affected, since about 1.5 Ma B.P., by the propagation of the the roughly N-S trending Siculo-Calabrian Rift Zone (SCRZ in Fig.1a; MONACO & TORTORICI, 2000), an extensional belt that extends from the onshore of southern Calabria to the SE Sicily. In the Hyblean plateau the propagation of the rift zone caused the reactivation of the main previous discontinuity. The earlier SE Sicily branch of the rift zone, in fact, propagated from the Ionian coast to the Scicli Line, causing the collapse of the NEtrending Scordia-Lentini Graben, at the northern margin of the plateau. This extensional basin represents an half-graben, which is controlled by a SE-facing master fault.
    Description: Published
    Description: 317-319
    Description: 3.2. Tettonica attiva
    Description: N/A or not JCR
    Description: restricted
    Keywords: Continental collision ; Convergence ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2017-04-04
    Description: On the Ionian Sea coast of southern Italy, spanning the transition from the Calabrian Arc to the Apennines, NE-directed motion of the thin-skinned frontal thrust belt of the Apennines toward the Apulian foreland reportedly ceased during the Early-Middle Pleistocene. The submarine extension of the frontal thrust belt is represented by the Amendolara ridge, which stretches for over 80 km to the SE beneath the Taranto Gulf. High-resolution marine geophysical data collected on the Amendolara ridge during the TEATIOCA_2011 cruise provided unequivocal constraints to assert active fault-related fold growth. Single-channel seismic (sparker) and acoustic CHIRP profiles, corroborated by multibeam mapping and shallow coring, form the novel dataset to constrain the near-bottom evolution. The new data were benchmarked to the crustal geometry by means of interpretation of existing multichannel seismic profiles.
    Description: Published
    Description: Arcavacata di Rende (CS)
    Description: 3.2. Tettonica attiva
    Description: open
    Keywords: Active fault-propagation folds ; Blind faults ; Seismogenic sources ; Jonian Sea ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Extended abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2017-04-04
    Description: In the northern Apennines, the Palaeozoic basement involved in the Late Oligocene–Middle Miocene nappe stack contains metamorphic units for which hypothetical ages have been assigned on the basis of lithological correlations with the Palaeozoic formations of the Variscan chain in Sardinia. This uncertainty concerning the age poses limitations to reconstructing the Palaeozoic stratigraphy, defining the Alpine and pre-Alpine histories and correlations with other domains of the Variscan chain. We present the UPb age of detrital zircon and the 40Ar39Ar age of metamorphic muscovite for the Calamita Schist and Ortano Porphyroid, two metamorphic units of undetermined Palaeozoic age cropping out in the eastern Elba Island. The radioisotopic data allows us to: (i) define the Early Carboniferous and Middle Ordovician ages for the Calamita Schist and Ortano Porphyroid, respectively, as well as their derivation (flysch deposit and magmatic rocks); (ii) pose some constraints concerning their alpine tectonic and metamorphic histories. These new data generate a more precise reconstruction of the Palaeozoic sequence in the northern Apennines, and they document that the Palaeozoic basement involved in the alpine deformation underwent internal stacking with an inversion of the original sequence. Copyright © 2010 John Wiley & Sons, Ltd.
    Description: Published
    Description: 288-310
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: northern Apennines ; Palaeozoic basement ; U-Pb zircon ; 40Ar-39Ar muscovite ; 04. Solid Earth::04.04. Geology::04.04.02. Geochronology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2017-04-04
    Description: Morphotectonic analysis and fault numeric modeling of uplifted marine terraces along the southern half of the Taranto Gulf , between the Sibari and San Nicola plains (Fig. 1), allow us to place quantitative constraints on Middle Pleistocene-Holocene deformation in the Southern Apennines.
    Description: Published
    Description: Arcavacata di Rende (CS)
    Description: 3.2. Tettonica attiva
    Description: open
    Keywords: Marine terraces ; Regional uplift ; Fault propagation folds ; Fault modeling ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.02. Geochronology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Extended abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2017-04-04
    Description: This work aims at providing an updated and augmented view of present-day tectonics and seismogenic sources of the Abruzzi Apennines, focusing on its extensional domain. This paper was spurred by the 6 April 2009, L’Aquila earthquake (Mw 6.3), an event from which geologists learned important lessons-including rather surprising ones. Although the earthquake was not major compared with other catastrophic events that occurred in Italy and elsewhere, this destructive earthquake led to a thorough review of the geometry – and style, in some instances – that characterises earthquake faulting in this region. The poorly expressed field evidence of the 6 April event, especially in light of the damage it caused in the mesoseismal area, stressed the intrinsic limitation of the earthquake geologists’ toolbox. Abruzzi is the region of a true “seismological paradox”: despite the rather long earthquake history available for the region, the number of potential sources for earthquakes of M ≥ 6.0 proposed in the literature is two to five times larger than the number of events that appear in the full earthquake record. This circumstance is made even more paradoxical by recent palaeoseismological work that proposed recurrence times of only a few centuries for individual seismogenic sources. Do the evident faults mapped by previous workers all correspond to potential seismogenic sources? We aim at addressing this paradox by drawing an updated seismotectonic model of Abruzzi based on the lessons learned following the 2009 earthquake. The model is based on selected geological, geomorphological, seismological, historical and geodetic data and will ultimately feed an updated version of the DISS database (http://diss.rm.ingv.it/diss/).
    Description: Published
    Description: 309-329
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: partially_open
    Keywords: 6 April 2009 L’Aquila earthquake ; Active faults ; Seismogenic sources ; Active tectonics ; Seismic hazard ; Abruzzi region ; Central Apennines ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2017-04-04
    Description: We reply to a comment by Messina et al., who strongly criticized our paper on the San Pio Fault, by showing that in areas of complex geology such as the central Apennines, where the current tectonic setting results from the superposition of different tectonic regimes, the equation: “most visible active fault = major seismogenic fault” can be misleading.
    Description: Published
    Description: 421-423
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Seismotectonics ; morphotectonics ; active fault ; San Pio basin ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2017-04-04
    Description: In the northern Apennines, the Palaeozoic basement involved in the Late Oligocene–Middle Miocene nappe stack contains metamorphic units for which hypothetical ages have been assigned on the basis of lithological correlations with the Palaeozoic formations of the Variscan chain in Sardinia. This uncertainty concerning the age poses limitations to reconstructing the Palaeozoic stratigraphy, defining the Alpine and pre-Alpine histories and correlations with other domains of the Variscan chain. We present the U-Pb age of detrital zircon and the 40Ar-39Ar age of metamorphic muscovite for the Calamita Schist and Ortano Porphyroid, two metamorphic units of undetermined Palaeozoic age cropping out in the eastern Elba Island. The radioisotopic data allows us to: (i) define the Early Carboniferous and Middle Ordovician ages for the Calamita Schist and Ortano Porphyroid, respectively, as well as their derivation (flysch deposit and magmatic rocks); (ii) pose some constraints concerning their alpine tectonic and metamorphic histories. These new data generate a more precise reconstruction of the Palaeozoic sequence in the northern Apennines, and they document that the Palaeozoic basement involved in the alpine deformation underwent internal stacking with an inversion of the original sequence.
    Description: In press
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: northern Apennines ; Palaeozoic basement ; U-Pb zircon ; 40Ar-39Ar muscovite ; 04. Solid Earth::04.04. Geology::04.04.02. Geochronology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2017-04-04
    Description: Kinematics of mountain belts is often very difficult to decipher. Main problems consist in the linkage between different stages of deformation which define the chain building, their significance in the context of lithospheric evolution dominate by plate collision and the interaction with previous structures recorded in the rocks. Also, the overprinting of structures developing later with respect to the chain building may further makes complicate the way to unravel the tectonic evolution of the wedge. In Sicily belt, located in the Central Mediterranean, the regional pattern and the tectonic evolution are described using structural analysis of small-scale structures in selected outcrops. The geometric differences existing between some types of structures within the belt allow to delineate the timing of deformations during chain building.
    Description: Published
    Description: 144-147
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: N/A or not JCR
    Description: reserved
    Keywords: collisional tectonics ; structural pattern ; sequence of deformation ; Sicily Chain ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2017-04-04
    Description: La zona di faglia Ravne è situata in un area di interazione fra due sistemi regionali di faglie con differente cinematica, entrambi collegati alla convergenza fra Adria e Eurasia: le faglie dinariche orientate NW-SE e le faglie del Sud-alpino orientate E-W. L’analisi di dati di geologia strutturale e di due sequenze sismiche recenti che hanno colpito l’area, ci permette di proporre un modello sismotettonico per la faglia di Ravne, che è stata interessata da diverse fasi tettoniche. La geometria originale e la storia evolutiva della zona di faglia svolgono un ruolo cruciale nella distribuzione recente dell’attività sismica e del potenziale sismogenetico dell’intera struttura. Infatti, la configurazione attuale della faglia Ravne, caratterizzata da fagliazione trascorrente su piani ad alto angolo a profondità crostali, è il risultato dell’iniziale geometria di un thrust orientato NW-SE e avente immersione verso NE, e della sua interazione con i piani di thrust diretti essenzialmente E-W. Partendo dai dati raccolti e tenendo in considerazione sia il quadro geodinamico che le relazioni empiriche, proponiamo tre possibili scenari con relativi potenziali sismogenetici per la possibile futura attività della faglia di Ravne.
    Description: Published
    Description: Udine
    Description: 3.2. Tettonica attiva
    Description: open
    Keywords: Ravne Fault ; Western Slovenia ; fault growth ; linkage processes ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Extended abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2017-04-04
    Description: Sicily owes its complex geological structure to a switch in tectonic regime from the Mesozoic to the Tertiary. A set of tectonic units outcrops in the northern portion of the island that originated during the Tertiary at the expense of paleogeographic domains of the African Mesozoic continental margin. The pre-orogenic successions show different types of deformation (extensional and transcurrent) related to the Jurassic paleotectonic evolution of the southern Neotethys margin. The history of the tectonic inversion of the Neotethys shear zone is recorded in the Cretaceous strata. Extension occurred during late Cretaceous and may be compatible with the tensile stress field related to the Sicilide basin opening. The Neogene deformations are linked to collisional processes and are mostly represented by thrusts and folds. Since the late Miocene onwards, the formation of the Tyrrhenian basin has driven the recent tectonic evolution of Northern Sicily. Its basin formation was realised through extension, followed by transcurrent tectonics along its southern margin.
    Description: Published
    Description: 148-152
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: N/A or not JCR
    Description: reserved
    Keywords: cronologia delle deformazioni mesozoico-terziarie ; Sicilia centro-settentrionale ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2017-04-04
    Description: La Sicilia settentrionale è caratterizzata da un’intensa attività sismica che è espressione di deformazioni attive. In questo settore dell’Isola affiora il nucleo della catena neogenica delle Magrebidi occidentali, che è sottoposto ad intenso sollevamento durante il Plio-Pleistocene. Le deformazioni più recenti sono, in gran parte, rappresentate da sistemi di faglie estensionali e trascorrenti. Il tasso di sollevamento non è uniforme, così come suggerisce la differente elevazione dei depositi di questo periodo. Essi affiorano lungo il settore costiero settentrionale e la loro quota decresce complessivamente dall’estremità nord-est a quella nord-ovest della Sicilia. Le deformazioni più recenti possono essere riconosciute sia attraverso l’analisi strutturale che tramite quella morfometrica. Lo studio integrato di queste due metodologie qui presentato è stato realizzato anche attraverso l’elaborazione informatizzata del modello di elevazione digitale della superficie topografica (DEM). I dati strutturali e morfometrici indicano che in Sicilia settentrionale vi è una stretta relazione tra l’attività delle faglie neotettoniche e le forme dei rilievi. Il loro confronto con alcune caratteristiche idrografiche, con la sismicità e con la distribuzione dei tassi di sollevamento suggerisce che la catena siciliana settentrionale risulta segmentata da sistemi di taglio radicati che perimetrano blocchi crostali. In particolare, la variazione di alcuni parametri morfometrici hanno permesso di identificare distinti settori di catena omogenei, ciascuno dei quali è soggetto a differenti tassi di sollevamento e di direzioni di basculamento.
    Description: Published
    Description: 153-156
    Description: 3.2. Tettonica attiva
    Description: N/A or not JCR
    Description: reserved
    Keywords: neotectonic faults ; morphometric pattern ; uplift ; crustal blocks ; Sicily ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2022-04-29
    Description: Questo lavoro è dedicato allo studio delle geometrie e dei ratei di deformazione di breve e medio termine delle strutture compressive attive facenti parte dei fronti esterni della Catena Sudalpina, nel settore dell’anticlinale del Montello. Il metodo adottato utilizza informazioni derivate dall’analisi di una linea geodetica di primo ordine dell’IGM, combinate con osservazioni geofisiche, geologiche e geomorfologiche di superficie e di sottosuolo. La linea geodetica presa in esame mostra lungo alcuni suoi segmenti dei movimenti verticali relativi, positivi rispetto ai segmenti adiacenti (maggiori sollevamenti). Questi segnali geodetici, ottenuti dal confronto delle quote dei capisaldi misurate durante due distinte campagne separate da un intervallo di tempo di circa 50 anni, avvengono in corripondenza dell’attraversamento di faglie cieche e sono stati quindi interpretati come dovuti all’attività di queste strutture sepolte. Per l’interpretazione, è stata costruita una sezione geologica che segue la traccia della linea di livellazione, ed è stato quindi modelizzato il segnale geodetico adottando un metodo diretto. Nel modello, le geometrie di partenza delle faglie sono state prese dalla sezione geologica, e sono state poi modificate per riprodurre il segnale geodetico. Una volta fissate le geometrie delle faglie, gli uplift rate sono stati convertiti in slip e shortening rate e comparati con: 1- i ratei di medio e lungo termine derivati dalle osservazioni geologiche e geomorfologiche per evidenziare eventuali cambiamenti nel tempo; e 2- con i tassi di convergenza GPS per studiare la partizione delle deformazione tra i diversi fronti. Infine sono state usate relazioni analitiche ed empiriche per stimare la massima magnitudo e i tempi di ricorrenza dei potenziali futuri terremoti.
    Description: Published
    Description: Udine
    Description: 3.2. Tettonica attiva
    Description: open
    Keywords: Montello Anticline ; Eastern Southalpine Chain ; slip rates ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Extended abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2022-05-04
    Description: This paper illustrates the results of structural studies carried out in the western margin of Tuscany along a major crustal structure. Surface deformation of sediments filling different basins aligned on top of this major structure (from north to south: the Fine Basin, the Sassa–Guardistallo basin, the Rio Guardigiano area in the Lustignano basin) allow us to date its tectonic activity to the Messinian-Early Pliocene. In these areas, structures such as reverse and strike-slip faults and mesoscopic folds are widely developed. Structural analysis determined a compressive stress field with the σ1 oriented from E-W to NE-SW active from Messinian to Early Pliocene. At the southern end of this crustal structure, the Gavorrano antiform and the granitic pluton (radiometric age of granite ~4.4 Ma) coring this fold correlate with a thrust ramp anticline at depth, and thus constrain thrust activity to the Early Pliocene. These data document a Messinian–Early Pliocene compressive activity that contrasts with models invoking continuous extensional tectonics affecting the hinterland since the Late Oligocene-Middle Miocene in the frame of a back-arc-slab retreating process. The results presented therefore raise the question of which geodynamical model could account for such a complex structural evolution of Northern Apennines hinterland.
    Description: Published
    Description: 593-604
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: Northern Apennines ; hinterland areas ; structural analysis ; pluton emplacement ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2017-04-04
    Description: The outermost, NE-verging fronts of the Northern Apennines (Italy) are overlain by a thick syntectonic sedimentary wedge filling up the basin beneath the Po Plain. Due to fast sedimentation rates and comparatively low tectonic rates, the fronts are generally buried. Evidence for their activity includes scattered historical and instrumental earthquakes and drainage anomalies controlled by growing buried anticlines. The largest earthquakes, up to Mw 5.8, are associated with active compression with a GPS-documented shortening rate 〈1 mm/a. We used geological, structural and morphotectonic data to draw a N-S–striking section between Bologna and Ferrara, aimed at analyzing whether and how the deformation is partitioned among the frontal thrusts of the Northern Apennines and identifying the potential sources of damaging earthquakes. We pointed out active anticlines based on the correspondence among drainage anomalies, historical seismicity and buried ramps. We also analyzed the evolution of the Plio-Quaternary deformation by modeling in a sandbox the geometry, kinematics and growth patterns of the thrust fronts. Our results (i) confirm that some of the main Quaternary thrusts are still active and (ii) highlight the partitioning of deformation in the overlap zones. We note that the extent and location of some of the active thrusts are compatible with the location and size of the main historical earthquakes and discuss the hypothesis that they may correspond to their causative seismogenic faults.
    Description: Published
    Description: 605-613
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: Seismotectonics of Po Plain ; Apennines thrust fronts ; Northern Italy seismicity ; Analogue modeling ; Fold-and-thrust belt ; Seismogenic sources ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2012-02-03
    Description: We investigated quantitatively the propagation of a reactivated strike-slip fault through a sedimentary cover. To this end we prepared five simplified analogue models that reproduce a chain with its frontal allochtonous wedge overrunning the foreland. The foreland/ chain deformation follows the reactivation of an inherited strike-slip fault cutting the foreland domain. The observation and quantification of the effects of this reactivation, in particular on the orogenic wedge front, provide new insight on the evolution of this type of tectonic setting. We placed special emphasis on quantifying the structural features observed in the models to (1) interpret the kinematics of the reactivated shear zone, and (2) put forward hypotheses on areas indirectly affected by the reactivated fault. The interpretation of the models was based on an integrated analysis of surface and subsurface data. The results show that the geological setting is strongly influenced by the presence of a reactivated preexisting lineament, that ultimately controls the development and pattern of newly-formed faults. Finally, we present and discuss two natural examples (in Italy Molise-Gondola shear zone, Southern Apennines, and Scicli-Ragusa line, Sicily) in view of the modeling results.
    Description: Published
    Description: 107-122
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: open
    Keywords: Fault reactivation ; foreland ; orogenic wedge ; sandbox models ; quantitative analysis ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2017-04-04
    Description: Southern Apulia (Adriatic foreland, Italy), has long been considered a «stable area» lying in between two active orogens, but in fact its tectonic framework is poorly known. To learn more about this topic, we carried out an original structural analysis on Pleistocene deposits. The results indicate that southern Apulia has been affected by mild but discernible brittle deformation throughout the Middle and Late Pleistocene. Joints prevail, whereas faults are rare and all characterized by small displacement. Horizontal extension dominates throughout the entire study area; the SW-NE to SSW-NNE direction is the most widespread. WNW-ESE extension prevails in the Adriatic side portion of the study area, but the dispersion of the measured plane directions is high, suggesting that the local strain field is not characterized by a strongly predominant trend. A Middle and Late Pleistocene, SW-NE to SSW-NNE–oriented maximum extension is not surprising for the study area, as it is compatible with most of the available geodynamic models, whereas the different state of deformation affecting the Adriatic side of the study area requires further investigations. We tentatively interpreted this anomaly as reflecting some regional variation of the general geodynamic frame, for instance as the farthest evidence of ongoing compressional deformation across the W-verging Albanide-Hellenide foldand- thrust belt.
    Description: Published
    Description: 33-46
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: active tectonics ; brittle deformation ; Pleistocene ; Salento ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2012-02-03
    Description: The outermost, NE-verging fronts of the Northern Apennines (Italy) are overlain by a thick syntectonic sedimentary wedge filling up the basin beneath the Po Plain. Due to fast sedimentation rates and comparatively low tectonic rates, the fronts are generally buried. Evidence for their activity includes scattered historical and instrumental earthquakes and drainage anomalies controlled by growing buried anticlines. The largest earthquakes, up to Mw 5.8, are associated with active compression with a GPS-documented shortening rate 〈1 mm/a. We used geological, structural and morphotectonic data to draw a N-S–striking section between Bologna and Ferrara, aimed at analyzing whether and how the deformation is partitioned among the frontal thrusts of the Northern Apennines and identifying the potential sources of damaging earthquakes. We pointed out active anticlines based on the correspondence among drainage anomalies, historical seismicity and buried ramps. We also analyzed the evolution of the Plio-Quaternary deformation by modeling in a sandbox the geometry, kinematics and growth patterns of the thrust fronts. Our results (i) confirm that some of the main Quaternary thrusts are still active and (ii) highlight the partitioning of deformation in the overlap zones. We remark that the extent and location of some of the active thrusts are compatible with the location and size of the main historical earthquakes and discuss the hypothesis that they may correspond to their causative seismogenic faults.
    Description: In press
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: open
    Keywords: Fold-and-thrust belt ; active tectonics ; seismogenic sources ; Po Plain ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2017-04-04
    Description: Southern Apulia (Adriatic foreland, Italy), has long been considered a “stable area” lying in between two active orogens, but in fact its tectonic framework is poorly known. To learn more about this topic, we carried out an original structural analysis on Pleistocene deposits. The results indicate that southern Apulia has been affected by mild but discernible brittle deformation throughout the Middle and Late Pleistocene. Joints prevail, whereas faults are rare and all characterized by small displacement. Horizontal extension dominates throughout the entire study area; the SW-NE to SSW-NNE direction is the most widespread. WNW-ESE extension prevails in the Adriatic side portion of the study area, but the dispersion of the measured plane directions is high, suggesting that the local strain field is not characterized by a strongly predominant trend. A Middle and Late Pleistocene, SW-NE to SSW-NNE– oriented maximum extension is not surprising for the study area, as it is compatible with most of the available geodynamic models, whereas the different state of deformation affecting the Adriatic side of the study area requires further investigations. We tentatively interpreted this anomaly as reflecting some regional variation of the general geodynamic frame, for instance as the farthest evidence of ongoing compressional deformation across the W-verging Albanide-Hellenide foldand- thrust belt.
    Description: Study supported by a MIUR-COFIN 2004 Project (Bari RU: G. Mastronuzzi resp.; Lecce RU: P. Sansò resp.) and by the Project S2 funded in the framework of the 2004-2006 agreement between the Italian Department of Civil Protection and INGV (Research Units 2.4 and 2.11).
    Description: In press
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: open
    Keywords: active tectonics ; brittle deformation ; Pleistocene ; Salento ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2017-04-04
    Description: This paper presents the interpretation of a set of seismic reflection profiles, crossing the Auletta, Diano and Agri basins, in the axial zone of the Southern Apennines. Seismic data reveal that the genesis and evolution of the investigated basins have been controlled possibly since Late Pliocene by a system of NW-SE trending, normal faults, bordering the basins, and related to SW-NE extension, still active in this region, as indicated by seismological (earthquake focal mechanisms), geological (stress indicators, active fault patterns) and geodetic data.
    Description: Published
    Description: 47-56
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: open
    Keywords: Southern Apennines ; Intermountain basins ; seismotectonics ; seismic reflection profiles ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...