ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (16)
  • Escherichia coli
  • Industrial Chemistry and Chemical Engineering
  • Nature Publishing Group (NPG)  (14)
  • Wiley-Blackwell  (2)
  • Physics  (16)
Collection
  • Articles  (16)
Publisher
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 15 (1994), S. 283-291 
    ISSN: 0197-8462
    Keywords: electromagnetic field ; protein synthesis ; Escherichia coli ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: Escherichia coli JM83 {F- ara Δ(lac-proAB) rpsL [φ80dΔ(lacZ)M15]} in midlog growth phase at 30 °C were exposed to 60 Hz sinusoidal magnetic field of 3 mT of nonuniform diverging flux, inducing a nonuniform electric field with a maximum intensity of 32 μV/cm using an inductor coil. Exposed and unexposed control cells were maintained at 30.8 ± 0.1 °C and 30.5 ± 0.1 °C, respectively. Quadruplicate samples of exposed and unexposed E. coli cells were simultaneously radiolabeled with 35S-L-methionine at 10 min intervals over 2 hr. Radiochemical incorporation into proteins was analyzed via liquid scintillation counting and by denaturing 12.5% polyacrylamide gel electrophoresis. The results showed that E. coli exposed to a 60 Hz magnetic field of 3 mT exhibited no qualitative or quantitative changes in protein synthesis compared to unexposed cells. Thus small prokaryotic cells (less than 2 μm × 0.5 μm) under constant-temperature conditions do not alter their protein synthesis following exposure to 60 Hz magnetic fields at levels at 3 mT. © 1994 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 2 (1981), S. 285-289 
    ISSN: 0197-8462
    Keywords: growth inhibition ; magnetic fields ; ELF ; Escherichia coli ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: Cultures of Escherichia coli kept at 0 °C in a phosphate buffer solution were exposed to a sinusoidal weak 60- or 600-Hz magnetic field of strength 2 × 10-3 Tesla. A decrease of more than 40% in bacterial count was observed after a 60-h exposure to the magnetic field. Electron micrographs of exposed bacteria show ruptured cell walls, possibly due to the breaking away of flagella under the influence of the sinusoidally varying electromotive force.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-04-16
    Description: Translation by the ribosome occurs by a complex mechanism involving the coordinated interaction of multiple nucleic acid and protein ligands. Here we use zero-mode waveguides (ZMWs) and sophisticated detection instrumentation to allow real-time observation of translation at physiologically relevant micromolar ligand concentrations. Translation at each codon is monitored by stable binding of transfer RNAs (tRNAs)-labelled with distinct fluorophores-to translating ribosomes, which allows direct detection of the identity of tRNA molecules bound to the ribosome and therefore the underlying messenger RNA (mRNA) sequence. We observe the transit of tRNAs on single translating ribosomes and determine the number of tRNA molecules simultaneously bound to the ribosome, at each codon of an mRNA molecule. Our results show that ribosomes are only briefly occupied by two tRNA molecules and that release of deacylated tRNA from the exit (E) site is uncoupled from binding of aminoacyl-tRNA site (A-site) tRNA and occurs rapidly after translocation. The methods outlined here have broad application to the study of mRNA sequences, and the mechanism and regulation of translation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4466108/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4466108/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Uemura, Sotaro -- Aitken, Colin Echeverria -- Korlach, Jonas -- Flusberg, Benjamin A -- Turner, Stephen W -- Puglisi, Joseph D -- GM51266/GM/NIGMS NIH HHS/ -- R01 GM051266/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Apr 15;464(7291):1012-7. doi: 10.1038/nature08925.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305-5126, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20393556" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Codon/*genetics ; Escherichia coli ; Fluorescence ; Kinetics ; Ligands ; Luminescent Measurements ; Optical Tweezers ; Protein Biosynthesis/genetics/*physiology ; RNA, Transfer/genetics/*metabolism ; Ribosomes/chemistry/genetics/*metabolism ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-07-16
    Description: The translocation step of protein synthesis entails large-scale rearrangements of the ribosome-transfer RNA (tRNA) complex. Here we have followed tRNA movement through the ribosome during translocation by time-resolved single-particle electron cryomicroscopy (cryo-EM). Unbiased computational sorting of cryo-EM images yielded 50 distinct three-dimensional reconstructions, showing the tRNAs in classical, hybrid and various novel intermediate states that provide trajectories and kinetic information about tRNA movement through the ribosome. The structures indicate how tRNA movement is coupled with global and local conformational changes of the ribosome, in particular of the head and body of the small ribosomal subunit, and show that dynamic interactions between tRNAs and ribosomal residues confine the path of the tRNAs through the ribosome. The temperature dependence of ribosome dynamics reveals a surprisingly flat energy landscape of conformational variations at physiological temperature. The ribosome functions as a Brownian machine that couples spontaneous conformational changes driven by thermal energy to directed movement.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fischer, Niels -- Konevega, Andrey L -- Wintermeyer, Wolfgang -- Rodnina, Marina V -- Stark, Holger -- England -- Nature. 2010 Jul 15;466(7304):329-33. doi: 10.1038/nature09206.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉3D Electron Cryomicroscopy Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Gottingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20631791" target="_blank"〉PubMed〈/a〉
    Keywords: Cryoelectron Microscopy ; Escherichia coli ; Kinetics ; Models, Molecular ; Molecular Conformation ; *Movement ; *Protein Biosynthesis ; RNA, Transfer/genetics/*metabolism ; Ribosome Subunits, Large, Bacterial/chemistry/metabolism ; Ribosome Subunits, Small, Bacterial/chemistry/metabolism ; Ribosomes/chemistry/*metabolism ; Temperature ; Thermodynamics ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2008-10-14
    Description: The APOBEC family members are involved in diverse biological functions. APOBEC3G restricts the replication of human immunodeficiency virus (HIV), hepatitis B virus and retroelements by cytidine deamination on single-stranded DNA or by RNA binding. Here we report the high-resolution crystal structure of the carboxy-terminal deaminase domain of APOBEC3G (APOBEC3G-CD2) purified from Escherichia coli. The APOBEC3G-CD2 structure has a five-stranded beta-sheet core that is common to all known deaminase structures and closely resembles the structure of another APOBEC protein, APOBEC2 (ref. 5). A comparison of APOBEC3G-CD2 with other deaminase structures shows a structural conservation of the active-site loops that are directly involved in substrate binding. In the X-ray structure, these APOBEC3G active-site loops form a continuous 'substrate groove' around the active centre. The orientation of this putative substrate groove differs markedly (by 90 degrees) from the groove predicted by the NMR structure. We have introduced mutations around the groove, and have identified residues involved in substrate specificity, single-stranded DNA binding and deaminase activity. These results provide a basis for understanding the underlying mechanisms of substrate specificity for the APOBEC family.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2714533/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2714533/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Holden, Lauren G -- Prochnow, Courtney -- Chang, Y Paul -- Bransteitter, Ronda -- Chelico, Linda -- Sen, Udayaditya -- Stevens, Raymond C -- Goodman, Myron F -- Chen, Xiaojiang S -- R01 AI055926/AI/NIAID NIH HHS/ -- R01 AI055926-05/AI/NIAID NIH HHS/ -- England -- Nature. 2008 Nov 6;456(7218):121-4. doi: 10.1038/nature07357. Epub 2008 Oct 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18849968" target="_blank"〉PubMed〈/a〉
    Keywords: Antiviral Agents ; *Catalytic Domain ; Crystallography, X-Ray ; Cytidine Deaminase/*chemistry/genetics/isolation & purification/*metabolism ; DNA, Single-Stranded/metabolism ; Escherichia coli ; Humans ; Models, Molecular ; Muscle Proteins/chemistry ; Mutant Proteins/chemistry/genetics/metabolism ; Mutation ; Nuclear Magnetic Resonance, Biomolecular ; Protein Structure, Secondary ; Structural Homology, Protein ; Structure-Activity Relationship ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2009-01-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gore, Jeff -- van Oudenaarden, Alexander -- K99 GM085279/GM/NIGMS NIH HHS/ -- R00 GM085279/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Jan 15;457(7227):271-2. doi: 10.1038/457271a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19148089" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Clocks/*physiology ; Circadian Rhythm/*physiology ; Escherichia coli ; *Feedback, Physiological ; Gene Expression Regulation/*genetics ; Genes, Synthetic/*genetics ; Genetic Engineering ; *Models, Biological
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2009-10-13
    Description: Single-stranded DNA generated in the cell during DNA metabolism is stabilized and protected by binding of ssDNA-binding (SSB) proteins. Escherichia coli SSB, a representative homotetrameric SSB, binds to ssDNA by wrapping the DNA using its four subunits. However, such a tightly wrapped, high-affinity protein-DNA complex still needs to be removed or repositioned quickly for unhindered action of other proteins. Here we show, using single-molecule two- and three-colour fluorescence resonance energy transfer, that tetrameric SSB can spontaneously migrate along ssDNA. Diffusional migration of SSB helps in the local displacement of SSB by an elongating RecA filament. SSB diffusion also melts short DNA hairpins transiently and stimulates RecA filament elongation on DNA with secondary structure. This observation of diffusional movement of a protein on ssDNA introduces a new model for how an SSB protein can be redistributed, while remaining tightly bound to ssDNA during recombination and repair processes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2782680/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2782680/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roy, Rahul -- Kozlov, Alexander G -- Lohman, Timothy M -- Ha, Taekjip -- R01 GM030498/GM/NIGMS NIH HHS/ -- R01 GM030498-28/GM/NIGMS NIH HHS/ -- R01 GM065367/GM/NIGMS NIH HHS/ -- R01 GM065367-08/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2009 Oct 22;461(7267):1092-7. doi: 10.1038/nature08442. Epub 2009 Oct 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Biophysics and Computational Biology, University of Illinois, Urbana-Champaign, Illinois 61801, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19820696" target="_blank"〉PubMed〈/a〉
    Keywords: DNA, Single-Stranded/chemistry/*metabolism ; DNA-Binding Proteins/*metabolism ; *Diffusion ; Escherichia coli ; Escherichia coli Proteins/*metabolism ; Fluorescence Resonance Energy Transfer ; *Movement ; Nucleic Acid Conformation ; Rec A Recombinases/*chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-10-23
    Description: Maturation of precursor transfer RNA (pre-tRNA) includes excision of the 5' leader and 3' trailer sequences, removal of introns and addition of the CCA terminus. Nucleotide modifications are incorporated at different stages of tRNA processing, after the RNA molecule adopts the proper conformation. In bacteria, tRNA(Ile2) lysidine synthetase (TilS) modifies cytidine into lysidine (L; 2-lysyl-cytidine) at the first anticodon of tRNA(Ile2) (refs 4-9). This modification switches tRNA(Ile2) from a methionine-specific to an isoleucine-specific tRNA. However, the aminoacylation of tRNA(Ile2) by methionyl-tRNA synthetase (MetRS), before the modification by TilS, might lead to the misincorporation of methionine in response to isoleucine codons. The mechanism used by bacteria to avoid this pitfall is unknown. Here we show that the TilS enzyme specifically recognizes and modifies tRNA(Ile2) in its precursor form, thereby avoiding translation errors. We identified the lysidine modification in pre-tRNA(Ile2) isolated from RNase-E-deficient Escherichia coli and did not detect mature tRNA(Ile2) lacking this modification. Our kinetic analyses revealed that TilS can modify both types of RNA molecule with comparable efficiencies. X-ray crystallography and mutational analyses revealed that TilS specifically recognizes the entire L-shape structure in pre-tRNA(Ile2) through extensive interactions coupled with sequential domain movements. Our results demonstrate how TilS prevents the recognition of tRNA(Ile2) by MetRS and achieves high specificity for its substrate. These two key points form the basis for maintaining the fidelity of isoleucine codon translation in bacteria. Our findings also provide a rationale for the necessity of incorporating specific modifications at the precursor level during tRNA biogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nakanishi, Kotaro -- Bonnefond, Luc -- Kimura, Satoshi -- Suzuki, Tsutomu -- Ishitani, Ryuichiro -- Nureki, Osamu -- England -- Nature. 2009 Oct 22;461(7267):1144-8. doi: 10.1038/nature08474.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Kanagawa 225-8501, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19847269" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acyl-tRNA Synthetases/*chemistry/genetics/*metabolism ; Apoproteins/genetics/metabolism ; Bacillus subtilis ; Bacterial Proteins/*chemistry/genetics/*metabolism ; Base Sequence ; Catalytic Domain ; Crystallography, X-Ray ; Escherichia coli ; Geobacillus ; Kinetics ; Lysine/analogs & derivatives/metabolism ; Mass Spectrometry ; Models, Molecular ; Molecular Sequence Data ; *Protein Biosynthesis ; Pyrimidine Nucleosides/metabolism ; RNA, Transfer, Ile/genetics/metabolism ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2009-06-12
    Description: Natural products containing phosphorus-carbon bonds have found widespread use in medicine and agriculture. One such compound, phosphinothricin tripeptide, contains the unusual amino acid phosphinothricin attached to two alanine residues. Synthetic phosphinothricin (glufosinate) is a component of two top-selling herbicides (Basta and Liberty), and is widely used with resistant transgenic crops including corn, cotton and canola. Recent genetic and biochemical studies showed that during phosphinothricin tripeptide biosynthesis 2-hydroxyethylphosphonate (HEP) is converted to hydroxymethylphosphonate (HMP). Here we report the in vitro reconstitution of this unprecedented C(sp(3))-C(sp(3)) bond cleavage reaction and X-ray crystal structures of the enzyme. The protein is a mononuclear non-haem iron(ii)-dependent dioxygenase that converts HEP to HMP and formate. In contrast to most other members of this family, the oxidative consumption of HEP does not require additional cofactors or the input of exogenous electrons. The current study expands the scope of reactions catalysed by the 2-His-1-carboxylate mononuclear non-haem iron family of enzymes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2874955/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2874955/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cicchillo, Robert M -- Zhang, Houjin -- Blodgett, Joshua A V -- Whitteck, John T -- Li, Gongyong -- Nair, Satish K -- van der Donk, Wilfred A -- Metcalf, William W -- P01 GM077596/GM/NIGMS NIH HHS/ -- P01 GM077596-03/GM/NIGMS NIH HHS/ -- R01 GM059334/GM/NIGMS NIH HHS/ -- R01 GM059334-09/GM/NIGMS NIH HHS/ -- R01 GM59334/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Jun 11;459(7248):871-4. doi: 10.1038/nature07972.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19516340" target="_blank"〉PubMed〈/a〉
    Keywords: Aminobutyrates/*chemistry/*metabolism ; Biocatalysis ; Crystallography, X-Ray ; Dioxygenases/chemistry/genetics/*metabolism ; Escherichia coli ; Formates/metabolism ; Magnetic Resonance Spectroscopy ; Mass Spectrometry ; Models, Biological ; Models, Molecular ; Molecular Conformation ; Organophosphonates/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2009-10-23
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2819181/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2819181/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉George, Nicholas P -- Keck, James L -- R01 GM068061/GM/NIGMS NIH HHS/ -- R01 GM068061-07/GM/NIGMS NIH HHS/ -- R01 GM068061-07S1/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Oct 22;461(7267):1067-8. doi: 10.1038/4611067a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19847254" target="_blank"〉PubMed〈/a〉
    Keywords: DNA, Single-Stranded/chemistry/*metabolism ; DNA-Binding Proteins/*metabolism ; *Diffusion ; Escherichia coli ; Escherichia coli Proteins/*metabolism ; Fluorescence Resonance Energy Transfer ; *Movement ; Nucleic Acid Conformation ; Rec A Recombinases/*chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2010-07-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ehrenberg, Mans -- England -- Nature. 2010 Jul 15;466(7304):325-6. doi: 10.1038/466325a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20631789" target="_blank"〉PubMed〈/a〉
    Keywords: Cryoelectron Microscopy ; Escherichia coli ; Kinetics ; *Movement ; *Protein Biosynthesis ; RNA, Transfer/genetics/*metabolism ; Ribosomes/chemistry/*metabolism ; Temperature ; Thermodynamics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2010-05-14
    Description: Neurotransmitter:Na(+) symporters (NSS) remove neurotransmitters from the synapse in a reuptake process that is driven by the Na(+) gradient. Drugs that interfere with this reuptake mechanism, such as cocaine and antidepressants, profoundly influence behaviour and mood. To probe the nature of the conformational changes that are associated with substrate binding and transport, we have developed a single-molecule fluorescence imaging assay and combined it with functional and computational studies of the prokaryotic NSS homologue LeuT. Here we show molecular details of the modulation of intracellular gating of LeuT by substrates and inhibitors, as well as by mutations that alter binding, transport or both. Our direct observations of single-molecule transitions, reflecting structural dynamics of the intracellular region of the transporter that might be masked by ensemble averaging or suppressed under crystallographic conditions, are interpreted in the context of an allosteric mechanism that couples ion and substrate binding to transport.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2940119/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2940119/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhao, Yongfang -- Terry, Daniel -- Shi, Lei -- Weinstein, Harel -- Blanchard, Scott C -- Javitch, Jonathan A -- DA022413/DA/NIDA NIH HHS/ -- DA023694/DA/NIDA NIH HHS/ -- DA12408/DA/NIDA NIH HHS/ -- DA17293/DA/NIDA NIH HHS/ -- K05 DA022413/DA/NIDA NIH HHS/ -- K99 DA023694/DA/NIDA NIH HHS/ -- K99 DA023694-02/DA/NIDA NIH HHS/ -- R01 DA017293/DA/NIDA NIH HHS/ -- England -- Nature. 2010 May 13;465(7295):188-93. doi: 10.1038/nature09057.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Molecular Recognition, Columbia University College of Physicians and Surgeons, 630 W. 168th, New York, New York 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20463731" target="_blank"〉PubMed〈/a〉
    Keywords: Alanine/metabolism ; Allosteric Regulation ; Aquifoliaceae/*chemistry ; Bacterial Proteins/*chemistry/genetics/*metabolism ; Crystallography, X-Ray ; Cysteine/chemistry/metabolism ; Escherichia coli ; Fluorescence Resonance Energy Transfer ; Leucine/metabolism ; Models, Molecular ; Molecular Dynamics Simulation ; Plasma Membrane Neurotransmitter Transport ; Proteins/*chemistry/genetics/*metabolism ; Protein Conformation ; Sodium/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2014-06-12
    Description: Spontaneous changes in the reading frame of translation are rare (frequency of 10(-3) to 10(-4) per codon), but can be induced by specific features in the messenger RNA (mRNA). In the presence of mRNA secondary structures, a heptanucleotide 'slippery sequence' usually defined by the motif X XXY YYZ, and (in some prokaryotic cases) mRNA sequences that base pair with the 3' end of the 16S ribosomal rRNA (internal Shine-Dalgarno sequences), there is an increased probability that a specific programmed change of frame occurs, wherein the ribosome shifts one nucleotide backwards into an overlapping reading frame (-1 frame) and continues by translating a new sequence of amino acids. Despite extensive biochemical and genetic studies, there is no clear mechanistic description for frameshifting. Here we apply single-molecule fluorescence to track the compositional and conformational dynamics of individual ribosomes at each codon during translation of a frameshift-inducing mRNA from the dnaX gene in Escherichia coli. Ribosomes that frameshift into the -1 frame are characterized by a tenfold longer pause in elongation compared to non-frameshifted ribosomes, which translate through unperturbed. During the pause, interactions of the ribosome with the mRNA stimulatory elements uncouple EF-G catalysed translocation from normal ribosomal subunit reverse-rotation, leaving the ribosome in a non-canonical intersubunit rotated state with an exposed codon in the aminoacyl-tRNA site (A site). tRNA(Lys) sampling and accommodation to the empty A site and EF-G action either leads to the slippage of the tRNAs into the -1 frame or maintains the ribosome into the 0 frame. Our results provide a general mechanistic and conformational framework for -1 frameshifting, highlighting multiple kinetic branchpoints during elongation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4472451/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4472451/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Jin -- Petrov, Alexey -- Johansson, Magnus -- Tsai, Albert -- O'Leary, Sean E -- Puglisi, Joseph D -- GM099687/GM/NIGMS NIH HHS/ -- GM51266/GM/NIGMS NIH HHS/ -- R01 GM051266/GM/NIGMS NIH HHS/ -- R01 GM099687/GM/NIGMS NIH HHS/ -- England -- Nature. 2014 Aug 21;512(7514):328-32. doi: 10.1038/nature13428. Epub 2014 Jun 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Applied Physics, Stanford University, Stanford, California 94305-4090, USA [2] Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305-5126, USA. ; Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305-5126, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24919156" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/genetics ; Codon/genetics ; DNA Polymerase III/genetics ; Escherichia coli ; *Frameshifting, Ribosomal ; Kinetics ; *Peptide Chain Elongation, Translational ; Peptide Elongation Factor G/metabolism ; RNA, Messenger/genetics ; RNA, Transfer, Amino Acyl/metabolism ; Reading Frames/genetics ; Ribosome Subunits/chemistry/metabolism ; Ribosomes/chemistry/*metabolism ; Rotation ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2011-04-02
    Description: CRISPR/Cas systems constitute a widespread class of immunity systems that protect bacteria and archaea against phages and plasmids, and commonly use repeat/spacer-derived short crRNAs to silence foreign nucleic acids in a sequence-specific manner. Although the maturation of crRNAs represents a key event in CRISPR activation, the responsible endoribonucleases (CasE, Cas6, Csy4) are missing in many CRISPR/Cas subtypes. Here, differential RNA sequencing of the human pathogen Streptococcus pyogenes uncovered tracrRNA, a trans-encoded small RNA with 24-nucleotide complementarity to the repeat regions of crRNA precursor transcripts. We show that tracrRNA directs the maturation of crRNAs by the activities of the widely conserved endogenous RNase III and the CRISPR-associated Csn1 protein; all these components are essential to protect S. pyogenes against prophage-derived DNA. Our study reveals a novel pathway of small guide RNA maturation and the first example of a host factor (RNase III) required for bacterial RNA-mediated immunity against invaders.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3070239/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3070239/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Deltcheva, Elitza -- Chylinski, Krzysztof -- Sharma, Cynthia M -- Gonzales, Karine -- Chao, Yanjie -- Pirzada, Zaid A -- Eckert, Maria R -- Vogel, Jorg -- Charpentier, Emmanuelle -- P 17238/Austrian Science Fund FWF/Austria -- England -- Nature. 2011 Mar 31;471(7340):602-7. doi: 10.1038/nature09886.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Laboratory for Molecular Infection Medicine Sweden, Umea, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21455174" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/chemistry/genetics/immunology/metabolism ; Conserved Sequence ; DNA, Viral/genetics/metabolism ; Escherichia coli ; Models, Biological ; Prophages/genetics ; RNA Precursors/genetics/metabolism ; RNA Processing, Post-Transcriptional ; RNA, Bacterial/biosynthesis/*genetics/immunology/*metabolism ; RNA, Guide/*genetics ; Ribonuclease III/*metabolism ; Streptococcus pyogenes/*genetics/*immunology/metabolism/virology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2012-01-24
    Description: Fic proteins that are defined by the ubiquitous FIC (filamentation induced by cyclic AMP) domain are known to catalyse adenylylation (also called AMPylation); that is, the transfer of AMP onto a target protein. In mammalian cells, adenylylation of small GTPases through Fic proteins injected by pathogenic bacteria can cause collapse of the actin cytoskeleton and cell death. It is unknown how this potentially deleterious adenylylation activity is regulated in the widespread Fic proteins that are found in all domains of life and that are thought to have critical roles in intrinsic signalling processes. Here we show that FIC-domain-mediated adenylylation is controlled by a conserved mechanism of ATP-binding-site obstruction that involves an inhibitory alpha-helix (alpha(inh)) with a conserved (S/T)XXXE(G/N) motif, and that in this mechanism the invariable glutamate competes with ATP gamma-phosphate binding. Consistent with this, FIC-domain-mediated growth arrest of bacteria by the VbhT toxin of Bartonella schoenbuchensis is intermolecularly repressed by the VbhA antitoxin through tight binding of its alpha(inh) to the FIC domain of VbhT, as shown by structure and function analysis. Furthermore, structural comparisons with other bacterial Fic proteins, such as Fic of Neisseria meningitidis and of Shewanella oneidensis, show that alpha(inh) frequently constitutes an amino-terminal or carboxy-terminal extension to the FIC domain, respectively, partially obstructing the ATP binding site in an intramolecular manner. After mutation of the inhibitory motif in various Fic proteins, including the human homologue FICD (also known as HYPE), adenylylation activity is considerably boosted, consistent with the anticipated relief of inhibition. Structural homology modelling of all annotated Fic proteins indicates that inhibition by alpha(inh) is universal and conserved through evolution, as the inhibitory motif is present in approximately 90% of all putatively adenylylation-active FIC domains, including examples from all domains of life and from viruses. Future studies should reveal how intrinsic or extrinsic factors modulate adenylylation activity by weakening the interaction of alpha(inh) with the FIC active site.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Engel, Philipp -- Goepfert, Arnaud -- Stanger, Frederic V -- Harms, Alexander -- Schmidt, Alexander -- Schirmer, Tilman -- Dehio, Christoph -- England -- Nature. 2012 Jan 22;482(7383):107-10. doi: 10.1038/nature10729.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Focal Area Infection Biology, Biozentrum, University of Basel, CH-4056 Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22266942" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Bacterial Proteins/*chemistry/*metabolism ; Bartonella ; Carrier Proteins/chemistry/metabolism ; Catalysis ; Catalytic Domain ; Cyclic AMP/*metabolism ; Escherichia coli ; Escherichia coli Proteins/chemistry/metabolism ; Glutamic Acid/metabolism ; Humans ; Membrane Proteins/chemistry/metabolism ; Microbial Viability ; Models, Molecular ; Molecular Weight ; Neisseria meningitidis ; Protein Structure, Tertiary ; Shewanella
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2011-05-20
    Description: The boundaries between prokaryotes, unicellular eukaryotes and multicellular eukaryotes are accompanied by orders-of-magnitude reductions in effective population size, with concurrent amplifications of the effects of random genetic drift and mutation. The resultant decline in the efficiency of selection seems to be sufficient to influence a wide range of attributes at the genomic level in a non-adaptive manner. A key remaining question concerns the extent to which variation in the power of random genetic drift is capable of influencing phylogenetic diversity at the subcellular and cellular levels. Should this be the case, population size would have to be considered as a potential determinant of the mechanistic pathways underlying long-term phenotypic evolution. Here we demonstrate a phylogenetically broad inverse relation between the power of drift and the structural integrity of protein subunits. This leads to the hypothesis that the accumulation of mildly deleterious mutations in populations of small size induces secondary selection for protein-protein interactions that stabilize key gene functions. By this means, the complex protein architectures and interactions essential to the genesis of phenotypic diversity may initially emerge by non-adaptive mechanisms.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3121905/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3121905/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fernandez, Ariel -- Lynch, Michael -- R01 GM036827/GM/NIGMS NIH HHS/ -- R01 GM036827-17S1/GM/NIGMS NIH HHS/ -- R01GM036827/GM/NIGMS NIH HHS/ -- R01GM072614/GM/NIGMS NIH HHS/ -- England -- Nature. 2011 May 18;474(7352):502-5. doi: 10.1038/nature09992.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Computer Science, The University of Chicago, Chicago, Illinois 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21593762" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Caenorhabditis elegans ; Computational Biology ; Escherichia coli ; *Evolution, Molecular ; *Genetic Drift ; Hemoglobins/chemistry/metabolism ; Humans ; Hydrogen Bonding ; Metabolic Networks and Pathways/genetics/*physiology ; Models, Genetic ; Models, Molecular ; Phenotype ; Phylogeny ; Population Density ; Protein Binding ; Protein Conformation ; Proteins/chemistry/genetics/*metabolism ; Selection, Genetic ; Solubility ; Species Specificity ; Superoxide Dismutase/chemistry/metabolism ; Water/chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...