ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (22,089)
  • Molecular Diversity Preservation International  (22,089)
  • Architecture, Civil Engineering, Surveying  (22,089)
  • Political Science
Collection
  • Articles  (22,089)
Years
Journal
  • 11
    Publication Date: 2020-08-26
    Description: In this study we (1) mapped the areal extent of current dust sources over Northern Africa between 8°W–31°E and 22°N - Mediterranean coast; and (2) identified and characterized the geomorphic units and soil types that emit dust from these areas. We used the full resolution (3 km) data from the MSG-SEVIRI to map dust sources over a 2-year period between 2005–2006, and examined these regions with remotely sensed images and geomorphic and soil maps. A total of 〉2600 individual dust emission events were mapped; with frequency up to 34 events in the 2-year study period. The areal extent of dust emission sources exhibited a lognormal distribution with most sources ranging from 20 to 130 km2. Most dust events were singular and related to a variety of specific geomorphic units. Dust events that created hotspots were mostly located over playas and fluvial landforms, and to a lesser extent over sand dunes and anthropogenic affected regions. About 20% of dust hotspots were offset a few kilometers from clear geomorphic units. Quantitative analysis of emissions revealed that dust sourced from various geomorphic units, among them playas (12%) and fluvial systems (10%). The importance of sand dunes as dust-emission sources greatly differs between examined datasets (7% vs. 30%). Our study emphasizes the importance of scattered dust emission events that are not considered as hotspots, as these sources are usually neglected in dust emission modeling.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2020-08-26
    Description: Surface all-wave net radiation (Rn) is a crucial variable driving many terrestrial latent heat (LE) models that estimate global LE. However, the differences between different Rn products and their impact on global LE estimates still remain unclear. In this study, we evaluated two Rn products, Global LAnd Surface Satellite (GLASS) beta version Rn and Modern-Era Retrospective Analysis for Research and Applications-version 2 (MERRA-2) Rn, from 2007–2017 using ground-measured data from 240 globally distributed in-situ radiation measurements provided by FLUXNET projects. The GLASS Rn product had higher accuracy (R2 increased by 0.04–0.26, and RMSE decreased by 2–13.3 W/m2) than the MERRA-2 Rn product for all land cover types on a daily scale, and the two Rn products differed greatly in spatial distribution and variations. We then determined the resulting discrepancies in simulated annual global LE using a simple averaging model by merging five diagnostic LE models: RS-PM model, SW model, PT-JPL model, MS-PT model, and SIM model. The validation results showed that the estimated LE from the GLASS Rn had higher accuracy (R2 increased by 0.04–0.14, and RMSE decreased by 3–8.4 W/m2) than that from the MERRA-2 Rn for different land cover types at daily scale. Importantly, the mean annual global terrestrial LE from GLASS Rn was 2.1% lower than that from the MERRA-2 Rn. Our study showed that large differences in satellite and reanalysis Rn products could lead to substantial uncertainties in estimating global terrestrial LE.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2020-08-30
    Description: Detection of terrain features (ridges, spurs, cliffs, and peaks) is a basic research topic in digital elevation model (DEM) analysis and is essential for learning about factors that influence terrain surfaces, such as geologic structures and geomorphologic processes. Detection of terrain features based on general geomorphometry is challenging and has a high degree of uncertainty, mostly due to a variety of controlling factors on surface evolution in different regions. Currently, there are different computational techniques for obtaining detailed information about terrain features using DEM analysis. One of the most common techniques is numerically identifying or classifying terrain elements where regional topologies of the land surface are constructed by using DEMs or by combining derivatives of DEM. The main drawbacks of these techniques are that they cannot differentiate between ridges, spurs, and cliffs, or result in a high degree of false positives when detecting spur lines. In this paper, we propose a new method for automatically detecting terrain features such as ridges, spurs, cliffs, and peaks, using shaded relief by controlling altitude and azimuth of illumination sources on both smooth and rough surfaces. In our proposed method, we use edge detection filters based on azimuth angle on shaded relief to identify specific terrain features. Results show that the proposed method performs similar to or in some cases better (when detecting spurs than current terrain features detection methods, such as geomorphon, curvature, and probabilistic methods.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2020-08-29
    Description: The shipborne high-frequency surface wave radar (HFSWR) platform produces six degrees of freedom (DOF) motion at sea, which affects the performance of radar target detection and remote sensing of ocean surface dynamics parameters. Motion compensation can mitigate the effect of six-DOF motion, but motion parameters (including amplitude and angular frequency) need to be known. Motion parameters obtained by using high precision sensors are affected by the precision error and time delay, thus affecting the effect of motion compensation. To obtain the motion parameters accurately and in real time, a method of identifying the motion parameters by using an artificially transmitted reference radio frequency (RF) signal generated at the shore is proposed. Based on the results of the parameter identification, the reference RF signal and the first-order radar cross-sections (RCSs) modulated by six-DOF motion of the shipborne HFSWR platform can be compensated. The identification of angular frequency is divided into two steps: (1) Preliminary identification results are obtained by using the reference RF signal; (2) the pattern search method is used to further improve the identification accuracy of angular frequency. The amplitude of translation (including surge and sway) can be identified accurately through the reference RF signal. Due to the small amplitude of rotation (including roll, pitch, and yaw), it needs to be identified by the reference RF signal and pattern search method. After identifying the motion parameters, division in the time domain is used for motion compensation. Through the simulation results, both translation and rotation have good motion compensation effects. In addition, the method of using high precision sensors to obtain motion parameters and compensation is compared with the method in this paper, the simulation results of motion compensation show that the latter is better.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2020-08-29
    Description: The information of building types is highly needed for urban planning and management, especially in high resolution building modeling in which buildings are the basic spatial unit. However, in many parts of the world, this information is still missing. In this paper, we proposed a framework to derive the information of building type using geospatial data, including point-of-interest (POI) data, building footprints, land use polygons, and roads, from Gaode and Baidu Maps. First, we used natural language processing (NLP)-based approaches (i.e., text similarity measurement and topic modeling) to automatically reclassify POI categories into which can be used to directly infer building types. Second, based on the relationship between building footprints and POIs, we identified building types using two indicators of type ratio and area ratio. The proposed framework was tested using over 440,000 building footprints in Beijing, China. Our NLP-based approaches and building type identification methods show overall accuracies of 89.0% and 78.2%, and kappa coefficient of 0.83 and 0.71, respectively. The proposed framework is transferrable to other China cities for deriving the information of building types from web mapping platforms. The data products generated from this study are of great use for quantitative urban studies at the building level.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2020-08-29
    Description: Despite the potential implications of a cropland canopy water content (CCWC) thematic product, no global remotely sensed CCWC product is currently generated. The successful launch of the Landsat-8 Operational Land Imager (OLI) in 2012, Sentinel-2A Multispectral Instrument (MSI) in 2015, followed by Sentinel-2B in 2017, make possible the opportunity for CCWC estimation at a spatial and temporal scale that can meet the demands of potential operational users. In this study, we designed and tested a novel radiative transfer model (RTM) inversion technique to combine multiple sources of a priori data in a look-up table (LUT) for inverting the NASA Harmonized Landsat Sentinel-2 (HLS) product for CCWC estimation. This study directly builds on previous research for testing the constraint of the leaf parameter (Ns) in PROSPECT, by applying those constraints in PRO4SAIL in an agricultural setting where the variability of canopy parameters are relatively minimal. In total, 225 independent leaf measurements were used to train the LUTs, and 102 field data points were collected over the 2015–2017 growing seasons for validating the inversions. The results confirm increasing a priori information and regularization yielded the best performance for CCWC estimation. Despite the relatively low variable canopy conditions, the inclusion of Ns constraints did not improve the LUT inversion. Finally, the inversion of Sentinel-2 data outperformed the inversion of Landsat-8 in the HLS product. The method demonstrated ability for HLS inversion for CCWC estimation, resulting in the first HLS-based CCWC product generated through RTM inversion.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2020-08-29
    Description: The technological growth and accessibility of Unoccupied Aerial Systems (UAS) have revolutionized the way geographic data are collected. Digital Surface Models (DSMs) are an integral component of geospatial analyses and are now easily produced at a high resolution from UAS images and photogrammetric software. Systematic testing is required to understand the strengths and weaknesses of DSMs produced from various UAS. Thus, in this study, we used photogrammetry to create DSMs using four UAS (DJI Inspire 1, DJI Phantom 4 Pro, DJI Mavic Pro, and DJI Matrice 210) to test the overall accuracy of DSM outputs across a mixed land cover study area. The accuracy and spatial variability of these DSMs were determined by comparing them to (1) 12 high-precision GPS targets (checkpoints) in the field, and (2) a DSM created from Light Detection and Ranging (LiDAR) (Velodyne VLP-16 Puck Lite) on a fifth UAS, a DJI Matrice 600 Pro. Data were collected on July 20, 2018 over a site with mixed land cover near Middleton, NS, Canada. The study site comprised an area of eight hectares (~20 acres) with land cover types including forest, vines, dirt road, bare soil, long grass, and mowed grass. The LiDAR point cloud was used to create a 0.10 m DSM which had an overall Root Mean Square Error (RMSE) accuracy of ±0.04 m compared to 12 checkpoints spread throughout the study area. UAS were flown three times each and DSMs were created with the use of Ground Control Points (GCPs), also at 0.10 m resolution. The overall RMSE values of UAS DSMs ranged from ±0.03 to ±0.06 m compared to 12 checkpoints. Next, DSMs of Difference (DoDs) compared UAS DSMs to the LiDAR DSM, with results ranging from ±1.97 m to ±2.09 m overall. Upon further investigation over respective land covers, high discrepancies occurred over vegetated terrain and in areas outside the extent of GCPs. This indicated LiDAR’s superiority in mapping complex vegetation surfaces and stressed the importance of a complete GCP network spanning the entirety of the study area. While UAS DSMs and LiDAR DSM were of comparable high quality when evaluated based on checkpoints, further examination of the DoDs exposed critical discrepancies across the study site, namely in vegetated areas. Each of the four test UAS performed consistently well, with P4P as the clear front runner in overall ranking.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2020-08-30
    Description: Radar images suffer from the impact of sidelobes. Several sidelobe-suppressing methods including the convolutional neural network (CNN)-based one has been proposed. However, the point spread function (PSF) in the radar images is sometimes spatially variant and affects the performance of the CNN. We propose the spatial-variant convolutional neural network (SV-CNN) aimed at this problem. It will also perform well in other conditions when there are spatially variant features. The convolutional kernels of the CNN can detect motifs with some distinctive features and are invariant to the local position of the motifs. This makes the convolutional neural networks widely used in image processing fields such as image recognition, handwriting recognition, image super-resolution, and semantic segmentation. They also perform well in radar image enhancement. However, the local position invariant character might not be good for radar image enhancement, when features of motifs (also known as the point spread function in the radar imaging field) vary with the positions. In this paper, we proposed an SV-CNN with spatial-variant convolution kernels (SV-CK). Its function is illustrated through a special application of enhancing the radar images. After being trained using radar images with position-codings as the samples, the SV-CNN can enhance the radar images. Because the SV-CNN reads information of the local position contained in the position-coding, it performs better than the conventional CNN. The advance of the proposed SV-CNN is tested using both simulated and real radar images.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2020-08-29
    Description: In this paper we document the design, development, results, performance and field applications of a compact directive transmit antenna for the long-range High Frequency ocean RADAR (HFR) systems operating in the International Telecommunication Union (ITU) designated 4MHz and 5MHz radiodetermination bands. The antenna design is based on the combination of the concepts of an electrically small loop with that of travelling wave antenna. This has the effect of inducing a radiated wave predominantly in a direction opposed to that of energy flow on the antenna structures. We demonstrate here that travelling wave design allows for a more compact antenna than other directive options, it has straightforward feed-point matching arrangements, and a flat frequency and phase response over an entire radiodetermination band. In situ measurements of the antenna radiation pattern, obtained with the aid of a drone, correlate well with those obtained from simulations, and show between 8dB and 30dB front-to-back suppression, with a 3dB beam width in the forward lobe of 100∘ or more. The broad-beam radiation pattern ensures proper illumination over the ocean and the significant front-to-back suppression guarantees reduced interference to terrestrial services. The proposed antenna design is compact and straight forward and can be easily deployed by minimal modifications of an existing transmission antenna. The design may be readily adapted to different environments due to the relative insensitivity of its radiation pattern and frequency response to geometric detail. The only downside to these antennas is their relatively low radiation efficiency which, however, may easily be compensated for by the available power output of a typical HFR transmitter. Antennas based on this design are currently deployed at the SeaSonde HFR sites in New South Wales, Australia, with operational ranges up to 200 km offshore despite their low radiating efficiency and the extremely low output power in use at these installations. Due to their directional pattern, it is also planned to test these antennas in phased-array Wellen RADAR (WERA) systems in both the standard receive arrays: where in-band radio frequency noise of terrestrial origin is impacting on data quality, and in the transmit array: to possibly simplify splitting, phasing and tuning requirements.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2020-08-28
    Description: Supraglacial liquid water at the margins of ice sheets has an important impact on the surface energy balance and can also influence the ice flow when supraglacial lakes drain to the bed. Optical imagery is able to monitor supraglacial lakes during the summer season. Here we developed an alternative method using polarimetric SAR from Sentinel-1 during 2017–2020 to distinguish between liquid water and other surface types at the margin of the Northeast Greenland Ice Stream. This allows the supraglacial hydrology to be monitored during the winter months too. We found that the majority of supraglacial lakes persist over winter. When comparing our results to optical data, we found significantly more water. Even during summer, many lakes are partly or fully covered by a lid of ice and snow. We used our classification results to automatically map the outlines of supraglacial lakes, create time series of water area for each lake, and hence detect drainage events. We even found several winter time drainages, which might have an important effect on ice flow. Our method has problems during the peak of the melt season, but for the rest of the year it provides crucial information for better understanding the component of supraglacial hydrology in the glaciological system.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...