ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Journals  (1)
  • Articles  (7,351)
  • MDPI Publishing  (7,352)
  • Architecture, Civil Engineering, Surveying  (7,352)
  • Economics
Collection
  • Journals  (1)
  • Articles  (7,351)
Years
Media Type
  • 1
    Journal cover
    Unknown
    MDPI Publishing | International Society for Photogrammetry and Remote Sensing (ISPRS)
    Online: 1.2012 –
    Publisher: MDPI Publishing , International Society for Photogrammetry and Remote Sensing (ISPRS)
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-08-11
    Description: Urban areas are one of the most important components of human society. Their extents have been continuously growing during the last few decades. Accurate and timely measurements of the extents of urban areas can help in analyzing population densities and urban sprawls and in studying environmental issues related to urbanization. Urban extents detected from remotely sensed data are usually a by-product of land use classification results, and their interpretation requires a full understanding of land cover types. In this study, for the first time, we mapped urban extents in the continental United States using a novel one-class classification method, i.e., positive and unlabeled learning (PUL), with multi-temporal Moderate Resolution Imaging Spectroradiometer (MODIS) data for the year 2010. The Defense Meteorological Satellite Program Operational Linescan System (DMSP-OLS) night stable light data were used to calibrate the urban extents obtained from the one-class classification scheme. Our results demonstrated the effectiveness of the use of the PUL algorithm in mapping large-scale urban areas from coarse remote-sensing images, for the first time. The total accuracy of mapped urban areas was 92.9% and the kappa coefficient was 0.85. The use of DMSP-OLS night stable light data can significantly reduce false detection rates from bare land and cropland far from cities. Compared with traditional supervised classification methods, the one-class classification scheme can greatly reduce the effort involved in collecting training datasets, without losing predictive accuracy.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-08-11
    Description: The knowledge about impacts of changes in precipitation regimes on terrestrial ecosystems is fundamental to improve our understanding of global environment change, particularly in the context that heavy precipitation is expected to increase according to the 5th Intergovernmental Panel on Climate Change (IPCC) assessment. Based on observed climate data and the Advanced Very High Resolution Radiometer (AVHRR) Global Inventory Modeling and Mapping Studies (GIMMS) satellite-derived normalized difference vegetation index (NDVI), here we analyzed the spatio-temporal changes in grassland NDVI, covering 1.64 × 106 km2, in northern China and their linkages to changes in precipitation and temperature during the period 1982–2011. We found that mean growing season (April–October) grass NDVI is more sensitive to heavy precipitation than to moderate or light precipitation in both relatively arid areas (RAA) and relatively humid areas (RHA), whereas the sensitivities of grass NDVI to temperature are comparable to total precipitation in RHA. Heavy precipitation showed the strongest impacts in more than half of northern China (56%), whereas impacts of light precipitation on grass NDVI were stronger in some areas (21%), mainly distributed in northwestern China, a typical arid and semi-arid area. Our findings suggest that responses of grasslands are divergent with respect to changes in precipitation intensities.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-08-11
    Description: The worldwide Sensor Web comprises observation data from diverse sources. Each data provider may process and assess datasets differently before making them available online. This information is often invisible to end users. Therefore, publishing observation data with quality descriptions is vital as it helps users to assess the suitability of data for their applications. It is also important to capture contextual information concerning data quality such as provenance to trace back incorrect data to its origins. In the Open Geospatial Consortium (OGC)’s Sensor Web Enablement (SWE) framework, there is no sufficiently and practically applicable approach how these aspects can be systematically represented and made accessible. This paper presents Q-SOS—an extension of the OGC’s Sensor Observation Service (SOS) that supports retrieval of observation data together with quality descriptions. These descriptions are represented in an observation data model covering various aspects of data quality assessment. The service and the data model have been developed based on open standards and open source tools, and are productively being used to share observation data from the TERENO observatory infrastructure. We discuss the advantages of deploying the presented solutions from data provider and consumer viewpoints. Enhancements applied to the related open-source developments are also introduced.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-08-12
    Description: Multiple stable states are established in coastal tidal wetlands (marshes, mangroves, deltas, seagrasses) by ecological, hydrological, and geomorphological feedbacks. Catastrophic shifts between states can be induced by gradual environmental change or by disturbance events. These feedbacks and outcomes are key to the sustainability and resilience of vegetated coastlines, especially as modulated by human activity, sea level rise, and climate change. Whereas multiple stable state theory has been invoked to model salt marsh responses to sediment supply and sea level change, there has been comparatively little empirical verification of the theory for salt marshes or other coastal wetlands. Especially lacking is long-term evidence documenting if or how stable states are established and maintained at ecosystem scales. Laboratory and field-plot studies are informative, but of necessarily limited spatial and temporal scope. For the purposes of long-term, coastal-scale monitoring, remote sensing is the best viable option. This review summarizes the above topics and highlights the emerging promise and challenges of using remote sensing-based analyses to validate coastal wetland dynamic state theories. This significant opportunity is further framed by a proposed list of scientific advances needed to more thoroughly develop the field.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-08-13
    Description: Aquatic vegetation serves many important ecological and socioeconomic functions in lake ecosystems. The presence of floating algae poses difficulties for accurately estimating the distribution of aquatic vegetation in eutrophic lakes. We present an approach to map the distribution of aquatic vegetation in Lake Taihu (a large, shallow eutrophic lake in China) and reduce the influence of floating algae on aquatic vegetation mapping. Our approach involved a frequency analysis over a 2003–2013 time series of the floating algal index (FAI) based on moderate-resolution imaging spectroradiometer (MODIS) data. Three phenological periods were defined based on the vegetation presence frequency (VPF) and the growth of algae and aquatic vegetation: December and January composed the period of wintering aquatic vegetation; February and March composed the period of prolonged coexistence of algal blooms and wintering aquatic vegetation; and June to October was the peak period of the coexistence of algal blooms and aquatic vegetation. By comparing and analyzing the satellite-derived aquatic vegetation distribution and 244 in situ measurements made in 2013, we established a FAI threshold of −0.025 and VPF thresholds of 0.55, 0.45 and 0.85 for the three phenological periods. We validated the accuracy of our approach by comparing the results between the satellite-derived maps and the in situ results obtained from 2008–2012. The overall classification accuracy was 87%, 81%, 77%, 88% and 73% in the five years from 2008–2012, respectively. We then applied the approach to the MODIS images from 2003–2013 and obtained the total area of the aquatic vegetation, which varied from 265.94 km2 in 2007 to 503.38 km2 in 2008, with an average area of 359.62 ± 69.20 km2 over the 11 years. Our findings suggest that (1) the proposed approach can be used to map the distribution of aquatic vegetation in eutrophic algae-rich waters and (2) dramatic changes occurred in the distribution of aquatic vegetation in Lake Taihu during the 11-year study.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-08-14
    Description: Recent disasters, such as the 2010 Haiti earthquake, have drawn attention to the potential role of citizens as active information producers. By using location-aware devices such as smartphones to collect geographic information in the form of geo-tagged text, photos, or videos, and sharing this information through online social media, such as Twitter, citizens create Volunteered Geographic Information (VGI). To effectively use this information for disaster management, we developed a VGI framework for the discovery of VGI. This framework consists of four components: (i) a VGI brokering module to provide a standard service interface to retrieve VGI from multiple resources based on spatial, temporal, and semantic parameters; (ii) a VGI quality control component, which employs semantic filtering and cross-referencing techniques to evaluate VGI; (iii) a VGI publisher module, which uses a service-based delivery mechanism to disseminate VGI, and (iv) a VGI discovery component to locate, browse, and query metadata about available VGI datasets. In a case study we employed a FOSS (Free and Open Source Software) strategy, open standards/specifications, and free/open data to show the utility of the framework. We demonstrate that the framework can facilitate data discovery for disaster management. The addition of quality metrics and a single aggregated source of relevant crisis VGI will allow users to make informed policy choices that could save lives, meet basic humanitarian needs earlier, and perhaps limit environmental and economic damage.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-08-05
    Description: Yield and quality estimations provide vital information to fruit growers, yet require accurate monitoring throughout the growing season. To this end, the temporal dependency of fruit yield and quality estimations through spectral vegetation indices was investigated in irrigated and rainfed pear orchards. Both orchards were monitored throughout three consecutive growing seasons, including spectral measurements (i.e., hyperspectral canopy reflectance measurements) as well as yield determination (i.e., total yield and number of fruits per tree) and quality assessment (i.e., fruit firmness, total soluble solids and fruit color). The results illustrated a clear association between spectral vegetation indices and both fruit yield and fruit quality (|r| > 0.75; p 〈 0.001). However, the correlations between vegetation indices and production variables varied throughout the growing season, depending on the phenological stage of fruit development. In the irrigated orchard, index values showed a strong association with production variables near time of harvest (|r| > 0.6; p 〈 0.001), while in the rainfed orchard, index values acquired during vegetative growth periods presented stronger correlations with fruit parameters (|r| > 0.6; p 〈 0.001). The improved planning of remote sensing missions during (rainfed orchards) and after (irrigated orchards) vegetative growth periods could enable growers to more accurately predict production outcomes and improve the production process.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-08-07
    Description: Since the late 1970s, the Chinese government has initiated ecological restoration programs in the Three North Shelter Forest System Project (TNSFSP) area. Whether accelerated climate change will help or hinder these efforts is still poorly understood. Using the updated and extended AVHRR NDVI3g dataset from 1982 to 2011 and corresponding climatic data, we investigated vegetation variations in response to climate change. The results showed that the overall state of vegetation in the study region has improved over the past three decades. Vegetation cover significantly decreased in 23.1% and significantly increased in 21.8% of the study area. An increase in all three main vegetation types (forest, grassland, and cropland) was observed, but the trend was only statistically significant in cropland. In addition, bare and sparsely vegetated areas, mainly located in the western part of the study area, have significantly expanded since the early 2000s. A moisture condition analysis indicated that the study area experienced significant climate variations, with warm-wet conditions in the western region and warm-dry conditions in the eastern region. Correlation analysis showed that variations in the Normalized Difference Vegetation Index (NDVI) were positively correlated with precipitation and negatively correlated with temperature. Ultimately, climate change influenced vegetation growth by controlling the availability of soil moisture. Further investigation suggested that the positive impacts of precipitation on NDVI have weakened in the study region, whereas the negative impacts from temperature have been enhanced in the eastern study area. However, over recent years, the negative temperature impacts have been converted to positive impacts in the western region. Considering the variations in the relationship between NDVI and climatic variables, the warm–dry climate in the eastern region is likely harmful to vegetation growth, whereas the warm–wet conditions in the western region may promote vegetation growth.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-08-08
    Description: Multispectral, as well as multi-temporal, satellite images, coupled with measurements, in situ, have been widely applied to the water quality monitoring of reservoirs. However, the spatial resolutions of the current multispectral satellite imageries are inadequate for trophic state mapping of small reservoirs which merely cover several hectares. Moreover, the temporal gap between effective satellite imaging and measurements, in situ, is usually a few days or weeks; this time lag hampers the establishment of regression models between band ratios and water quality parameters. In this research, the RGB and NIR sensors carried on an unmanned aerial vehicle (UAV) were applied to the trophic state mapping of Tain-Pu reservoir, which is one of the small reservoirs in Kinmen, Taiwan. Due to the limited sampling points and the uncertainty of water fluidity, the average method and the matching pixel-by-pixel (MPP) method were employed to search for the optimal regression models. The experimental results indicate that the MPP method can lead to better regression models than the average method, and the trophic state maps show that the averages of Chl-a, TP, and SD are 179.7 μg·L−1, 108.4 μg·L−1, and 1.4 m, respectively.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...