ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Journals  (14)
  • Articles  (5,922)
  • MDPI  (5,936)
  • Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics  (5,936)
Collection
  • Journals  (14)
  • Articles  (5,922)
Years
Media Type
  • 1
    Journal cover
    Unknown
    MDPI
    Online: 1(1).2018 –
    Publisher: MDPI
    Electronic ISSN: 2624-7402
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Journal cover
    Unknown
    MDPI
    Online: 1(1).2014 –
    Publisher: MDPI
    Electronic ISSN: 2226-4310
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Journal cover
    Unknown
    MDPI
    Online: 1(1).2018 –
    Publisher: MDPI
    Electronic ISSN: 2571-6131
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Journal cover
    Unknown
    MDPI
    Online: 1(1).2018 –
    Publisher: MDPI
    Electronic ISSN: 2624-5558
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Journal cover
    Unknown
    MDPI
    Online: 1(1).2017 –
    Publisher: MDPI
    Electronic ISSN: 2411-9660
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Journal cover
    Unknown
    MDPI
    Online: 1(1).2020 –
    Publisher: MDPI
    Electronic ISSN: 2673-3161
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Journal cover
    Unknown
    MDPI
    Online: 1(1).2018 –
    Publisher: MDPI
    Electronic ISSN: 2571-5577
    Topics: Electrical Engineering, Measurement and Control Technology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Journal cover
    Unknown
    MDPI
    Online: 1(1).2011 –
    Publisher: MDPI
    Electronic ISSN: 2075-4701
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Journal cover
    Unknown
    MDPI
    Online: 1(1).2013 –
    Publisher: MDPI
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Journal cover
    Unknown
    MDPI
    Online: 1.2020 –
    Publisher: MDPI
    Electronic ISSN: 2673-4605
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Journal cover
    Unknown
    MDPI
    Online: 1(1).2019 –
    Publisher: MDPI
    Electronic ISSN: 2624-8921
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Journal cover
    Unknown
    MDPI
    Online: 1(1).2012 –
    Publisher: MDPI
    Electronic ISSN: 2218-6581
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Journal cover
    Unknown
    MDPI
    Online: 1.2010 –
    Publisher: MDPI
    Electronic ISSN: 2072-666X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Journal cover
    Unknown
    MDPI
    Online: 1(1).2007 –
    Publisher: MDPI
    Electronic ISSN: 2032-6653
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2015-08-05
    Description: Mangroves are found throughout the tropics, providing critical ecosystem goods and services to coastal communities and supporting rich biodiversity. Globally, mangroves are being rapidly degraded and deforested at rates exceeding loss in many tropical inland forests. Madagascar contains around 2% of the global distribution, >20% of which has been deforested since 1990, primarily from over-harvest for forest products and conversion for agriculture and aquaculture. While historically not prominent, mangrove loss in Madagascar’s Mahajamba Bay is increasing. Here, we focus on Mahajamba Bay, presenting long-term dynamics calculated using United States Geological Survey (USGS) national-level mangrove maps contextualized with socio-economic research and ground observations, and the results of contemporary (circa 2011) mapping of dominant mangrove types. The analysis of the USGS data indicated 1050 hectares (3.8%) lost from 2000 to 2010, which socio-economic research suggests is increasingly driven by commercial timber extraction. Contemporary mapping results permitted stratified sampling based on spectrally distinct and ecologically meaningful mangrove types, allowing for the first-ever vegetation carbon stock estimates for Mahajamba Bay. The overall mean carbon stock across all mangrove classes was estimated to be 100.97 ± 10.49 Mg C ha−1. High stature closed-canopy mangroves had the highest average carbon stock estimate (i.e., 166.82 ± 15.28 Mg C ha−1). These estimates are comparable to other published values in Madagascar and elsewhere in the Western Indian Ocean and demonstrate the ecological variability of Mahajamba Bay’s mangroves and their value towards climate change mitigation.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2015-08-20
    Description: Many studies have revealed the cyclicity of past ocean/atmosphere dynamics at a wide range of time scales (from decadal to millennial time scales), based on the spectral analysis of time series of climate proxies obtained from deep sea sediment cores. Among the many techniques available for spectral analysis, the maximum entropy method and the Thomson multitaper approach have frequently been used because of their good statistical properties and high resolution with short time series. The novelty of the present study is that we compared the two methods by according to the performance of their statistical tests to assess the statistical significance of their power spectrum estimates. The statistical significance of maximum entropy estimates was assessed by a random permutation test (Pardo-Igúzquiza and Rodríguez-Tovar, 2000), while the statistical significance of the Thomson multitaper method was assessed by an F-test (Thomson, 1982). We compared the results obtained in a case study using simulated data where the spectral content of the time series was known and in a case study with real data. In both cases the results are similar: while the cycles identified as significant by maximum entropy and the permutation test have a clear physical interpretation, the F-test with the Thomson multitaper estimator tends to find as no significant the peaks in the low frequencies and tends to give as significant more spurious peaks in the middle and high frequencies. Nevertheless, the best strategy is to use both techniques and to use the advantages of each of them.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2015-08-20
    Description: Estimates of bed roughness used for predictions of sediment transport are usually derived either from simple scalars of the physical roughness (i.e., ripple height or grain size) or from the hydrodynamic roughness length (Zo) based upon velocity gradient estimates in the benthic boundary layer. Neither parameter accounts for irregular bed features. This study re-evaluates the relation between hydrodynamic roughness and physical bed roughness using high-resolution seabed scanning in the inlet of a shallow lagoon. The statistically-robust relationship, based on a 1D statistical analysis of the seabed elevation at different locations of the Cabras lagoon. Sardinia, has been obtained between Zo and the topographical bed roughness Ks by defining Ks = 2*STD + skin friction, with STD the standard deviation of the seabed elevation variations. This correlation between Ks and Zo demonstrates that the roughness length is directly influenced by irregular bed features, and that the Reynolds number accounts for the total drag of the bed: the data points collapse on the Law of the Wall curves with a fitting factor x = 0.5. Further testing must be done in other locations and in the fully-rough domain in order to test how widely those new parameters can be applied.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2015-08-13
    Description: Bubbles generated by breaking waves can drive significant gas exchange between the ocean and atmosphere, but the role of bubble-mediated gas transfer in estuaries is unknown. Here, backscatter data from 41 acoustic Doppler current profiler stations was analyzed to assess subsurface bubble distributions in nine estuaries along the U.S. East and Gulf Coast. Wind speed, wind direction, and current velocity were the dominant controls on bubble entrainment, but the relative importance of these physical drivers depended on local geomorphology. Bubble entrainment in high-current or shallow, long-fetch estuaries began at wind speeds 〈5 m s−1. In deep or fetch-limited estuaries, bubble entrainment was less frequent and generally began at higher wind speeds. Data observed during several storms suggests that episodic bubble-driven gas exchange may be an important component of annual CO2 fluxes in large, shallow estuaries but would be less significant in other coastal systems.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2015-06-04
    Description: We studied genotype by environment interaction (G × E) for body weight (BW) of Atlantic cod (Gadus morhua L.) from the National cod breeding program in Norway. Records of 13,811 fish in a nucleus farm (NUC) and two test farms (PENorth, PESouth) in year-class (YC) 2007, and for 9149 fish in NUC and one test farm in YC 2010 were available. Heterogeneity of variances and heritabilities ( ) were estimated using a univariate animal model with environmental effects common to full-sibs (full-model). Genetic correlations ( ) between farms were estimated using a multivariate full-model and a reduced-model (without ) for each YC. Heterogeneity of  was observed in both YC 2007 (0.10 to 0.16) and YC 2010 (0.08 to 0.26). The estimates of  between NUC and test farms were relatively high for both models (0.81 ± 0.19 to 0.96 ± 0.17) and (0.81 ± 0.08 to 0.86 ± 0.04), suggesting low re-ranking of genotypes. Strong re-ranking of genotypes between PESouth and PENorth may be less important because most cod producers are situated close to the breeding nucleus. In conclusion, G × E between NUC and test farms were low and at present there is no need for separate breeding programs for BW in cod.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2015-06-05
    Description: An Unmanned Aerial System (UAS) has been developed which is based on an aerodynamically functionalized planar wideband antenna. The antenna utilizes a planar circular dipole metallization scheme. The aerodynamic structure implements a planform similar to the Nutball flier, a hobbyist flight architecture. The resulting codesign achieved a large impedance bandwidth defined by a voltage standing wave ratio (VSWR) less than 2 from 100 MHz to over 2 GHz and omnidirectional dipole-like radiation patterns at the lower frequency region and more directional patterns at higher frequencies.
    Electronic ISSN: 2226-4310
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2015-06-06
    Description: Multirotor is the umbrella term for the family of unmanned aircraft, which include the quadrotor, hexarotor and other vertical take-off and landing (VTOL) aircraft that employ multiple main rotors for lift and control. Development and testing of novel multirotor designs has been aided by the proliferation of 3D printing and inexpensive flight controllers and components. Different multirotor configurations exhibit specific strengths, while presenting unique challenges with regards to design and control. This article highlights the primary differences between three multirotor platforms: a quadrotor; a fully-actuated hexarotor; and an octorotor. Each platform is modelled and then controlled using non-linear dynamic inversion. The differences in dynamics, control and performance are then discussed.
    Electronic ISSN: 2226-4310
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2015-08-14
    Description: Sea surface partial pressure of CO2 (pCO2) was measured continuously in a transect of the North Atlantic subtropical gyre between Santo Domingo, Dominican Republic (18.1° N, 68.5° W) and Vigo, Spain (41.9° N, 11.8° W) during spring 2011. Additional biogeochemical and physical variables measured to identify factors controlling the surface pCO2 were analyzed in discrete samples collected at 16 sites along the transect at the surface and to a depth of 200 m. Sea surface pCO2 varied between 309 and 662 μatm, and showed differences between the western and eastern subtropical gyre. The subtropical gyre acted as a net CO2 sink, with a mean flux of −5.5 ± 2.2 mmol m−2 day−1. The eastern part of the transect, close to the North Atlantic Iberian upwelling off the Galician coast, was a CO2 source with an average flux of 33.5 ± 9.0 mmol m−2 day−1. Our results highlight the importance of making more surface pCO2 observations in the area located east of the Azores Islands since air-sea CO2 fluxes there are poorly studied.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2015-09-16
    Description: The relationship between lateral erosion of salt marshes and wind waves is studied in Hog Island Bay, Virginia USA, with high-resolution field measurements and aerial photographs. Marsh retreat is compared to wave climate calculated in the bay using the spectral wave-model Simulating Waves Nearshore (SWAN). We confirm the existence of a linear relationship between long-term salt marsh erosion and wave energy, and show that wave power can serve as a good proxy for average salt-marsh erosion rates. At each site, erosion rates are consistent across several temporal scales, ranging from months to decades, and are strongly related to wave power. On the contrary, erosion rates vary in space and weakly depend on the spatial distribution of wave energy. We ascribe this variability to spatial variations in geotechnical, biological, and morphological marsh attributes. Our detailed field measurements indicate that at a small spatial scale (tens of meters), a positive feedback between salt marsh geometry and wave action causes erosion rates to increase with boundary sinuosity. However, at the scale of the entire marsh boundary (hundreds of meters), this relationship is reversed: those sites that are more rapidly eroding have a marsh boundary which is significantly smoother than the marsh boundary of sheltered and slowly eroding marshes.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2015-09-23
    Description: A flexible mesh hydrodynamic model was developed to simulate flooding of the LaHave River watershed in Nova Scotia, Canada, from the combined effects of fluvial discharge and ocean tide and surge conditions. The analysis incorporated high-resolution lidar elevation data, bathymetric river and coastal chart data, and river cross-section information. These data were merged to generate a seamless digital elevation model which was used, along with river discharge and tidal elevation data, to run a two-dimensional hydrodynamic model to produce flood risk predictions for the watershed. Fine resolution topography data were integrated seamlessly with coarse resolution bathymetry using a series of GIS tools. Model simulations were carried out using DHI Mike 21 Flexible Mesh under a variety of combinations of discharge events and storm surge levels. Discharge events were simulated for events that represent a typical annual maximum runoff and extreme events, while tide and storm surge events were simulated by using the predicted tidal time series and adding 2 and 3 m storm surge events to the ocean level seaward of the mouth of the river. Model output was examined and the maximum water level for the duration of each simulation was extracted and merged into one file that was used in a GIS to map the maximum flood extent and water depth. Upstream areas were most vulnerable to fluvial discharge events, the lower estuary was most vulnerable to the effect of storm surge and sea-level rise, and the Town of Bridgewater was influenced by the combined effects of discharge and storm surge. To facilitate the use of the results for planning officials, GIS flood risk layers were intersected with critical infrastructure, identifying the roads, buildings, and municipal sewage infrastructure at risk under each flood scenario. Roads were converted to points at 10 m spacing for inundated areas and appended with the flood depth calculated from the maximum water level subtracted from the lidar digital elevation model.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2015-09-23
    Description: Wind-wave contributions to tropical cyclone (TC)-induced extreme sea levels are known to be significant in areas with narrow littoral zones, particularly at oceanic islands. Despite this, little information exists in many of these locations to assess the likelihood of inundation, the relative contribution of wind and wave setup to this inundation, and how it may change with sea level rise (SLR), particularly at scales relevant to coastal infrastructure. In this study, we explore TC-induced extreme sea levels at spatial scales on the order of tens of meters at Apia, the capitol of Samoa, a nation in the tropical South Pacific with typical high-island fringing reef morphology. Ensembles of stochastically generated TCs (based on historical information) are combined with numerical simulations of wind waves, storm-surge, and wave setup to develop high-resolution statistical information on extreme sea levels and local contributions of wind setup and wave setup. The results indicate that storm track and local morphological details lead to local differences in extreme sea levels on the order of 1 m at spatial scales of less than 1 km. Wave setup is the overall largest contributor at most locations; however, wind setup may exceed wave setup in some sheltered bays. When an arbitrary SLR scenario (+1 m) is introduced, overall extreme sea levels are found to modestly decrease relative to SLR, but wave energy near the shoreline greatly increases, consistent with a number of other recent studies. These differences have implications for coastal adaptation strategies.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2015-09-23
    Description: A Bayesian approach to sediment transport modeling can provide a strong basis for evaluating and propagating model uncertainty, which can be useful in transport applications. Previous work in developing and applying Bayesian sediment transport models used a single grain size fraction or characterized the transport of mixed-size sediment with a single characteristic grain size. Although this approach is common in sediment transport modeling, it precludes the possibility of capturing processes that cause mixed-size sediments to sort and, thereby, alter the grain size available for transport and the transport rates themselves. This paper extends development of a Bayesian transport model from one to k fractional dimensions. The model uses an existing transport function as its deterministic core and is applied to the dataset used to originally develop the function. The Bayesian multi-fraction model is able to infer the posterior distributions for essential model parameters and replicates predictive distributions of both bulk and fractional transport. Further, the inferred posterior distributions are used to evaluate parametric and other sources of variability in relations representing mixed-size interactions in the original model. Successful OPEN ACCESS J. Mar. Sci. Eng. 2015, 3 1067 development of the model demonstrates that Bayesian methods can be used to provide a robust and rigorous basis for quantifying uncertainty in mixed-size sediment transport. Such a method has heretofore been unavailable and allows for the propagation of uncertainty in sediment transport applications.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2015-06-02
    Description: Coral bleaching is caused by environmental stress and susceptibility to bleaching stress varies among types of coral. The physiological properties of the algal symbionts (Symbiodinium spp.), especially extent of damage to PSII and its repair capacity, contribute importantly to this variability in stress susceptibility. The objective of the present study was to investigate the relationship between the growth rates and photosynthetic activities of six cultured strains of Symbiodinium spp. (clades A, B, C, D, and F) at elevated temperature (33 °C). We also observed the recovery of photodamaged-PSII in the presence or absence of a chloroplast protein synthesis inhibitor (lincomycin). The growth rates and photochemical efficiencies of PSII (Fv/Fm) decreased in parallel at high temperature in thermally sensitive strains, B-K100 (clade B followed by culture name) and A-Y106, but not in a thermally tolerant strain, F-K102 and D-K111. In strains A-KB8 and C-Y103, growth declined markedly at high temperature, but Fv/Fm decreased only slightly. These strains may reallocate energy from growth to the repair of damaged photosynthetic machineries or protection pathways. Alternatively, since recoveries of photo-damaged PSII at 33 °C were modest in strains A-KB8 and C-Y103, thermal stressing of other metabolic pathways may have reduced growth rates in these two strains. This possibility should be explored in future research efforts.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2015-05-30
    Description: Storm surge is dependent on wind direction, with maximum surge heights occurring when strong winds blow onshore. It is less obvious what happens when a port city is situated at the end of a long narrow gulf, like Venice at the northwestern end of the Adriatic Sea. Does the narrow marine approach to the port city limit the dangerous wind direction to a span of only a few degrees? This modeling study shows that the response in surge height to wind direction is a sinusoidal curve for port cities at the end of a long inlet, as well as for cities exposed along a straight coastline. Surge height depends on the cosine of the angle between the wind direction and the major axis of the narrow gulf. There is no special protection from storm surge afforded by a narrow ocean-going approach to a port city.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2015-05-23
    Description: Numerous anthropogenic factors represent environmental threats to Gulf Coast wetland ecosystems and associated fauna. American alligators (Alligator mississippiensis) have been subject to long-term management and used as ecological and physiological indicators of habitat quality in response to anthropogenic events and stochastic natural disasters. The present study monitored heterophil to lymphocyte ratios (an indicator of stress), in American alligators in a Louisiana intermediate marsh from 2009 to 2011, a time period that coincides with an oil inundation event that occurred in 2011. Sixteen alligators were observed and processed morphometrically (total length, snout-vent length and body mass). Heterophil to lymphocyte ratios were negatively correlated with size, suggesting larger American alligators were physiologically more resilient to the disturbance, more able to actively avoid these poor conditions, or are less affected by localized disturbance.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2015-05-29
    Description: This numerical study focuses on the fire phenomenology associated with the presence of a composite-type aircraft immersed, at one particular location and orientation, within a large aviation-fuel fire in a moving fluid medium. An extension of the eddy dissipation concept is incorporated, allowing one to investigate the roles of the wind speed and its direction on the fire growth, heat flux distribution and smoke products, such as carbon monoxide and soot. The predicted flame shape compares well with the measurements for an intermediate-scale fire. The outcome of the study is interesting, and the interaction model between turbulence and combustion is indeed adequate. The prediction indicates that interaction between the large object and fire environment combined with the influence of wind conditions dramatically affects the continuous flame shape. The increase of the wind speed results in an alteration of the distribution of the incident heat fluxes to the engulfed fuselage skin for a case where the fire and fuselage are of comparable size. The highest heat flux occurs on the windward side of the fuselage for the low and medium winds, but on the leeward side of the fuselage for the high wind. The peak in heat flux to the medium or high wind is almost equal in magnitude, but about a factor four increase of that to the low wind.
    Electronic ISSN: 2226-4310
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2016-07-12
    Description: The manta is the largest marine organism to swim by dorsoventral oscillation (flapping) of the pectoral fins. The manta has been considered to swim with a high efficiency stroke, but this assertion has not been previously examined. The oscillatory swimming strokes of the manta were examined by detailing the kinematics of the pectoral fin movements swimming over a range of speeds and by analyzing simulations based on computational fluid dynamic potential flow and viscous models. These analyses showed that the fin movements are asymmetrical up- and downstrokes with both spanwise and chordwise waves interposed into the flapping motions. These motions produce complex three-dimensional flow patterns. The net thrust for propulsion was produced from the distal half of the fins. The vortex flow pattern and high propulsive efficiency of 89% were associated with Strouhal numbers within the optimal range (0.2–0.4) for rays swimming at routine and high speeds. Analysis of the swimming pattern of the manta provided a baseline for creation of a bio-inspired underwater vehicle, MantaBot.
    Electronic ISSN: 2226-4310
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2016-07-23
    Description: A recent alleged “drone” collision with a British Airways Airbus A320 at Heathrow Airport highlighted the need to understand civil Remotely Piloted Aircraft Systems (RPAS) accidents and incidents (events). This understanding will facilitate improvements in safety by ensuring efforts are focused to reduce the greatest risks. One hundred and fifty two RPAS events were analyzed. The data was collected from a 10-year period (2006 to 2015). Results show that, in contrast to commercial air transportation (CAT), RPAS events have a significantly different distribution when categorized by occurrence type, phase of flight, and safety issue. Specifically, it was found that RPAS operations are more likely to experience (1) loss of control in-flight, (2) events during takeoff and in cruise, and (3) equipment problems. It was shown that technology issues, not human factors, are the key contributor in RPAS events. This is a significant finding, as it is contrary to the industry view which has held for the past quarter of a century that human factors are the key contributor (which is still the case for CAT). Regulators should therefore look at technologies and not focus solely on operators.
    Electronic ISSN: 2226-4310
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2016-07-31
    Description: Large estuaries are especially vulnerable to coastal flooding due to the potential of combined storm surges and riverine flows. Numerical models can support flood prevention and planning for coastal communities. However, while recent advancements in the development of numerical models for storm surge prediction have led to robust and accurate models; an increasing number of parameters and physical processes’ representations are available to modelers and engineers. This study investigates uncertainties associated with the selection of physical parameters or processes involved in storm surge modeling in large estuaries. Specifically, we explored the sensitivity of a hydrodynamic model (ADCIRC) and a coupled wind-wave and circulation model system (ADCIRC + SWAN) to Manning’s n coefficient, wind waves and circulation interaction (wave setup), minimum depth (H0) in the wetting and drying algorithm, and spatially constant horizontal eddy viscosity (ESLM) forced by tides and hurricane winds. Furthermore, sensitivity analysis to Manning’s n coefficient and the interaction of waves and circulation were analyzed by using three different numerical meshes. Manning’s coefficient analysis was divided into waterway (rivers, bay and shore, and open ocean) and overland. Overall, the rivers exhibited a larger sensitivity, and M2 amplitude and maximum water elevations were reduced by 0.20 m and 0.56 m, respectively, by using a high friction value; similarly, high friction reduced maximum water levels up to 0.30 m in overland areas; the wave setup depended on the offshore wave height, angle of breaking, the profile morphology, and the mesh resolution, accounting for up to 0.19 m setup inside the bay; minimum depth analysis showed that H0 = 0.01 added an artificial mass of water in marshes and channels, meanwhile H = 0.1 partially solved this problem; and the eddy viscosity study demonstrated that the ESLM = 40 values reduced up to 0.40 m the peak of the maximum water levels in the upper side of narrow rivers.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2016-07-27
    Description: An analysis of the kinematics of a flapping membrane wing using experimental kinematic data is presented. This motion capture technique tracks the positon of the retroreflective marker(s) placed on the left wing of a 1.3-m-wingspan ornithopter. The time-varying three-dimensional data of the wing kinematics were recorded for a single frequency. The wing shape data was then plotted on a two-dimensional plane to understand the wing dynamic behaviour of an ornithopter. Specifically, the wing tip path, leading edge bending, wing membrane shape, local twist, stroke angle and wing velocity were analyzed. As the three characteristic angles can be expressed in the Fourier series as a function of time, the kinematics of the wing can be computationally generated for the aerodynamic study of flapping flight through the Fourier coefficients presented. Analysis of the ornithopter wing showed how the ornithopter closely mimics the flight motions of birds despite several physical limitations.
    Electronic ISSN: 2226-4310
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2016-08-02
    Description: Anthropogenic noise emission in the marine environment is a key issue nowadays and has drawn the attention of regulatory bodies in various nations. In particular, the noise generated during the installation of foundation piles for the offshore wind industry is considered to be harmful for aquatic species. A reliable prediction of the underwater noise during the installation of a foundation pile is thus essential for the proper assessment of the ecological impact. In this paper, the structure-borne wave radiation is investigated with the help of a semi-analytical model for two cases. The first case considers a pile that is installed with the help of an impact hammer, whereas the second one deals with a pile that is driven into the seabed with the help of a vibratory device. The spatial distribution and the frequency content of the radiated sound are analyzed, and the differences are highlighted between the two cases. The model is validated with data available in the literature that were collected during several measurement campaigns. Subsequently, the predicted noise levels are converted into an equivalent index that reflects the auditory damage to certain marine species, and a method is presented for the derivation of zones of impact around the pile that are based on the noise predictions by the models and the chosen method of installation. This approach can be used to define critical zones within which a predefined level of auditory damage is to be expected based on a specific installation scenario.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2016-06-24
    Description: Technological advances have enabled the development of a number of optical fiber sensing methods over the last few years. The most prevalent optical technique involves the use of fiber Bragg grating (FBG) sensors. These small, lightweight sensors have many attributes that enable their use for a number of measurement applications. Although much literature is available regarding the use of FBGs for laboratory level testing, few publications in the public domain exist of their use at the operational level. Therefore, this paper gives an overview of the implementation of FBG sensors for large scale structures and applications. For demonstration, a case study is presented in which FBGs were used to determine the deflected wing shape and the out-of-plane loads of a 5.5-m carbon-composite wing of an ultralight aerial vehicle. The in-plane strains from the 780 FBG sensors were used to obtain the out-of-plane loads as well as the wing shape at various load levels. The calculated out-of-plane displacements and loads were within 4.2% of the measured data. This study demonstrates a practical method in which direct measurements are used to obtain critical parameters from the high distribution of FBG sensors. This procedure can be used to obtain information for structural health monitoring applications to quantify healthy vs. unhealthy structures.
    Electronic ISSN: 2226-4310
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2016-05-05
    Description: Morphological changes during a flood event in July 2010 were observed with X-band marine radar at the mouth of Tenryu River, Shizuoka, Japan. Radar images were collected hourly for more than 72 h from the beginning of the flood and processed into time-averaged images. Changes in the morphology of the area were interpreted from the time-averaged images, revealing that the isolated river dune was washed away by the flood, the width of the river mouth increased gradually, and the river mouth terrace expanded radially. Furthermore, image analysis of the radar images was applied to estimate the migration speed of the brightness pattern, which is assumed to be a proxy of bottom undulation of the river bed. The migration was observed to be faster when the water level gradient between the river channel and sea increased.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2016-05-27
    Description: Remodeling of rocky coasts and erosion rates have been widely studied in past years, but not all the involved processes acting over rocks surface have been quantitatively evaluated yet. The first goal of this paper is to revise the different methodologies employed in the quantification of the effect of biotic agents on rocks exposed to coastal morphologic agents, comparing their efficiency. Secondly, we focus on geological methods to assess and quantify bio-remodeling, presenting some case studies in an area of the Mediterranean Sea in which different geological methods, inspired from the revised literature, have been tested in order to provide a quantitative assessment of the effects some biological covers exert over rocky platforms in tidal and supra-tidal environments. In particular, different experimental designs based on Schmidt hammer test results have been applied in order to estimate rock hardness related to different orders of littoral platforms and the bio-erosive/bio-protective role of Chthamalus ssp. and Verrucariaadriatica. All data collected have been analyzed using statistical tests to evaluate the significance of the measures and methodologies. The effectiveness of this approach is analyzed, and its limits are highlighted. In order to overcome the latter, a strategy combining geological and experimental–computational approaches is proposed, potentially capable of revealing novel clues on bio-erosion dynamics. An experimental-computational proposal, to assess the indirect effects of the biofilm coverage of rocky shores, is presented in this paper, focusing on the shear forces exerted during hydration-dehydration cycles. The results of computational modeling can be compared to experimental evidence, from nanoscopic to macroscopic scales.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2016-05-27
    Description: The advent, during the first decade of the 21st century, of the concept of acoustic metamaterial has disclosed an incredible potential of development for breakthrough technologies. Unfortunately, the extension of the same concepts to aeroacoustics has turned out to be not a trivial task, because of the different structure of the governing equations, characterized by the presence of the background aerodynamic convection. Some of the approaches recently introduced to circumvent the problem are biased by a fundamental assumption that makes the actual realization of devices extremely unlikely: the metamaterial should guarantee an adapted background aerodynamic convection in order to modify suitably the acoustic field and obtain the desired effect, thus implying the porosity of the cloaking device. In the present paper, we propose an interpretation of the metamaterial design that removes this unlikely assumption, focusing on the identification of an aerodynamically-impermeable metamaterial capable of reproducing the surface impedance profile required to achieve the desired scattering abatement. The attention is focused on a moving obstacle impinged by an acoustic perturbation induced by a co-moving source. The problem is written in a frame of reference rigidly connected to the moving object to couple the convective wave equation in the hosting medium with the inertially-anisotropic wave operator within the cloak. The problem is recast in an integral form and numerically solved through a boundary-field element method. The matching of the local wave vector is used to derive a convective design of the metamaterial applicable to the specific problem analyzed. Preliminary numerical results obtained under the simplifying assumption of a uniform aerodynamic flow reveal a considerable enhancement of the masking capability of the convected design. The numerical method developed shows a remarkable computational efficiency, completing a simulation of the entire field in a few minutes on mid-end workstations. The results are re-interpreted in term of boundary impedance, assuming a locally-reacting behavior of the outer boundary of the cloaking layer. The formulation is currently being extended to the analysis of arbitrarily complex external flows in order to remove the limitation of the background uniform stream in the host.
    Electronic ISSN: 2226-4310
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2016-07-10
    Description: Acoustic methods used in fish abundance estimation constitute a key part of the analytic assessment that makes the basis for abundance estimation of marine resources. The methods rely on power-budget equations and calibrated systems. Different formulations of power-budget equations and calibration factors have been proposed for use in scientific echo sounder and sonar systems. There are unresolved questions and apparent inconsistencies in prior literature related to this field. A generic (instrument independent) and unifying theory is presented that attempts to explain the different power-budget and calibration factor formulations proposed and used in prior literature, and how these are mutually related. Deviations and apparent inconsistencies in this literature appear to be explained and corrected. This also includes different (instrument specific) formulations employed in important modern scientific echo sounder systems, and their relationship to the generic theory of abundance estimation. Prior literature is extended to provide more complete power-budget equations for fish abundance estimation and species identification, by accounting for echo integration, electrical termination, and the full range of electrical and acoustical echo sounder parameters. The expressions provide a consistent theoretical basis for improved understanding of conventional methods and instruments used today, also enabling improved sensitivity and error analyses, and correction possibilities.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2016-07-21
    Description: This review describes a number of biologically inspired principles that have been applied to the visual guidance, navigation and control of Unmanned Aerial System (UAS). The current limitations of UAS systems are outlined, such as the over-reliance on GPS, the requirement for more self-reliant systems and the need for UAS to have a greater understanding of their environment. It is evident that insects, even with their small brains and limited intelligence, have overcome many of the shortcomings of the current state of the art in autonomous aerial guidance. This has motivated research into bio-inspired systems and algorithms, specifically vision-based navigation, situational awareness and guidance.
    Electronic ISSN: 2226-4310
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2016-07-30
    Description: The capability of flapping wings to generate lift is currently evaluated by using the lift coefficient C ¯ L , a dimensionless number that is derived from the basal equation that calculates the steady-state lift coefficient CL for fixed wings. In contrast to its simple and direct application to fixed wings, the equation for C ¯ L requires prior knowledge of the flow field along the wing span, which results in two integrations: along the wing span and over time. This paper proposes an alternate average normalized lift η ¯ L that is easy to apply to hovering and forward flapping flight, does not require prior knowledge of the flow field, does not resort to calculus for its solution, and its lineage is close to the basal equation for steady state CL. Furthermore, the average normalized lift η ¯ L converges to the legacy CL as the flapping frequency is reduced to zero (gliding flight). Its ease of use is illustrated by applying the average normalized lift η ¯ L to the hovering and translating flapping flight of bumblebees. This application of the normalized lift is compared to the same application using two widely-accepted legacy average lift coefficients: the first C ¯ L as defined by Dudley and Ellington, and the second lift coefficient by Weis-Fogh. Furthermore, it is shown that the average normalized lift η ¯ L has a physical meaning: that of the ratio of work exerted by the flapping wings onto the surrounding flow field and the kinetic energy available at the aerodynamic surfaces during the generation of lift. The working equation for the average normalized lift η ¯ L is derived and is presented as a function of Strouhal number, St.
    Electronic ISSN: 2226-4310
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2015-05-05
    Description: Unmanned aircraft must be characterized by a level of safety, similar to that of manned aircraft, when performing flights over densely populated areas. Dangerous situations or emergencies are frequently connected with the necessity to change the profiles and parameters of a flight as well as the flight plans. The aim of this work is to present the methods used to determine an Unmanned Aircraft System’s (UAS) flight profile after a dangerous situation or emergency occurs. The analysis was limited to the possibility of an engine system emergency and further flight continuing along a trajectory of which the shape depends on the type of the emergency. The suggested method also enables the determination of an optimal flying trajectory, based on the territory of a special protection zone (for example, large populated areas), in the case of an emergency that would disable continuation of the performed task. The method used in this work allows researchers, in a simplified way, to solve a variation task using the Ritz–Galerkin method, consisting of an approximate solution of the boundary value problem to determine the optimal flight path. The worked out method can become an element of the on-board system supporting UAS flight control.
    Electronic ISSN: 2226-4310
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2015-05-07
    Description: The impact of global climate change on coral reefs is expected to be most profound at the sea surface, where fertilization and embryonic development of broadcast-spawning corals takes place. We examined the effect of increased temperature and elevated CO2 levels on the in vitro fertilization success and initial embryonic development of broadcast-spawning corals using a single male:female cross of three different species from mid- and high-latitude locations: Lyudao, Taiwan (22° N) and Kochi, Japan (32° N). Eggs were fertilized under ambient conditions (27 °C and 500 μatm CO2) and under conditions predicted for 2100 (IPCC worst case scenario, 31 °C and 1000 μatm CO2). Fertilization success, abnormal development and early developmental success were determined for each sample. Increased temperature had a more profound influence than elevated CO2. In most cases, near-future warming caused a significant drop in early developmental success as a result of decreased fertilization success and/or increased abnormal development. The embryonic development of the male:female cross of A. hyacinthus from the high-latitude location was more sensitive to the increased temperature (+4 °C) than the male:female cross of A. hyacinthus from the mid-latitude location. The response to the elevated CO2 level was small and highly variable, ranging from positive to negative responses. These results suggest that global warming is a more significant and universal stressor than ocean acidification on the early embryonic development of corals from mid- and high-latitude locations.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2015-05-14
    Description: In this paper, an ornithopter prototype that mimics the flapping motion of bird flight is developed, and the lift and thrust generation characteristics of different wing designs are evaluated. This project focused on the spar arrangement and material used for the wings that could achieves improved performance. Various lift and thrust measurement techniques are explored and evaluated. Various wings of insects and birds were evaluated to understand how these natural flyers with flapping wings are able to produce sufficient lift to fly. The differences in the flapping aerodynamics were also detailed. Experiments on different wing designs and materials were conducted and a paramount wing was built for a test flight. The first prototype has a length of 46.5 cm, wing span of 88 cm, and weighs 161 g. A mechanism which produced a flapping motion was fabricated and designed to create flapping flight. The flapping flight was produced by using a single motor and a flexible and light wing structure. A force balance made of load cell was then designed to measure the thrust and lift force of the ornithopter. Three sets of wings varying flexibility were fabricated, therefore lift and thrust measurements were acquired from each different set of wings. The lift will be measured in ten cycles computing the average lift and frequency in three different speeds or frequencies (slow, medium and fast). The thrust measurement was measure likewise but in two cycles only. Several observations were made regarding the behavior of flexible flapping wings that should aid in the design of future flexible flapping wing vehicles. The wings angle or phase characteristic were analyze too and studied. The final ornithopter prototype weighs only 160 g, has a wing span of 88.5 cm, that could flap at a maximum flapping frequency of 3.869 Hz, and produce a maximum thrust and lift of about 0.719 and 0.264 N respectively. Next, we proposed resonance type flapping wing utilizes the near resonance phenomenon of a two-degree of freedom elastic system, that is, the wing is supported by the springs for flapping and feathering motions. Being oscillated close to the resonance frequency of the system, only by the torque in flapping motion, the amplitude gained is a few times higher than that of normal case. The first prototype was made from acrylic using a laser cutting machine. The wings were made up of carbon rods and kite material Ripstop. First test showed that the wings were too heavy for the mechanism to work. The third prototype was a smaller single gear crank design which was fabricated using a 3D printer. Initial test proved that the second prototype could withstand the high frequency flapping and near resonance amplitude as designed. With remote control, the third prototype was able to take off, climb, cruise and land in flapping mode successfully.
    Electronic ISSN: 2226-4310
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2015-05-01
    Description: Research on shock wave mitigation in channels has been a topic of much attention in the shock wave community. One approach to attenuate an incident shock wave is to use obstacles of various geometries arranged in different patterns. This work is inspired by the study from Chaudhuri et al. (2013), in which cylinders, squares and triangles placed in staggered and non-staggered subsequent columns were used to attenuate a planar incident shock wave. Here, we present numerical simulations using a different obstacle pattern. Instead of using a matrix of obstacles, an arrangement of square or cylindrical obstacles placed along a logarithmic spiral curve is investigated, which is motivated by our previous work on shock focusing using logarithmic spirals. Results show that obstacles placed along a logarithmic spiral can delay both the transmitted and the reflected shock wave. For different incident shock Mach numbers, away from the logarithmic spiral design Mach number, this shape is effective to either delay the transmitted or the reflected shock wave. Results also confirm that the degree of attenuation depends on the obstacle shape, effective flow area and obstacle arrangement, much like other obstacle configurations.
    Electronic ISSN: 2226-4310
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2015-05-06
    Description: The present study investigates the performances of the three-dimensional multicomponent hydro-sedimentary model ROMS (Regional Ocean Modeling System) to predict near-surface suspended sediment concentrations (SSC) in the English Channel (western Europe). Predictions are assessed against satellite-retrieved observations from raw MODIS and MERIS images for the year 2008 characterized by the highest availability of cloud-free data. Focus is put on improvements obtained with: (1) SSC inputs at the open boundaries; and (2) simple parameterizations of the settling velocity and the critical shear stress. Sensitivity studies confirm the importance of the advection of fine-grained suspended sediments in the central waters of the English Channel exhibiting benefits of refined SSC estimations along the sea boundaries. Improvements obtained with modified formulations of the settling velocity and the critical shear stress finally suggest possible seasonal influences of biological activity and thermal stratification on near-surface SSC.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2014-12-17
    Description: Recent advances in smart structures and multifunctional materials have facilitated many novel aerospace technologies such as morphing aircraft. A morphing aircraft, bio-inspired by natural fliers, has gained a lot of interest as a potential technology to meet the ambitious goals of the Advisory Council for Aeronautics Research in Europe (ACARE) Vision 2020 and the FlightPath 2050 documents. A morphing aircraft continuously adjusts its wing geometry to enhance flight performance, control authority, and multi-mission capability.[...]
    Electronic ISSN: 2226-4310
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2014-12-17
    Description: The investigation of aviation alternative fuels has increased significantly in recent years in an effort to reduce the environment and climate impact by aviation industry. Special requirements have to be met for qualifying as a suitable aviation fuel. The fuel has to be high in energy content per unit of mass and volume, thermally stable and avoiding freezing at low temperatures. There are also many other special requirements on viscosity, ignition properties and compatibility with the typical aviation materials. There are quite a few contending alternative fuels which can be derived from coal, natural gas and biomass.[...]
    Electronic ISSN: 2226-4310
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2015-04-28
    Description: This study addresses the flight-path planning problem for multirotor aerial vehicles (AVs). We consider the specific features and requirements of real-time flight-path planning and develop a rapidly-exploring random tree (RRT) algorithm to determine a preliminary flight path in three-dimensional space. Since the path obtained by the RRT may not be optimal due to the existence of redundant waypoints. To reduce the cost of energy during AV’s flight, the excessive waypoints need to be refined. We revise the A-star algorithm by adopting the heading of the AV as the key indices while calculating the cost. Bezier curves are finally proposed to smooth the flight path, making it applicable for real-world flight.
    Electronic ISSN: 2226-4310
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2015-04-28
    Description: The aerospace community is planning for growth in Unmanned Aerial Systems (UAS) funding and research opportunities. The premise that UAS will revolutionize aerospace appears to be unfolding based on current trends. There is also an anticipation of an increasing number of new platforms and research investment, which is likely but must be analysed carefully to determine where the opportunities lie. This paper draws on the state of technology, history and systems engineering. We explore what aspects of UAS will be the result of aerospace science advances and what aspects will be incremental engineering and systems integration. It becomes apparent that, for academia, the largest opportunities may exist in small and micro UAS domain due to the novelty of aerospace engineering on a small scale.
    Electronic ISSN: 2226-4310
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2016-03-25
    Description: A semi-empirical method is presented to estimate the angular excursion and the lift loss associated with static hysteresis on an airfoil. Wind tunnel data of various airfoils is used to define and validate the methodology. The resulting equation provides a relationship between the size of the hysteresis loop and characteristics of the airfoil. Comparisons of the equation with experiment show encouraging agreement both in terms of the magnitude of the lift loss and the extent of the loop.
    Electronic ISSN: 2226-4310
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2016-04-09
    Description: The morphological change of a headland bay beach—Tenby, West Wales, UK—was analysed over a 73-year period (1941–2014). Geo-referenced aerial photographs were used to extract shoreline positions which were subsequently compared with wave models based on storm event data. From the 1941 baseline, results showed shoreline change rates reduced over time with regression models enabling a prediction of shoreline equilibrium circa 2061. Further temporal analyses showed southern and central sector erosion and northern accretion, while models identified long-term plan-form rotation, i.e., a negative phase relationship between beach extremities and a change from negative to positive correlation within the more stable central sector. Models were then used in conjunction with an empirical 2nd order polynomial equation to predict the 2061 longshore equilibrium shoreline position under current environmental conditions. Results agreed with previous regional research which showed that dominant south and southwesterly wave regimes influence south to north longshore drift with counter drift generated by less dominant easterly regimes. The equilibrium shoreline was also used to underpin flood and inundation assessments, identifying areas at risk and strategies to increase resilience. UK shoreline management plans evaluate coastal vulnerability based upon temporal epochs of 20, 50 and 100 years. Therefore, this research evaluating datasets spanning 73 years has demonstrated the effectiveness of linear regression in integrating temporal and spatial consequences of sea level rise and storms. The developed models can be used to predict future shoreline positions aligned with shoreline management plan epochs and inform embayed beach shoreline assessments at local, regional and international scales, by identifying locations of vulnerability and enabling the development of management strategies to improve resilience under scenarios of sea level rise and climate change.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2015-12-26
    Description: Recent years have seen increased survey and sampling expeditions to the Clarion-Clipperton Zone (CCZ), central Pacific Ocean abyss, driven by commercial interests from contractors in the potential extraction of polymetallic nodules in the region. Part of the International Seabed Authority (ISA) regulatory requirements are that these contractors undertake environmental research expeditions to their CCZ exploration claims following guidelines approved by the ISA Legal and Technical Commission (ISA, 2010). Section 9 (e) of these guidelines instructs contractors to “…collect data on the sea floor communities specifically relating to megafauna, macrofauna, meiofauna, microfauna, nodule fauna and demersal scavengers”. There are a number of methodological challenges to this, including the water depth (4000–5000 m), extremely warm surface waters (~28 °C) compared to bottom water (~1.5 °C) and great distances to ports requiring a large and long seagoing expedition with only a limited number of scientists. Both scientists and regulators have recently realized that a major gap in our knowledge of the region is the fundamental taxonomy of the animals that live there; this is essential to inform our knowledge of the biogeography, natural history and ultimately our stewardship of the region. Recognising this, the ISA is currently sponsoring a series of taxonomic workshops on the CCZ fauna and to assist in this process we present here a series of methodological pipelines for DNA taxonomy (incorporating both molecular and morphological data) of the macrofauna and megafauna from the CCZ benthic habitat in the recent ABYSSLINE cruise program to the UK-1 exploration claim. A major problem on recent CCZ cruises has been the collection of high-quality samples suitable for both morphology and DNA taxonomy, coupled with a workflow that ensures these data are made available. The DNA sequencing techniques themselves are relatively standard, once good samples have been obtained. The key to quality taxonomic work on macrofaunal animals from the tropical abyss is careful extraction of the animals (in cold, filtered seawater), microscopic observation and preservation of live specimens, from a variety of sampling devices by experienced zoologists at sea. Essential to the long-term iterative building of taxonomic knowledge from the CCZ is an “end-to-end” methodology to the taxonomic science that takes into account careful sampling design, at-sea taxonomic identification and fixation, post-cruise laboratory work with both DNA and morphology and finally a careful sample and data management pipeline that results in specimens and data in accessible open museum collections and online repositories.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2016-03-08
    Description: We study the atmospheric structure in response to the propagation of gravity waves under nonisothermal (nonzero vertical temperature gradient), wind-shear (nonzero vertical zonal/meridional wind speed gradients), and dissipative (nonzero molecular viscosity and thermal conduction) conditions. As an alternative to the “complex wave-frequency” model proposed by Vadas and Fritts, we employ the traditional “complex vertical wave-number” approach to solving an eighth-order complex polynomial dispersion equation. The empirical neutral atmospheric models of NRLMSISE-00 and HWM93 are employed to provide mean-field properties. In response to the propagation of gravity waves, the atmosphere is driven into three sandwich-like layers: the adiabatic layer (0–130 km), the dissipation layer (130–230 km) and the pseudo-adiabatic layer (above 230 km). In the lower layer, (extended-)Hines’ mode or ordinary dissipative wave modes exist, whereas viscous dissipation and thermal conduction fail to exert perceptible influences; in the middle layer, Hines’ mode ceases to exist, and both ordinary and extraordinary dissipative wave modes flourish; in the top layer, only extraordinary wave modes survive, and dissipations affect the real part of the vertical wavenumber ( m r ) substantially; however, they contribute little to the imaginary part, which is the vertical growth rate ( m i ). We also analyze the transition of Hines’ classical mode to ordinary dissipative wave modes, describe both the upward and downward modes of gravity waves and illustrate nonisothermal and wind-shear effects on the propagation of gravity waves of different modes.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2015-12-11
    Description: The importance of small-scale seismic events in enclosed water bodies, which can result in large tsunami waves capable of affecting comprehensive damage over small, geographically-confined areas are generally overlooked, although recognizing the occurrence of such events is a necessary element in adequately assessing the risk of natural hazards at specific locations. Here we present evidence for a probable large localized tsunami that occurred within the Bay of La Paz, Baja California Sur, ~1100 year before present (BP), which resulted in the creation of a shelly ridge at an elevation of ~2 m above mean high water (MHW). This ridge consists of a continuous wedge of poorly mixed marine sands and shells ~50 cm in depth deposited along the entire seaward edge of the lake. The marine shells collected from terrestrial environments around the lake include species from a variety of environments, including offshore species with minimum preferred depths of >13 m. The evidence suggests that this material was likely deposited by a tsunami with a runup of 2–3.6 m above MHW, probably associated with the slumping of an island along the tectonically active eastern edge of the bay.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2015-12-26
    Description: This research is to facilitate the current understanding of long wave dynamics at coasts and during on-land propagation; experimental and numerical approaches are compared against existing analytical expressions for the long wave run-up. Leading depression sinusoidal waves are chosen to model these dynamics. The experimental study was conducted using a new pump-driven wave generator and the numerical experiments were carried out with a one-dimensional discontinuous Galerkin non-linear shallow water model. The numerical model is able to accurately reproduce the run-up elevation and velocities predicted by the theoretical expressions. Depending on the surf similarity of the generated waves and due to imperfections of the experimental wave generation, riding waves are observed in the experimental results. These artifacts can also be confirmed in the numerical study when the data from the physical experiments is assimilated. Qualitatively, scale effects associated with the experimental setting are discussed. Finally, shoreline velocities, run-up and run-down are determined and shown to largely agree with analytical predictions.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2015-12-26
    Description: Ports exposed to high energy long wave conditions can experience significantly reduced berth operability. Geraldton is perhaps one of the best known examples. Recent studies to mitigate the problems have concentrated on the reduction of the long waves by extending the breakwater. However, this is quite costly. Various countermeasures related to the mooring configuration are defined and analysed in this paper. The analysed alternatives are use of shore-based mooring lines, installation of softer fenders, a combination of these two, and deployment of Cavotec MoorMaster™ units. These alternatives were compared with the existing mooring configuration and with the option to extend the breakwater. The best improvement (50% increase of threshold long wave height inside the harbour) is reached by installing a combination of pneumatic fenders and constant tension winches set to 30 t, or nylon breast lines on a brake winch with a pretension of 25 t. In this way, the vessel is pulled into the fenders and fender friction prevents excessive surging of the ship along the berth.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019
    Description: Electron Beam Melting (EBM) is a metal powder bed fusion (PBF) process in which the heat source is an electron beam. Differently from other metal PBF processes, today, EBM is used for mass production. As-built EBM parts are clearly recognisable by their surface roughness, which is, in some cases, one of the major limitations of the EBM process. The aim of this work is to investigate the effects of the orientation and the slope of the EBM surfaces on the surface roughness. Additionally, the machine repeatability is studied by measuring the roughness of surfaces built at different positions on the start plate. To these aims, a specific artefact was designed. Replicas of the artefact were produced using an Arcam A2X machine and Ti6Al4V powder. Descriptive and inferential statistical methods were applied to investigate whether the surface morphology was affected by process factors. The results show significant differences between the upward and downward surfaces. The upward surfaces appear less rough than the downward ones, for which a lower standard deviation was obtained in the results. The roughness of the upward surfaces is linearly influenced by the sloping angle, while the heat distribution on the cross-section was found to be a key factor in explaining the roughness of the downward surfaces.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019
    Description: The aim of this work was to study expansively the process of the eutectoidal phase transformation of 2507-type super-duplex stainless steel. Three sample sets were prepared. The first sample set was made to investigate the effect of the previous cold rolling and heat treatment for the eutectoidal phase transformation. Samples were cold rolled at seven different rolling reductions which was followed by heat treatment at five different temperatures. The second sample set was prepared to determine the activation energy of the eutectoidal decomposition process using the Arrhenius equation. Samples were cold rolled at seven different rolling reductions and were heat treated at the same temperature during eight different terms. A third sample set was made to study how another plastic-forming technology, beside the cold rolling, can influence the eutectoidal decomposition. Samples were elongated by single axis tensile stress and were heat treated at the same temperature. The results of the first and the third sample sets were compared. The rest δ-ferrite contents were calculated using the results of AC and DC magnetometer measurements. DC magnetometer was used as a feritscope device in this work. Light microscope and electron back scattering diffraction (EBSD) images demonstrated the process of the eutectoidal decomposition. The thermoelectric power and the hardness of the samples were measured. The results of the thermoelectric power measurement were compared with the results of the δ-ferrite content measurement. The accurate value of the coercive field was determined by a Foerster-type DC coercimeter device.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019
    Description: This paper presents the results of investigations into the effect of freeze–thaw cycling on the failure of fibre-cement boards and on the changes taking place in their structure. Fibre-cement board specimens were subjected to one and ten freeze–thaw cycles and then investigated under three-point bending by means of the acoustic emission method. An artificial neural network was employed to analyse the results yielded by the acoustic emission method. The investigations conclusively proved that freeze–thaw cycling had an effect on the failure of fibre-cement boards, as indicated mainly by the fall in the number of acoustic emission (AE) events recognized as accompanying the breaking of fibres during the three-point bending of the specimens. SEM examinations were carried out to gain better insight into the changes taking place in the structure of the tested boards. Interesting results with significance for building practice were obtained.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019
    Description: This paper presents the forecasting of the wear of working elements in an abrasive soil mass using the theoretical wear model. One of the widely used models providing a basis for the relationships describing wear is the Holm-Archard model. This relationship describes abrasive wear because of the contact between two bodies. The model assumes that the wear of an operating part is directly proportional to the sliding force and distance and inversely proportional to the hardness of the material of the part. To date, the model has not been verified in the wear of a soil mass, which is a discrete friction surface. Four grades of steel resistant to abrasive wear, intended for the manufacturing of operating parts exposed to wear within a soil mass, Hardox 500, XAR 600, TBL Plus and B27, were subjected to testing. TBL Plus steel was characterised by the smallest wear irrespective of the soil type. In turn, the highest values of the wear were noted in the light soil for Hardox 500, in the medium soil for XAR 600, while in the heavy soil for B27. Based on the obtained results, a high correlation coefficient was noted, with the highest values obtained for light and heavy soils.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019
    Description: The genus Yersinia contains three well-recognized human pathogens, including Y. enterocolitica, Y. pestis, and Y. pseudotuberculosis. Various domesticated and wild animals carry Yersinia in their intestines. Spread to individuals arises from eating food or water contaminated by infected human or animal faeces. Interaction with infected pets and domestic stock may also lead to infection. Yersinia is able to multiply at temperatures found in normal refrigerators; hence, a large number of the bacteria may be present if meat is kept without freezing. Yersinia is also rarely transmitted by blood transfusion, because it is able to multiply in stored blood products. Infection with Yersinia can cause yersiniosis, a serious bacterial infection associated with fever, abdominal pain and cramps, diarrhea, joint pain, and symptoms similar to appendicitis in older children and adults. This paper describes a novel immunosensor approach using graphene quantum dots (GQDs) as enzyme mimics in an electrochemical sensor set up to provide an efficient diagnostic method for Y. enterecolitica. The optimum assay conditions were initially determined and the developed immunosensor was subsequently used for the detection of the bacterium in milk and human serum. The GQD-immunosensor enabled the quantification of Y. enterocolitica in a wide concentration range with a high sensitivity (LODmilk = 5 cfu mL−1 and LODserum = 30 cfu mL−1) and specificity. The developed method can be used for any pathogenic bacteria detection for clinical and food samples without pre-sample treatment. Offering a very rapid, specific and sensitive detection with a label-free system, the GQD-based immunosensor can be coupled with many electrochemical biosensors.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019
    Description: In this paper, a 2-node beam element is developed based on Quasi-3D beam theory and mixed formulation for static bending of functionally graded (FG) beams. The transverse shear strains and stresses of the proposed beam element are parabolic distributions through the thickness of the beam and the transverse shear stresses on the top and bottom surfaces of the beam vanish. The proposed beam element is free of shear-looking without selective or reduced integration. The material properties of the functionally graded beam are assumed to vary according to the power-law index of the volume fraction of the constituents through the thickness of the beam. The numerical results of this study are compared with published results to illustrate the accuracy and convenience rate of the new beam element. The influence of some parametrics on the bending behavior of FGM beams is investigated.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019
    Description: The high-temperature deformation behavior of Q345 steel is detected by a Gleeble-3800 thermal simulator. The Arrhenius constitutive equation for high-temperature flow stress and the dynamic recrystallization model are constructed. With the secondary development technology, customized modifications are made on existing Deform-3D software. The constructed constitutive model and dynamic recrystallization model are embedded into Deform-3D to realize the secondary development of Deform-3D. The grain size and volume percentage distribution of dynamic recrystallization are obtained by simulating the shear connection process at high temperature and high speed. The results show that the constitutive equation and the dynamic recrystallization model constructed in this paper can be used to predict the evolution of the microstructure. The difference between the prediction results and the experimental data is about 3%. The accuracy of Arrhenius constitutive equation, dynamic recrystallization model and the feasibility of software secondary development are verified.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019
    Description: Bio-inspired functionally graded cellular materials (FGCM) have improved performance in energy absorption compared with a uniform cellular material (UCM). In this work, sheet-based and strut-based gyroid cellular structures with graded densities are designed and manufactured by stereo-lithography (SLA). For comparison, uniform structures are also designed and manufactured, and the graded structures are generated with different gradients. The mechanical behaviors of these structures under compressive loads are investigated. Furthermore, the anisotropy and effective elastic modulus of sheet-based and strut-based unit gyroid cellular structures are estimated by a numerical homogenization method. On the one hand, it is found from the numerical results that the sheet-based gyroid tends to be isotropic, and the elastic modulus of sheet-based gyroid is larger than the strut-based gyroid at the same volume fraction. On the other hand, the graded cellular structure has novel deformation and mechanical behavior. The uniform structure exhibits overall deformation and collapse behavior, whereas the graded cellular structure shows layer-by-layer deformation and collapse behavior. Furthermore, the uniform sheet-based gyroid is not only stiffer but also better in energy absorption capacity than the uniform strut-based gyroid structure. Moreover, the graded cellular structures have better energy absorption capacity than the uniform structures. These significant findings indicate that sheet-based gyroid cellular structure with graded densities have potential applications in various industrial applications, such as in crashworthiness.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019
    Description: To address the increasing air pollution caused by vehicle exhaust, environment-friendly pavement materials that possesses exhaust-purifying properties were prepared using common cement concrete and porous cement concrete as the base of photocatalyst nano-titanium dioxide (TiO2), respectively. Firstly, Fe3+-doped TiO2 powder was prepared by applying planetary high-energy ball milling in order to improve the efficiency of the semiconductor photocatalyst for degrading vehicle exhausts. Two nano-TiO2, namely the original and modified nanomaterials, were adopted to produce the photocatalytic cement concretes subsequently. The physicochemical properties of the modified powder, as well as the mechanical and photocatalytic properties of TiO2-modified concrete, were characterized using a suite of complementary techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), compressive strength and degradation efficiency tests. The results show that the ball milling method not only successfully doped Fe3+ into catalysts but also caused significant changes in: (1) decreased particle sizes, (2) more amorphous morphology, (3) decreased percentage of the most thermodynamically stable crystal facet, and (4) increased percentage of other high gas sensing crystal facets. Both the original and modified nano-TiO2 can improve the concrete strength while the strengthening effect of modified nanomaterials is superior. It is pronounced that the photocatalytic property of the modified nano-TiO2 is much better than that of the original nano particles, and the degradation rate of porous concrete is also better than common concrete when exposed to the same photocatalyst content. In a comprehensive consideration of both mechanical performance and degradation efficiency, the recommended optimum dosage of TiO2 is 3% to 4% for exhaust-purifying concrete.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019
    Description: An experimental study was conducted to investigate the effect ofnano-SiO2 and steel fiber content on the durability of concrete. Five different dosages of nano-SiO2 particles and five volume dosages of steel fiber were used. The durability of concretes includes permeability resistance, cracking resistance, carbonation resistance, and freezing-thawing resistance, and these were evaluated by the water permeation depth, number of cracks, total cracking area per unit area of the specimens, carbonation depth of the specimens, and the relative dynamic elastic modulus of the specimens after freezing-thawing cycles, respectively. The results indicate that the addition of nano-SiO2 particles significantly improves the durability of concrete when the content of nano-SiO2 is limited within a certain range. With the increase of nano-SiO2 content, the durability of concrete first increases and then decreases. An excessive number of nano-SiO2 particles could have an adverse effect on the durability of the concrete. The addition of the correct amount of steel fibers improves the carbonation resistance of concrete containing nano-particles, but excessive steel fiber reduces the carbonation resistance. Moreover, the addition of steel fibers reduces the permeability resistance of concrete containing nano-particles. The incorporation of steel fiber enhanced the freezing-thawing resistance and cracking resistance of concrete containing nano-particles. With increasing steel fiber content, the freezing-thawing resistance of the concrete containing nano-particles increases, and the cracking resistance of the concrete decreases gradually.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019
    Description: This work deals with the feasibility and reliability about the use of shape memory alloys (SMAs) as mechanical actuators for solar sail self-deployment instead of heavy and bulky mechanical booms. Solar sails exploit radiation pressure a as propulsion system for the exploration of the solar system. Sunlight is used to propel space vehicles by reflecting solar photons from a large and light-weight material, so that no propellant is required for primary propulsion. In this work, different small-scale solar sail prototypes (SSP) were studied, manufactured, and tested for bending and in three different environmental conditions to simulate as much as possible the real operating conditions where the solar sails work. Kapton is the most suitable material for sail production and, in the space missions till now, activated booms as deployment systems have always been used. In the present work for the activation of the SMA elements some visible lamps have been employed to simulate the solar radiation and time-temperature diagrams have been acquired for different sail geometries and environmental conditions. Heat transfer mechanisms have been discussed and the minimum distance from the sun allowing the full self-deployment of the sail have also been calculated.
    Electronic ISSN: 2226-4310
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019
    Description: The flux pinning properties of reacted-and-pressed Ba0.6K0.4Fe2As2 powder were measured using magnetic hysteresis loops in the temperature range 20 K ≤ T ≤ 35 K. The scaling analysis of the flux pinning forces ( F p = j c × B , with j c denoting the critical current density) following the Dew-Hughes model reveals a dominant flux pinning provided by normal-conducting point defects ( δ l -pinning) with only small irreversibility fields, H irr , ranging between 0.5 T (35 K) and 16 T (20 K). Kramer plots demonstrate a linear behavior above an applied field of 0.6 T. The samples were further characterized by electron backscatter diffraction (EBSD) analysis to elucidate the origin of the flux pinning. We compare our data with results of Weiss et al. (bulks) and Yao et al. (tapes), revealing that the dominant flux pinning in the samples for applications is provided mainly by grain boundary pinning, created by the densification procedures and the mechanical deformation applied.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019
    Description: This work investigates and improves the thermal dynamics of autoclaved aerated concrete (AAC) wall containing phase change material (PCM). The PCM is paraffin wax loaded into conical holes drilled into the AAC. Filled AAC with three different numbers of PCM-filled holes (2, 3, and 4 conical holes, which are designated as AAC-2H, AAC-3H, and AAC-4H, respectively) as well as the unfilled original AAC were both tested under two different conditions: indoors (with controlled temperature) and outdoors (with actual weather). For the indoor experiment, a heater was used as a thermal source and set up to maintain the testing temperature at one of three levels: 40 °C, 50 °C, or 60 °C. The wall temperature was then measured on the surface with each horizontally-positioned wall as well as four different positions at various depths below the surface of the wall. It was found that AAC-4H was the optimum condition, which can produce outstandingly a time lag of approximately 27%, reduce a decrement factor of approximately 31%, and also decrease the room temperature. This reached approximately 9% when compared with that of ordinary AAC at the controlled testing temperature of 60 °C. All samples were further tested in actual weather to confirm the thermal performances of AAC-4H. Thermal effectiveness of AAC-4H was improved by extending approximately a 14.3% time lag, which reduces approximately a 4.3% decrement factor and achieving approximately 5% lower room temperature when compared with ordinary AAC.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019
    Description: In this paper, the hot deformability and mechanical properties of a novel Mn- and Nb- containing TiAl alloy were studied systematically with the use of isothermal compression experiments. The results show that the alloy has low deformation resistance and a low activation energy (392 KJ/mol), suggesting that the alloy has good hot deformability. A processing map was established, which shows that the present alloy has a smaller instability region and wider hot working window compared with other TiAl alloys. Microstructural observation shows that the initial lamellae completely transformed into fine equiaxial γ grains when the alloy was compressed at 1200 °C/0.01 s−1, which corresponds to the optimum deformation condition. Based on the above results, an intact TiAl billet was successfully fabricated by one-step large deformation using a four-column hydraulic machine. The microstructure of the billet is almost completely composed of recrystallized γ grains with large angle boundaries. Tensile testing shows the billet exhibits high tensile strength (780 MPa) and high elongation (1.44%) simultaneously, which benefits from fine γ grains with an average size of 4.9 μm. The ductile–brittle transition temperature is between 750–800 °C.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019
    Description: Nanoporous metals represent a fascinating class of materials. They consist of a bi-continuous three-dimensional network of randomly intersecting pores and ligaments where the ligaments form the skeleton of the structure. The open-pore structure allows for applying a thin electrolytic coating on the ligaments. In this paper, we will investigate the stiffening effect of a polymer coating numerically. Since the coating adds an additional difficulty for the discretization of the microstructure by finite elements, we apply the finite cell method. This allows for deriving a mesh in a fully automatic fashion from the high resolution 3D voxel model stemming from the 3D focused ion beam-scanning electron microscope tomography data of nanoporous gold. By manipulating the voxel model in a straightforward way, we add a thin polymer layer of homogeneous thickness numerically and study its effect on the macroscopic elastic properties systematically. In order to lower the influence of the boundary conditions on the results, the window method, which is known from homogenization procedures, is applied. In the second part of the paper, we fill the gap between numerical simulations and experimental investigations and determine real material properties of an electrolytic applied polypyrrole coating by inverse computations. The simulations provide an estimate for the mechanical properties of the ligaments and the polymeric coating and are in accordance with experimental data.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019
    Description: In order to better provide a theoretical basis for the machining of luxury vinyl tiles, a helical milling experiment was conducted by using diamond cutting tools, and special attention was given to the trends of cutting force and surface roughness in respect to tool geometry and cutting parameters. The results showed that the resultant force was negatively correlated to the helix angle and cutting speed, but positively correlated with the cutting depth. Then, that the surface roughness increased with a decrease of the helix angle and an increase of cutting depth, while as cutting speed raised, the surface roughness first declined and then increased. Thirdly, the cutting depth was shown to have the greatest influence on both cutting force and surface roughness, followed by helix angle and cutting speed. Fourth, the contribution of cutting depth only was significant to cutting force, while both the helix angle and cutting speed had insignificant influence on the cutting force and surface roughness. Finally, the optimal cutting conditions were proposed for industrial production, in which the helix angle, cutting speed and cutting depth were 70°, 2200 m/min and 0.5 mm, respectively.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019
    Description: A Ru-doped phospho-tungstic Wells–Dawson polyoxometalate (POM) was successfully applied as homogeneous catalyst for glycerol hydrogenolysis in aqueous media. The synthesized compound showed superior catalytic activity compared to classical homogeneous/heterogeneous Ru catalysts like RuCl3 and Ru/C under identical reaction conditions, whereas the analogous POM doped with Pd or Pt proved far less activity. Detailed characterization of the POMs was performed using 31P-NMR to identify characteristic phosphorous peaks of the heteroatoms, infrared spectroscopy (ATR-FTIR) to confirm characteristic P-O and W-O-W vibrations, powder XRD for comparison of crystal structures, and X-ray fluorescence (XRF) and inductive-coupled plasma (ICP) analysis to determine elemental composition. Variation of the reaction parameters for the best performing Ru-doped POM catalyst showed that substrate concentration played an important role for both product selectivity and conversion. Moreover, medium hydrogen pressure and high stirring speed were key factors to obtain highly selective conversion of glycerol to 1,2-propanediol.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019
    Description: Bone defects repair represents a public and urgent problem in clinical practice, in fact, every year, more than two million patients required new treatments for bone injuries. Today a complete vascularization is strategic in bone formation, representing a new frontier for clinical application. Aim of this research has been developed a three-dimensional (3D) coculture platform using a bovine pericardium collagen membrane (BioR) loaded with human periodontal ligament stem cells (hPDLSCs) and endothelial differentiated cells from hPDLSCs (E-hPDLSCs) able to undergo toward osteoangiogenesis differentiation process. First, we have characterized at confocal laser scanning microscopy (CLSM) level the E-hPDLSCs phenotype profile, through CD31 and CD34 markers expression and the ability to tube vessel formation. Real Time-Polimerase Chain Reaction (RT-PCR) and western blotting analyses revealed the upregulation of Runt-related transcription factor 2 (RUNX2), Collagen 1A1 (COL1A1), Vascular Endothelial Growth Factor-A (VEGF-A) genes and proteins in the living construct composed by hPDLSCs + E-hPDSCs/BioR. Human PDLSCs + E-hPDLSCs/BioR construct showed also an enhacement of de novo synthesis of osteocalcin. Given that, the extracellular-signal-regulated kinase (ERK)/mitogen activated protein kinase (MAPK) transduction signaling was involved in the osteogenesis and angiogenesis process, the ERK1/2 protein level at biochemical level, in our experimental model, has been investigated. Our results evidenced an upregulation of ERK1/2 proteins level born in the living construct. In conclusion, we believe that the use of the hPDLSCs and E-hPDLSCs coculture togheter with BioR as substrate, could represent an efficient model able to activate through ERK1/2 signaling pathway the osteoangiogenesis process, and then representing a new potential engineered platform for surgeons during the repair and the healing of bone defects.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019
    Description: The instability of diafiltration is a widespread problem in the practical application of microporous ceramic filtration membranes. In this paper, a series of microporous ceramic filter membranes were prepared using inexpensive standard sand and river sand as matrix materials. Semi-empirical formula for the effective permeability radius of ceramic membranes with respect to time was established from analysis of the response mechanism between water flow and material properties. Finally, on the basis of theoretical analysis, some measures were proposed to improve permeate flux. The experimental results showed that during the initial stage of filtration, the microporous ceramic filter membrane had a large change in permeate flux, and during the late stage of filtration, permeate flux tended to be stable. Over time, open porosity and closed porosity changed the actual seepage area of the ceramic membrane, and this affected the stability of permeate flux and final stable permeate flux. The roughness of the inner wall of microporous ceramic pores affected the hydraulic loss coefficient, and this controlled the outflow process. Trace elements that were rich in sand produced a large amount of glass phase after sintering. The glass phase was rich in polar groups and formed a temporary hydrogen bond with the small flow of water molecules. It led to an increase in viscous resistance effect of the side wall along the water flow and the extent of the permeate flux of the ceramic membrane changed with time.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019
    Description: Three-dimensional finite element-based numerical analysis of Vickers indenter hardness test was conducted to investigate the effect of frictional conditions and material anisotropy on indentation results of deep drawing quality steel sheets. The strain hardening properties and Lankford’s coefficient were determined through the uniaxial tensile tests. The numerical computations were carried out using ABAQUS nonlinear finite element (FE) analysis software. Numerical simulations taken into account anisotropy of material described by Hill (1948) yield a criterion. The stress and strain distributions and loading–unloading characteristics were considered to study the response of the material. It was found that the hardness values seemed to be influenced by the value of the friction coefficient due to the pile-up phenomenon observed. The increasing of the friction coefficient led to a decrease of the pile-up value. Moreover, the width of the pile-ups differed from each other in the two perpendicular directions of measurement. Frictional conditions did not significantly affect the maximum force and the character of load–displacement curves. Frictional regime between the indenter and workpiece caused that the region of maximum residual stresses to be located in the subsurface.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019
    Description: Calcium sulfoaluminate (CSA) cement has recently gained increased attention due to its lower amount of CO2 emissions, as compared to that of the ordinary Portland cement (OPC). This paper evaluates the impact of different types of fibers on the engineering features of CSA-based concretes at different water-cement ratios of 0.35 and 0.28. In this study, metallic fibers including double hooked-end steel fibers and hooked-end steel fibers, and non-metallic fibers (i.e., polyvinyl alcohol (PVA) fibers) were utilized at fiber content of 1%. The mechanical properties of concretes were assessed at different curing ages. Dimensional stability of the concrete mixes was also examined. The morphology of the fractured specimens was studied by using the SEM method. The results indicate that the engineering properties of concrete were improved by introducing fibers to the concrete, irrespective of fiber type. The results show that DHE steel fiber has an important effect on the flexural performance of CSA cement-based concretes and results in deflection-hardening behavior. It was observed that fibers and particularly PVA fibers cause a decrease in shrinkage deformation. Microstructure tests demonstrate that prismatic ettringite is the main hydration product of CSA cement-based concrete. The SEM observation also confirms that the inclusion of CSA cement in concrete improves the cohesiveness between the fibers and cement matrix.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019
    Description: As an intrinsic property, elasticity of soft material is affected significantly by the externally applied alternating magnetic field. Magnetostrictive properties of the grain-oriented (GO) silicon steel under DC-biased and multisinusoidal magnetizations are measured by using a laser-based measuring system. Magnetostriction curves of the GO silicon steel sheet under different magnetizations are obtained and the influence of frequency and DC bias on the magnetostrictive property is observed and analyzed based on the measured data. In addition, the spectrum of magnetostriction under harmonic magnetization is obtained, and the acoustic noise level of the GO silicon steel sheet represented by the A-weighted decibel value caused by magnetostriction is measured under DC-biased and multisinusoidal magnetizations. The measurement results are applied to the simulation of the three-limb laminated core model, and the effects of DC bias and harmonics on magnetic flux density and displacement are analyzed.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019
    Description: The detection of cable corrosion is of great significance to the evaluation of cable safety performance. Based on the principle of spontaneous magnetic flux leakage (SMFL), a new method for predicting the corrosion width of cables is proposed. In this paper, in order to quantify the width of corrosion, the parameter about intersecting point distance between curves of magnetic flux component of x direction at different lift off heights (Dx) is proposed by establishing the theoretical model of the magnetic dipole of the rectangular corrosion defect. The MATLAB software was used to analyze the influencing factors of Dx. The results indicate that there exists an obvious linear relationship between the Dx and the y (lift off height), and the Dx–y curves converge to near the true corrosion width when y = 0. The 1/4 and 3/4 quantiles of the Dx–y image were used for linear fitting, which the intercept of the fitting equation was used to represent the predicted corrosion width. After the experimental study on the corrosion width detection for the parallel steel wire and steel strand, it is found that this method can effectively improve the detection accuracy, which plays an important role in cable safety assessment.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019
    Description: This paper presents the concept of repairing the stand of a motorbike speedway stadium. The synchronized dancing of fans cheering during a meeting brought the stand into excessive resonance. The main goal of this research was to propose a method for the structural tuning of stadium stands. Non-destructive testing by vibration methods was conducted on a selected stand segment, the structure of which recurred on the remaining stadium segments. Through experiments, we determined the vibration forms throughout the stand, taking into account the dynamic impact of fans. Numerical analyses were performed on the 3-D finite element method (FEM) stadium model to identify the dynamic jump load function. The results obtained on the basis of sensitivity tests using the finite element method allowed the tuning of the stadium structure to successfully meet the requirements of the serviceability limit state.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019
    Description: Sloshing experiments have increasingly received academic attention. Understanding the measurement errors in the sloshing impact pressures is an important parts of the sloshing experiments since these errors, which arise from experimental conditions, affect the subsequent results. As part of the research on the sources of the measurement errors, focused on the effects of surface conditions of pressure sensors on the measurement of impact pressures. Thirty-six integrated circuit piezoelectric pressure sensors were placed on the upper surfaces of a two-dimensional tank to measure the sloshing impact pressures under surge or pitch motions. For each motion, the experimental conditions were divided in two based on whether the surfaces of the sensors were dry or wet. The peak pressures of each test were measured as twenty repeated experiments to ensure reliability. The flow in the tank was visualized using a high-speed camera to observe and analyze macroscopic and microscopic phenomena along the sensor surface. Thermal shock effects were confirmed by varying the experimental temperature and that of the sensor surface. The effects of the wet surface and droplets formed on the sensor surface on pressure measurements are discussed.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019
    Description: Fullerene-based materials including C60 and doped C60 have previously been proposed as anodes for lithium ion batteries. It was also shown earlier that n- and p-doping of small molecules can substantially increase voltages and specific capacities. Here, we study ab initio the attachment of multiple lithium atoms to C60, nitrogen-doped C60 (n-type), and boron doped C60 (p-type). We relate the observed attachment energies (which determine the voltage) to changes in the electronic structure induced by Li attachment and by doping. We compare results with a GGA (generalized gradient approximation) functional and a hybrid functional and show that while they agree semi-quantitatively with respect to the expected voltages, there are qualitative differences in the electronic structure. We show that, contrary to small molecules, single atom n- and p-doping will not lead to practically useful modulation of the voltage–capacity curve beyond the initial stages of lithiation.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019
    Description: Recent advances in high-resolution three-dimensional X-ray CT imaging have made it possible to visualize fluid configurations during multiphase displacement at the pore-scale. However, there is an inherited difficulty in image-based curvature measurements: the use of voxelized image data may introduce significant error, which has not—to date—been quantified. To find the best method to compute curvature from micro-CT images and quantify the likely error, we performed drainage and imbibition direct numerical simulations for an oil/water system on a bead pack and a Bentheimer sandstone. From the simulations, local fluid configurations and fluid pressures were obtained. We then investigated methods to compute curvature on the oil/water interface. The interface was defined in two ways; in one case the simulated interface with a sub-resolution smoothness was used, while the other was a smoothed interface extracted from synthetic segmented data based on the simulated phase distribution. The curvature computed on these surfaces was compared with that obtained from the simulated capillary pressure, which does not depend on the explicit consideration of the shape of the interface. As distinguished from previous studies which compared an average or peak curvature with the value derived from the measured macroscopic capillary pressure, our approach can also be used to study the pore-by-pore variation. This paper suggests the best method to compute curvature on images with a quantification of likely errors: local capillary pressures for each pore can be estimated to within 30% if the average radius of curvature is more than 6 times the image resolution, while the average capillary pressure can also be estimated to within 11% if the average radius of curvature is more than 10 times the image resolution.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019
    Description: The use of new developed high-strength steel in concrete members can reduce steel bar congestion and construction costs. This research aims to study the behavior of concrete columns reinforced with new developed high-strength steel under eccentric loading. Ten reinforced concrete columns were fabricated and tested. The test variables were the transverse reinforcement amount and yield strength, eccentricity, and longitudinal reinforcement yield strength. The failure patterns were compression and tensile failure for columns subjected to small eccentricity and large eccentricity, respectively. The same level of post-peak deformability and ductility could only be obtained with a lower amount of transverse reinforcement when high-strength transverse reinforcements were used in columns subjected to small eccentricity. The high-strength longitudinal reinforcement improved the bearing capacity and post-peak deformability of the concrete columns. Furthermore, three different equivalent rectangular stress block (ERSB) parameters for predicting the bearing capacity of columns with high-strength steel are discussed based on test and simulated results. It is concluded that the China Code GB 50010-2010 overestimates the bearing capacity of columns with high-strength steel, whereas the bearing capacities computed using the America Code ACI 318-14 and Canada Code CSA A23.3-04 agree well with the test results.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019
    Description: Wave run-up and dune overwash are typically assessed using empirical models developed for a specific range of often-simplistic conditions. Field experiments are essential in extending these formulae; yet obtaining comprehensive field data under extreme conditions is often challenging. Here, we use XBeach Surfbeat (XB-SB)—a shortwave-averaged but wave-group resolving numerical model—to complement a field campaign, with two main objectives: i) to assess the contribution of infragravity (IG) waves to washover development in a partially-sheltered area, with a highly complex bathymetry; and ii) to evaluate the unconventional nested-modeling approach that was applied. The analysis shows that gravity waves rapidly decrease across the embayment while IG waves are enhanced. Despite its exclusion of gravity-band swash, XB-SB is able to accurately reproduce both the large-scale hydrodynamics—wave heights and mean water levels across the 30 × 10 km embayment; and the local morphodynamics—steep post-storm dune profile and washover deposit. These findings show that the contribution of IG waves to dune overwash along the bay is significant and highlight the need for any method or model to consider IG waves when applied to similar environments. As many phase-averaged numerical models that are typically used for large-scale coastal applications exclude IG waves, XB-SB may prove to be a suitable alternative.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019
    Description: The article proposes the design of a test bench simulator to test a parallel hybrid propulsion architecture for aeronautical applications. The virtual test bench simulates, in a scaled version, the real test bench, designed for a power of about 0.4 MW. After presenting the architecture of the real propulsion system, the virtual test bench is described. The real system is basically composed by a paralleled electric motor and thermal engine which provide mechanical power to the propeller. Saving cost and volume the test bench is composed by electric motors simulates the behaviors of the real propulsion system despite their differences. The dynamic relationships expressing the transmission of torque between the components, and the method of down-sizing the power delivered are highlighted. Particular attention is given to the real inertia actions that must be simulated on the virtual test bench. An application of the proposed methodology is then presented through the simulation of the take-off phase, and the torque time histories, angular velocities and powers generated on the virtual test bench are used to verify the corresponding time histories expected in the real system.
    Electronic ISSN: 2226-4310
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019
    Description: The objective of this paper is to present an integrated picture of the relationship between the waves and the modifications induced by them in the Romanian shoreline. Thus, the hydrodynamic processes at the Mangalia beaches, located in the southern side of the Romanian nearshore, are simulated using the modeling system Mike 21 SW (MIKE 21 Spectral Waves), developed by the Danish Hydration Institute (DHI). This is one of the newest spectral wave models, which can be used for regional- and local-scale simulations. The model has been calibrated and validated using buoy measurements. The analysis of the statistical parameters shows a good match between the model and the observed data. Furthermore, a model to compare the differences that occur on the beach profiles between the cold and warm seasons was developed. The results obtained indicate a reinforcement of the coastal erosion in the winter, when the waves are stronger (especially in January and February).
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019
    Description: Magnesium phosphate cements (MPC) have been demonstrated to have a superior bone regeneration capacity due to their good solubility under in vivo conditions. While in the past only aqueous MPC pastes have been applied, the current study describes the fabrication and in vitro/in vivo testing of an oil-based calcium doped magnesium phosphate (CaMgP) cement paste. Premixed oil-based pastes with CaMgP chemistry combine the advantages of conventional MPC such as high mechanical strength and good resorbability with a prolonged shelf-life and an easier clinical handling. The pastes set in an aqueous environment and predominantly form struvite and achieve a compressive strength of ~8–10 MPa after setting. The implantation into a drill-hole defect at the distal femoral condyle of New Zealand white rabbits over a course of 6 and 12 weeks demonstrated good biocompatibility of the materials without the formation of soft connective tissue or any signs of inflammation. In contrast to a hydroxyapatite forming reference paste, the premixed CaMgP pastes showed subsequent degradation and bony regeneration. The CaMgP cement pastes presented herein are promising bone replacement materials with excellent material properties for an improved and facilitated clinical application.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019
    Description: The present paper reports a novel method to improve the properties of polyethylene (PE) and polypropylene (PP) polymer foils suitable for applications in food packaging. It relates to the adsorption of chitosan-colloidal systems onto untreated and oxygen plasma-treated foil surfaces. It is hypothesized that the first coated layer of chitosan macromolecular solution enables excellent antibacterial properties, while the second (uppermost) layer contains a network of polyphenol resveratrol, embedded into chitosan nanoparticles, which enables antioxidant and antimicrobial properties simultaneously. X-ray photon spectroscopy (XPS) and infrared spectroscopy (FTIR) showed successful binding of both coatings onto foils as confirmed by gravimetric method. In addition, both attached layers (chitosan macromolecular solution and dispersion of chitosan nanoparticles with incorporated resveratrol) onto foils reduced oxygen permeability and wetting contact angle of foils; the latter indicates good anti-fog foil properties. Reduction of both oxygen permeability and wetting contact angle is more pronounced when foils are previously activated by O2 plasma. Moreover, oxygen plasma treatment improves stability and adhesion of chitosan structured adsorbates onto PP and PE foils. Foils also exhibit over 90% reduction of Staphylococcus aureus and over 77% reduction of Escherichia coli as compared to untreated foils and increase antioxidant activity for over a factor of 10. The present method may be useful in different packaging applications such as food (meat, vegetables, dairy, and bakery products) and pharmaceutical packaging, where such properties of foils are desired.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019
    Description: Hierarchical Temporal Memory (HTM) has been known as a software framework to model the brain’s neocortical operation. However, mimicking the brain’s neocortical operation by not software but hardware is more desirable, because the hardware can not only describe the neocortical operation, but can also employ the brain’s architectural advantages. To develop a hybrid circuit of memristor and Complementary Metal-Oxide-Semiconductor (CMOS) for realizing HTM’s spatial pooler (SP) by hardware, memristor defects such as stuck-at-faults and variations should be considered. For solving the defect problem, we first show that the boost-factor adjustment can make HTM’s SP defect-tolerant, because the false activation of defective columns are suppressed. Second, we propose a memristor-CMOS hybrid circuit with the boost-factor adjustment to realize this defect-tolerant SP by hardware. The proposed circuit does not rely on the conventional defect-aware mapping scheme, which cannot avoid the false activation of defective columns. For the Modified subset of National Institute of Standards and Technology (MNIST) vectors, the boost-factor adjusted crossbar with defects = 10% shows a rate loss of only ~0.6%, compared to the ideal crossbar with defects = 0%. On the contrary, the defect-aware mapping without the boost-factor adjustment demonstrates a significant rate loss of ~21.0%. The energy overhead of the boost-factor adjustment is only ~0.05% of the programming energy of memristor synapse crossbar.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019
    Description: The extract of honeycomb waste was studied as a corrosion inhibitor on 304 stainless steel in H2SO4 solutions. The honeycomb waste was obtained from beekeeping at Lawang-Malang, East Java, Indonesia. Electrochemical and scanning electron microscopy methods were used to investigate the performance of the corrosion inhibition process. The inhibition efficiency of the inhibitor (2000 mg/L) reached 97.29% in 0.5 M H2SO4 and decreased with the acid concentration. Kinetic parameters were calculated to explain the effect of acid concentration on the inhibition process. The study on the adsorption behavior of the extracts followed the Frumkin isotherm model. The adsorption of the inhibitor on the 304 stainless steel surface was confirmed by the negative and lower values of Gibbs free energy. The obtained scanning electron microscopy (SEM) images were confirmed by comparing the surface of the specimens with and without inhibitor after corroding for one week. The results indicated that the extract acted as a good inhibitor for 304 stainless steel in acid corrosion.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019
    Description: The aim of this work is to study the activity of novel TiO2-based photocatalysts doped with either phosphorus or zirconium under a UV-Vis source. A set of mesoporous catalysts was prepared by the direct synthesis: TiO2_A and TiO2_B (titanium oxide synthesized by two different procedures), P-TiO2 and Zr-TiO2 (binary oxides with either nonmetal or metal into the TiO2 framework). Complementary characterizations (N2 physisorption at 77 K, X-ray powder diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) analysis, X-ray Photoelectron Spectroscopy (XPS), and (DR)UV-Vis spectroscopy) were used to investigate the physicochemical properties of the prepared catalysts. Then, the photocatalysts were tested for the oxidation of propylene and ethylene under UV-Vis light. As a result, the most promising catalyst for both the propylene and ethylene oxidation reactions was the P-TiO2 (propylene conversion = 27.8% and ethylene conversion = 13%, TOS = 3 h), thus confirming the beneficial effect of P-doping into the TiO2 framework on the photocatalytic activity.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019
    Description: In this paper, a model for dynamic analysis of array of floating breakwaters is developed and tested. Special attention is given to modeling connections between neighboring elements of the array. A linear three-dimensional floating multi-body formulation is used as a foundation for the presented model. An additional stiffness matrix is derived which introduces the influence of the connections onto motion of the array. The stiffness matrix is used to couple motions in vertical and horizontal planes i.e. the connections are modeled in three-dimensions. The equation of motion is solved in the frequency domain. The newly developed model is tested on an array of three connected breakwaters. The motion and the performance of the breakwater array are investigated under different significant heights and directions of the incoming waves.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019
    Description: In the past few years, unmanned aerial systems (UAS) have achieved great popularity for civil uses. One of the present main uses of these devices is low-cost aerial photogrammetry, being especially useful in coastal environments. In this work, a high-resolution 3D model of a beach section in Guardamar del Segura (Spain) has been produced by employing a low maximum takeoff mass (MTOM) UAS, in combination with the use of structure-from-motion (SfM) techniques. An unprecedented extensive global navigation satellite system (GNSS) survey was simultaneously carried out to statistically validate the model by employing 1238 control points for that purpose. The results show good accuracy, obtaining a vertical root mean square error (RMSE) mean value of 0.121 m and a high point density, close to 30 pt/m2, with similar or even higher quality than most coastal surveys performed with classical techniques. UAS technology permits the acquisition of topographic data with low time-consuming surveys at a high temporal frequency. Coastal managers can implement this methodology into their workflow to study the evolution of complex, highly anthropized dune-beach systems such as the one presented in this study, obtaining more accurate surveys at lower costs.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019
    Description: Automatic controls refer to the application of control theory to regulate systems or processes without human intervention, and the notion is often usefully applied to space applications. A key part of controlling flexible space robotics is the control-structures interaction of a light, flexible structure whose first resonant modes lie within the bandwidth of the controller. In this instance, the designed-control excites the problematic resonances of the highly flexible structure. This manuscript reveals a novel compensator capable of minimum-time performance of an in-plane maneuver with zero residual vibration (ZV) and zero residual vibration-derivative (ZVD) at the end of the maneuver. The novel compensator has a whiplash nature of first commanding maneuver states in the opposite direction of the desired end state. For a flexible spacecraft simulator (FSS) free-floating planar robotic arm, this paper will first derive the model of the flexible system in detail from first principles. Hamilton’s principle is augmented with the adjoint equation to produce the Euler–Lagrange equation which is manipulated to prove equivalence with Newton’s law. Extensive efforts are expended modeling the free–free vibration equations of the flexible system, and this extensive modeling yields an unexpected control profile—a whiplash compensator. Equations of motion are derived using both the Euler–Lagrange method and Newton’s law as validation. Variables are then scaled for efficient computation. Next, general purposed pseudospectral optimization software is used to seek an optimal control, proceeding afterwards to validate optimality via six theoretical optimization necessary conditions: (1) Hamiltonian minimization condition; (2) adjoint equations; (3) terminal transversality condition; (4) Hamiltonian final value condition; (5) Hamiltonian evolution equation; and lastly (6) Bellman’s principle. The results are novel and unique in that they initially command full control in the opposite direction from the desired end state, while no such results are seen using classical control methods including classical methods augmented with structural filters typically employed for controlling highly flexible multi-body systems. The manuscript also opens an interesting question of what to declare when the six optimality necessary conditions are not necessarily in agreement (we choose here not to declare finding the optimal control, instead calling it suboptimal).
    Electronic ISSN: 2226-4310
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019
    Description: In this work, a biomedical Ti-6Al-4V (TC4)/Zn composite with gradient microstructures was successfully prepared by friction stir processing (FSP). The microstructures and mechanical properties of the composite were systematically studied using scanning electron microscope (SEM), X-ray diffractometer (XRD), transmission electron microscope (TEM), atom probe tomography (APT), and microhardness test. The results show that TC4/Zn composite can be successfully prepared, and gradient microstructures varying from coarse grain to nanocrystalline is formed from the bottom to the upper surface. During FSP, adding Zn can accelerate the growth of β phase region, and the grain size significantly increases with the increasing rotation rate. The grain combination is the main mechanism for grain growth of β phase region. The deformation mechanisms gradually change from dislocation accumulations and rearrangement to dynamic recrystallization from the bottom to the upper surface (1.5 mm–150 μm from the upper surface). The composite exhibits slightly higher microhardness compared with the matrix. This paper provides a new method to obtain a TC4/Zn composite with gradient surface microstructures for potential applications in the biomedical field.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019
    Description: Aeronautical stiffened panels composed of thin shells and beams are prone to deformation or buckling due to the combined loading, functional boundary conditions and interface forces between joined parts in the assembly processes. In this paper, a mechanical prediction model of the multi-component panel is presented to investigate the deformation propagation, which has a significant effect on the fatigue life of built-up structures. Governing equations of Kirchhoff–Love shell are established, of which displacement expressions are transformed into Fourier series expansions of several introduced potential functions by applying the Galerkin approach. This paper presents an intermediate quantity, concentrated force at the joining interface, to describe mechanical interactions between the coupled components. Based on the Euler–Bernoulli beam theory, unknown intermediate quantity is calculated by solving a 3D stringer deformation equation with static boundary conditions specified on joining points. Compared with the finite element simulation and integrated model, the proposed method can substantially reduce grid number without jeopardizing the prediction accuracy. Practical experiment of the aircraft panel assembly is also performed to obtain the measured data. Maximum deviation between the experimental and predicted clearance values is 0.193 mm, which is enough to meet the requirement for predicting dimensional variations of the aircraft panel assembly.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019
    Description: A new mechanism of dynamic phase transformations of α2 ↔ γ in an isothermally forged γ-TiAl-based alloy that occur simultaneously during a short-term exposure at 1000 °C is identified in this study. In the heating process, γ phase significantly decreases through a phase transformation of γ → α2, while new γ lamellae are precipitated in the interior of equiaxed grains of α2 phase through a phase transformation of α2 → γ. The reasons for the presence of these two inverse phase transformations α2 ↔ γ occurring simultaneously are discussed.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...