ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (36)
Collection
  • Articles  (36)
Years
Journal
  • 1
    Publication Date: 2021-10-25
    Description: The aim of this study was to investigate the oxidation kinetics of copper at low temperatures (60 °C to 100 °C) in air by isothermal thermogravimetric analysis (TGA) and quartz crystal microbalance (QCM). The weight change in thermogravimetric tests showed periodic weight increase and decrease. In thermogravimetric tests the mass of the copper sample increased until the oxidation gradually slowed down and finally started to decrease due to cracking and spalling of the oxide formed on the surface. In QCM tests using electrodeposited copper film, the weight change was rapid at the beginning but slowed to a linear relationship after few minutes. Temperature and exposure time appeared to have a large effect on oxide film thickness and composition. With QCM, oxidation at 60–80 °C produced less than 40 nm films in 10 days. Oxidation at 90–100 °C produced 40 nm thick films in a day and over 100 nm films in a week. Although SEM-EDS analyses in TGA tests indicated that oxygen was adsorbed on the copper surface, neither XRD patterns nor Raman spectroscopy measurements showed any trace of Cu2O or CuO formation on the copper surface. Electrochemical reduction analysis of oxidized massive copper samples indicated that the oxide film is mostly Cu2O, and CuO develops only after several days at 90–100 °C.
    Electronic ISSN: 2624-5558
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-10-21
    Description: In Finland, the repositories for low and intermediate-level radioactive waste (LLW and ILW) will be situated at three different geographical locations in about 60 to 100 m deep granite bedrock where the waste and waste containers can be subjected to anoxic groundwater containing microbes. The composition of groundwater varies in terms of chemistry and microbial activity in different locations. In this study, groundwater from the three repository areas was analyzed in respect to chemistry and microbial community. Corrosion tendency of three steel grades, carbon steel AISI/SAE 1005 and stainless steels AISI 304 and 316L, was studied in these groundwater environments using electrochemical methods. As a reference, measurements were also performed in simulated groundwater without microbes. The measurements show that corrosivity of the water and thus the steels’ performance differs depending on water origin. In addition, the groundwater differed remarkably in their chemical composition as well as abundance and diversity of microbial community between the sites. Consequently, the local environment has to be considered when evaluating the long-term evolution of disposal concepts.
    Electronic ISSN: 2624-5558
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-10-20
    Description: Environmental cracking- and fatigue-related failures threaten all major industries and, to combat such degradation, numerous residual stress impingement (RSI) methods have been developed with varying levels of efficacy and ease of use. Some of the most commonly used RSI methods, such as shot peening, laser shock peening, and low plasticity burnishing, as well as new methods, such as ultrasonic nanocrystal surface modification, are reviewed in the context of corrosion, corrosion fatigue, and environmental cracking mitigation. The successes and limitations of these treatments are discussed, with a focus on their efficacy against these three damage modes based on the available literature. Case studies are reviewed that demonstrate how these treatments have been adopted and advanced by industry, and application-specific research efforts are explored with a focus on future opportunities. Research is identified that illustrates how the utility of these surface treatments may vary between alloy systems, and where the benefits must be weighed against the risks to a component’s service performance.
    Electronic ISSN: 2624-5558
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-08-31
    Description: The determination of the water chemistry for cooling systems of nuclear fusion plants is under debate. It should be tailored for different types of fusion reactors: either experimental, e.g., ITER, JT-60SA, and DTT, or aimed at power generation, e.g., DEMO, given the different operation requirements. This paper presents the dual approach involving experiments and computer simulations chosen for the definition of DEMO water chemistry. Experimental work was performed to assess the corrosion susceptibility of reduced activation ferritic martensitic EUROFER 97 and AISI 316L in different water chemistry regimes. At the same time, the low corrosivity requirement brings an additional safety aspect for the radiation protection since some neutron-activated corrosion products (ACPs) create a gamma radiation when deposited outside the plasma chamber in components accessible to operators and these must be minimized. To evaluate the ACP inventory for DEMO, assessments were carried out using a reference computer code. Preliminary experimental activities to define the water chemistry of DTT under construction at ENEA were also conducted. The comparison of code results with experiments is two-fold important: for the validation of the computer code models and to determine data that are necessary to perform calculations.
    Electronic ISSN: 2624-5558
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-08-31
    Description: Corrosion-induced maintenance is a significant cost driver and availability degrader for aircraft structures. Although well-established analyses enable assessing the corrosion impact on structural integrity, this is not the case for fatigue nucleation and crack growth. This forces fleet managers to directly address detected corrosion to maintain flight safety. Corrosion damage occurs despite protection systems, which inevitably degrade. In particular, pitting corrosion is a common potential source of fatigue. Corrosion pits are discontinuities whose metrics can be used to predict the impact on the fatigue lives of structural components. However, a damage tolerance (DT) approach would be more useful and flexible. A potential hindrance to DT has been the assumption that corrosion-induced fatigue nucleation transitions to corrosion fatigue, about which little is known for service environments. Fortunately, several sources indicate that corrosion fatigue is rare for aircraft, and corrosion is largely confined to ground situations because aircraft generally fly at altitudes with low temperature and humidity Thus, it is reasonable to propose the decoupling of corrosion from the in-flight dynamic (fatigue) loading. This paper presents information to support this proposition, and provides an example of how a DT approach can allow deferring corrosion maintenance to a more opportune time.
    Electronic ISSN: 2624-5558
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-08-30
    Description: During their service life, existing structures may suffer a combination of ageing and reinforcement corrosion. The corrosion deterioration can significantly affect the durability of reinforced concrete (RC) elements causing premature concrete crushing, size reduction of reinforcement cross-section, degradation of mechanical properties of steel and concrete, and stirrups rupture. One of the main purposes related to durability reduction is the evaluation of the maintenance of adequate safety and residual capacity throughout the life of the structure. For this reason, a non-linear finite element approach (NLFEA), based on multi-layer shell elements and PARC_CL 2.1 crack model has been presented in this paper. The PARC_CL 2.1 model is a fixed crack model developed at the University of Parma and implemented in a subroutine UMAT for ABAQUS that incorporates cyclic constitutive laws of materials and the evolution of corrosion over time. In the present work, the crack model was improved by implementing the effects of exposure to environmental attack. Firstly, the effectiveness of the proposed model has been validated through comparison with experimental data available in literature. The residual capacity of corroded RC panels subjected to cyclic loads was then investigated over time considering different exposure classes. Based on the obtained results, the capacity reduction in terms of maximum shear stress and ductility have been estimated over time.
    Electronic ISSN: 2624-5558
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-08-30
    Description: The corrosion mechanism of stainless steel caused by high temperature decomposition of aqueous urea solution has been investigated. The relationship between aqueous urea solution, its thermal decomposition products and the corrosion mechanism of stainless steel is studied by FTIR spectroscopy, SEM and stereo microscopy. The corroded steel samples, together with deposits, were obtained from the injection of aqueous urea solution on the steel plate at high temperatures. Uniform corrosion underneath the deposits was proposed as the main driver for corrosion of the steel samples. At the crevices, corrosion due to the used geometry and due to high temperature cycling could play an acceleration role as well.
    Electronic ISSN: 2624-5558
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-04-21
    Description: Electrodeposited zinc and zinc-alloy coatings have been extensively used in a wide variety of applications such as transport, automotive, marine, and aerospace owing to their good corrosion resistance and the potential to be economically competitive. As a consequence, these coatings have become the industry choice for many applications to protect carbon and low alloy steels against degradation upon their exposure in different corrosive environments such as industrial, marine, coastal, etc. Significant works on the electrodeposition of Zn, Zn-alloys and their composites from conventional chloride, sulfate, aqueous and non-aqueous electrolyte media have been progressed over the past decade. This paper provides a review covering the corrosion performance of the electrodeposited Zn, Zn-alloy and composite with different coating properties that have been developed over the past decade employing low-toxic aqueous and halide-free non-aqueous electrolyte media. The influence of additives, nano-particle addition to the electrolyte media on the morphology, texture in relation to the corrosion performance of coatings with additional functionalities are reviewed in detail. In addition, the review covers the recent developments along with cost considerations and the future scope of Zn and Zn-alloy coatings.
    Electronic ISSN: 2624-5558
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-04-18
    Description: The corrosion performance of Aluminium (Al) and zinc (Zn) is of interest in repositories for radioactive waste as the production of hydrogen gas during their anoxic corrosion may create open pathways for the transport of radioactive ions. Al and Zn rods were embedded in concrete cylinders and immersed in artificial groundwater at anaerobic conditions for 2 weeks and up to 2 years in laboratory conditions. Corrosion rates were determined to enable predictions and estimations of risks for gas evolution and the assessment of the potential impact of corrosion on the structural integrity of concrete in the final repository of low and intermediate level metal-containing waste from dismantled nuclear power plants. Samples were collected after 2, 4, 12, 26, 52 and 104 weeks. The observed corrosion rates were higher for Al compared with Zn, as expected, but both materials revealed comparatively high initial corrosion rates that decreased with time, reaching steady state after 26–52 weeks. Some of the Al containing concrete cylinders were cracked as a result of the corrosion processes after 2 years of exposure, thereby providing free passage between the embedded metal and the surrounding environment. No such effects were observed for Zn. Comparative studies were performed on non-concrete-embedded Al and Zn immersed in artificial groundwater. Observed long-term corrosion rates (1–2 years) were similar to corresponding corrosion rates in concrete. The results indicate that immersion studies in artificial groundwater can be used to estimate the long-term corrosion performance of Zn and Al in concrete.
    Electronic ISSN: 2624-5558
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-03-25
    Description: Microbially influenced corrosion (MIC) is responsible for significant damage to major marine infrastructure worldwide. While the microbes responsible for MIC typically exist in the environment in a synergistic combination of different species, the vast majority of laboratory-based MIC experiments are performed with single microbial pure cultures. In this work, marine grade steel was exposed to a single sulfate reducing bacterium (SRB, Desulfovibrio desulfuricans) and various combinations of bacteria (both pure cultures and mixed communities), and the steel corrosion studied. Differences in the microbial biofilm composition and succession, steel weight loss and pitting attack were observed for the various test configurations studied. The sulfate reduction phenotype was successfully shown in half-strength marine broth for both single and mixed communities. The highest corrosion according to steel weight loss and pitting, was recorded in the tests with D. desulfuricans alone when incubated in a nominally aerobic environment. The multispecies microbial consortia yielded lower general corrosion rates compared to D. desulfuricans or for the uninoculated control.
    Electronic ISSN: 2624-5558
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...