ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Recombinant DNA  (3.203)
  • 04.06. Seismology
  • Creep observations and analysis
  • Triticum aestivum
  • Elsevier  (3.413)
  • Oxford University Press - The Royal Astronomical Society  (10)
  • EGU - Copernicus
  • Wiley
Sammlung
Schlagwörter
Verlag/Herausgeber
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2021-01-22
    Beschreibung: Spectral analysis has been applied to almost thou-sand seismic events recorded at Vesuvius volcano (Naples,southern Italy) in 2018 with the aim to test a new tool fora fast event classification. We computed two spectral pa-rameters, central frequency and shape factor, from the spec-tral moments of order 0, 1, and 2, for each event at sevenseismic stations taking the mean among the three compo-nents of ground motion. The analyzed events consist ofvolcano-tectonic earthquakes, low frequency events and un-classified events (landslides, rockfall, thunders, quarry blasts,etc.). Most of them are of low magnitude, and/or low maxi-mum signal amplitude, therefore the signal to noise ratio isvery different between the low noise summit stations andthe higher noise stations installed at low elevation aroundthe volcano. The results of our analysis show that volcano-tectonic earthquakes and low frequency events are easily dis-tinguishable through the spectral moments values, particu-larly at seismic stations closer to the epicenter. On the con-trary, unclassified events show the spectral parameters valuesdistributed in a broad range which overlap both the volcano-tectonic earthquakes and the low frequency events. Since thecomputation of spectral parameters is extremely easy and fastfor a detected event, it may become an effective tool for eventclassification in observatory practice.
    Beschreibung: Published
    Beschreibung: 67–74
    Beschreibung: 1SR TERREMOTI - Sorveglianza Sismica e Allerta Tsunami
    Beschreibung: N/A or not JCR
    Schlagwort(e): Vesuvius ; Spectral Analisys ; 04.06. Seismology
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    Elsevier
    Publikationsdatum: 2021-01-05
    Beschreibung: We use seismic data together with a subglacial bedrock relief from the BEDMAP2 database to obtain a new three- layer model of the consolidated (crystalline) crust of Antarctica that locally improves the global seismic crustal model CRUST1.0. We collect suitable data for constructing crustal layers, analyse them and build maps of the crustal layer thickness and seismic velocities. We use the subglacial relief according to a tectonic configuration and then interpolate data using a statistical kriging method. The P-wave velocity information from old seismic profiles have been supplemented with the new shear-wave velocity models. We adjust the thickness of crustal layers by multiplying a total crustal thickness by a percentage ratio of each individual layer at each point. Our re- sults reveal large variations in seismic velocities between different crustal blocks forming Antarctica. The most pronounced differences exist between East and West Antarctica. In East Antarctica, a high P-wave velocity (vP 〉 7 km/s) layer in the lower crust is absent. The P-wave velocity in the lower crust changes from 6.1 km/s beneath the Lambert Rift to 6.9 km/s beneath the Wilkes Basin. In West Antarctica, a thick mafic lower crust is characterized by large P-wave velocities, ranging from 7.0 km/s under the Ross Sea to 7.3 km/s under the Byrd Basin. In contrast, velocities in the lower crust beneath the Transantarctic and Ellsworth-Whitmore Mountains are ~6.8 km/s. The P-wave velocities in the upper crust in East Antarctica are within the range 5.5–6.4 km/s. The upper crust of West Antarctica is characterized by the P-wave velocities of 5.6–6.3 km/s. The P-wave veloc- ities in the middle crust vary within 5.9–6.6 km/s in East Antarctica and within 6.3–6.5 km/s in West Antarctica. A low-velocity layer (5.8–5.9 km/s) is detected at depth of ~20–25 km beneath the Princes Elizabeth Land.
    Beschreibung: Published
    Beschreibung: 1-18
    Beschreibung: 1T. Struttura della Terra
    Beschreibung: JCR Journal
    Schlagwort(e): Crustal structure ; Sediments ; Antarctica ; Gondwana ; 04.06. Seismology
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2020-12-18
    Beschreibung: Tectonic styles and distributions of nodal planes are an essential input for probabilistic seismic hazard assessment. As a part of a recent elaboration of a new seismic hazard model for Italy, we adopted a cascade criteria approach to parametrize the tectonic style of expected earthquake ruptures and their uncertainty in an area-based seismicity model. Using available or recomputed seismic moment tensors for relevant seismic events (Mw starting from 4.5), first arrival focal mechanisms for less recent earthquakes, and also geological data on past activated faults, we collected a database for the last ~ 100 yrs gathering a thousand of data all over the Italian peninsula and regions around it. The adopted procedure consists, in each seismic zone, of separating the available seismic moment tensors in the three main tectonic styles, making summation within each group, identifying possible nodal plane(s) taking into account the different percentages of tectonic styles and including, where necessary, total or partial random source contributions. Referring to the used area source model, for several seismic zones we obtained robust results, e.g. along the southern Apennines we expect future earthquakes to be mostly extensional, although in the outer part of the chain strike-slip events are possible. In the Northern part of the Apennines we also expect different tectonic styles for different hypocentral depths. In zones characterized by a low seismic moment release, the possible tectonic style of future earthquakes is less clear and it has been represented using different combination (total or partial) of random sources.
    Beschreibung: Published
    Beschreibung: 3577–3592
    Beschreibung: 6T. Studi di pericolosità sismica e da maremoto
    Beschreibung: JCR Journal
    Schlagwort(e): 04.06. Seismology
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2020-06-10
    Beschreibung: Understanding how long-term subduction dynamics relates to the short-term seismicity and crustal tec tonics is a challenging but crucial topic in seismotectonics. We attempt to address this issue by linking long-term geodynamic evolution with short-term seismogenic deformation in the Northern Apennines. This retreating subduction orogen displays tectonic and seismogenic behaviors on various spatiotemporal scales that also characterize other subduction zones in the Mediterranean area. We use visco-elasto-plastic seismo-thermo-mechanical (STM) modeling with a realistic 2D setup based on available geological and geophysical data. The subduction dynamics and seismicity are coupled in the numerical modeling, and driven only by buoyancy forces, i.e., slab pull. Our results suggest that lower crustal rheology and lithospheric mantle temperature modulate the crustal tectonics of the Northern Apennines, as inferred by previous studies. The observed spatial distribution of upper crustal tectonic regimes and surface displacements requires buoyant, highly ductile material in the subduction channel beneath the internal part of the orogen. This allows protrusion of the asthenosphere in the lower crust and lithospheric delamination associated with slab retreat. The resulting surface velocities and principal stress axes generally agree with present-day observations, suggesting that slab delamination and retreat can explain the dynamics of the orogen. Our simulations successfully reproduce the type and overall distribution of seismicity with thrust faulting events in the external part of the orogen and normal faulting in its internal part. Slab temperatures and lithospheric mantle stiffness affect the cumulative seismic moment release and spatial distribution of upper crustal earthquakes. The properties of deep, sub-crustal material are thus shown to influence upper crustal seismicity in an orogen driven by slab retreat, even though the upper crust is largely decoupled from the lithospheric mantle. Our simulations therefore highlight the effect of deep lower crustal rheologies, self-driven subduction dynamics and mantle properties in controlling shallow deformation and seismicity.
    Beschreibung: Published
    Beschreibung: 228481
    Beschreibung: 1T. Struttura della Terra
    Beschreibung: 2T. Deformazione crostale attiva
    Beschreibung: JCR Journal
    Schlagwort(e): Numerical modeling ; Geodynamics ; Seismotectonics orogen ; Delamination ; Northern Apennines ; 04.06. Seismology ; 04.03. Geodesy ; 05.01. Computational geophysics ; 04.07. Tectonophysics
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2020-03-03
    Beschreibung: The Mw = 7.3 earthquake near the Iran-Iraq border in west Iran (34.911°N, 45.959°E) occurred at 18:18:17 UTC (LT = UTC + 03:30), November 12, 2017 as the result of oblique-thrust faulting at mid-crustal depth (∼19 km). Median, Kalman filter and Neural Network, as three standard, classical and intelligent methods, have been implemented to investigate three months of GPS Total Electron Content (TEC) measurements and to detect the striking anomalous variations around the time and location of the mentioned earthquake. The first method detects unusual variations, 9 days before the event, between 21:00 and 22:00 UTC. The other two methods of Kalman filter and Neural Network detect another clear anomaly on 11 days preceding the earthquake at 16:00 UTC. These findings are two of the outstanding results of GPS-TEC precursor analysis. This paper also presents the results of Swarm satellites (Alpha, Bravo and Charlie) data analysis inside the Dobrovolsky area around the Iran earthquake epicenter during the period from 1 August to 30 November 2017. The time series and orbital analysis of six measured parameters including electron density, electron temperature, magnetic scalar and vectors (X, Y, Z) components indicate irregular variations between 8 and 11 days prior to the occurrence of the earthquake. Since the variations of the solar and geomagnetic indices follow a normal behaviour during the whole period of the observed ionospheric anomalies between 8 and 11 days before the earthquake, it can be concluded that multi-precursors analysis has an important role to acknowledge the seismo-LAI (Lithospheric-Atmospheric-Ionospheric) anomalies associated to strong earthquakes such as this case. Furthermore, some physical and chemical atmospheric parameters from a climatological database are investigated and some interesting anomalies above two standard deviations prior to the earthquake are found. This paper shows not only anomalies in atmosphere and ionosphere but also a contemporary analysis of different data sources to detect the possible Lithosphere Atmosphere Ionosphere Coupling (LAIC) effects.
    Beschreibung: ASI
    Beschreibung: Published
    Beschreibung: 143-158
    Beschreibung: 7T. Variazioni delle caratteristiche crostali e precursori sismici
    Beschreibung: JCR Journal
    Schlagwort(e): Earthquake precursors ; LAIC ; 04.06. Seismology
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2020-05-25
    Beschreibung: We explore the three‐dimensional structure of the 2016–2017 Central Italy sequence using ~34,000 ML ≥ 1.5 earthquakes that occurred between August 2016 and January 2018. We applied cross‐correlation and double‐difference location methods to waveform and parametric data routinely produced at the Italian National Institute of Geophysics and Volcanology. The sequence activated an 80 km long system of normal faults and near‐horizontal detachment faults through the MW 6.0 Amatrice, the MW 5.9 Visso, and the MW 6.5 Norcia mainshocks and aftershocks. The system has an average strike of N155°E and dips 38°–55° southwestward and is segmented into 15–30 km long faults individually activated by the cascade of MW ≥ 5.0 shocks. The two main normal fault segments, Mt. Vettore‐Mt. Bove to the North and Mt. della Laga to the South, are separated by an NNE‐SSW‐trending lateral ramp of the Sibillini thrust, a regional structure inherited from the previous compressional tectonic phase putting into contact diverse lithologies with different seismicity patterns. Space‐time reconstruction of the fault system supports a composite rupture scenario previously proposed for the MW 6.5 Norcia earthquake, where the rupture possibly propagated also along an oblique portion of the Sibillini thrust. This dissected set of normal fault segments is bounded at 8–10 km depth by a continuous 2 km thick seismicity layer of extensional nature slightly dipping eastward and interpreted as a shear zone. All three mainshocks in the sequence nucleated along the high‐angle planes at significant distance from the shear zone, thus complicating the interpretation of the mechanisms driving strain partitioning between these structures.
    Beschreibung: Published
    Beschreibung: e2019JB018440
    Beschreibung: 3T. Sorgente sismica
    Beschreibung: JCR Journal
    Schlagwort(e): normal fault ; shear zone ; fault segmentation ; apennines ; 04.06. Seismology
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2022-04-01
    Beschreibung: The Gutenberg–Richter law and the Omori law are both characterized by a scaling behavior. However, their relation is still an open question. Although several hypotheses have been formulated, a comprehen- sive geophysical mechanism is still missing to explain the observed variability of the scaling exponents b-value and p-value, e.g., correlating the seismic cycle to statistical seismology and tectonic processes. In this work, a model for describing the size-frequency scaling and the temporal evolution of seismicity is proposed starting from simple assumptions. The parameter describing how the number of earthquakes decreases after a major seismic event, p, turns out to be positively correlated to the exponent of the frequency-size distribution of seismicity, b, and related to tectonics. Our findings suggest that p ≈ 23 (b + 1). It implies that a relationship between fracturing regimes, “efficiency” of the seismic process, duration of the seismic sequences and geodynamic setting exists, with outstanding potential impact on seismic hazard. On the other hand, the Gutenberg–Richter law simply reflects the tendency of the segments of the Earth’s crust to reach mechanical stability via constrained energy-budget optimization. Each perturbation has a probability of growing an earthquake or not, depending on disorder within the fault zone and the energy accumulated in the adjoining volume, mainly controlling the evolution of seismic sequences. The results are consistent with the different energy sources related to the tectonic settings, i.e., gravitational in extensional regimes, having higher b and p values, and generating lower maximum magnitude earthquakes with respect to strike-slip and contractional settings, which are rather fueled by elastic energy, showing lower b and p values, and they may generate higher magnitude events.
    Beschreibung: Published
    Beschreibung: 117511
    Beschreibung: 3T. Fisica dei terremoti e Sorgente Sismica
    Beschreibung: JCR Journal
    Schlagwort(e): Gutenberg–Richter distribution ; fracturing and fault disorder ; Omori–Utsu law ; earthquake triggering ; tectonic setting ; 04.06. Seismology ; 04.07. Tectonophysics
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2021-09-13
    Beschreibung: Among the geologic data, trenching records of paleoearthquakes represent an important input for the development of seismic hazard evaluations and, specifically, for the characterization of fault rupture behavior in time. Based on the available paleoseismological trenching data in the Central Apennines we have compiled a new database of surface faulting earthquakes for 10 faults. The compilation contains 109 surface faulting events, occurred in the past ~28 kyr. Events younger than 7 kyr (59 dated events) are much better constrained and, therefore, are the basis for most of the analyses. Through a quantitative multistep method, we integrate paleoseismic trench data and treat them statistically, providing relevant improvement needed for trenching-based seismic hazard evaluation. Indeed, the combined analysis of trenching data from multiple sites on the same fault led to a reduction of the approximations and uncertainties in the rupture history of individual faults. The procedure was also applied on specific fault systems and indicated that the single faults may have occasionally ruptured simultaneously, or close in time, in the past. The whole set of age ranges was also statistically analyzed to produce regional earthquake scenarios for a period much longer than the millennial historical record. The built scenarios for the last 7 kyr define a regional mean inter event time (IET) of 230-240 yr, comparable with the average recurrence time of about 200 yr, considering the number of events in time. We also identify the possible occurrence of earthquake storms, i.e., concentration of surface faulting earthquakes in the region within time periods of 200 yr, suggesting a variability in time of the seismic behavior of the faults, with alternation of peaks of activity with more “quiet” periods. Even though the paleoseismic data from the Apennines contains uncertainties, the results appear quite stable and promising for future applications in earthquake-hazard assessment.
    Beschreibung: Published
    Beschreibung: 229016
    Beschreibung: 6T. Studi di pericolosità sismica e da maremoto
    Beschreibung: JCR Journal
    Schlagwort(e): Paleoseismology ; Statistical modeling ; Surface rupture scenarios ; Regional earthquake recurrence ; Earthquake storms ; Central Apennines ; 04.04. Geology ; 04.06. Seismology
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2022-03-16
    Beschreibung: Volcano seismology, while its value for surveillance of an active volcano is undebatable, is a very demanding field when it comes to station deployment, maintenance, and finally interpreting the measurements. Most valuable in the past was the deployment of arrays of sensors to evaluate the properties of the entire wavefield in order to classify, locate, and estimate the dominant mechanism of the corresponding sources. While very beneficial, an array of seismographs is very hard to maintain in a permanent installation at an active volcano. With the advent of new instrumentation based on fiber optic technology such as Distributed Acoustic Sensing (DAS) with fiber optic cables as well as Fiber-Optic Gyroscopes (FOG) the measurement of deformation and rotation, i.e., the gradient of the wavefield is feasible. The advantage of the FOG instrumentation with respect to DAS lies in the portability and ease of deployment, which is very similar to standard deployments of traditional seismometers. During a field campaign in summer 2018 we were able to install three FOGs together with classical broadband seismometers in close proximity to the active vents of Stromboli volcano (Italy). We show that with this new six-degrees-of-freedom (6DOF) measurement we are able to analyze the wavefield composition, a property normally reserved for array(s) of seismic sensors. As a first result, we can support earlier array-derived findings that a large portion of the wavefield at Stromboli volcano is formed by SV- and SH- type waves. We also present first locations of these signals facilitating the polarization properties of the combined measurement of gyroscopes and seismometers. They emphasize the benefit of recording wavefield gradients. In addition to these array-like results, the 6DOF recordings show a clear separation of at least three distinct groups of volcanic events of which two are already known and one represents a jetting event that appears nearly invisible for classical seismometers. However, rotational motions - or more general - gradients of the wavefield experience severe distortions by local velocity fluctuations and topography significantly complicating the application of 6DOF techniques at activate volcanoes.
    Beschreibung: Published
    Beschreibung: 107499
    Beschreibung: 3T. Fisica dei terremoti e Sorgente Sismica
    Beschreibung: JCR Journal
    Schlagwort(e): 6 DOF ; rotational seismology ; volcanoseismology ; Stromboli ; 04.06. Seismology
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2022-03-21
    Beschreibung: The 2016 Central Italy earthquake sequence is characterized by remarkable rupture complexity, including highly heterogeneous slip across multiple faults in an extensional tectonic regime. The dense coverage and high quality of geodetic and seismic data allow us to image intriguing details of the rupture kinematics of the largest earthquake of the sequence, the Mw 6.5 October 30th, 2016 Norcia earthquake, such as an energetically weak nucleation phase. Several kinematic models suggest multiple fault planes rupturing simultaneously, however, the mechanical viability of such models is not guaranteed. Using 3D dynamic rupture and seismic wave propagation simulations accounting for two fault planes, we constrain “families” of spontaneous dynamic models informed by a high-resolution kinematic rupture model of the earthquake. These families differ in their parameterization of initial heterogeneous shear stress and strength in the framework of linear slip weakening friction. First, we dynamically validate the kinematically inferred two-fault geometry and rake inferences with models based on only depth-dependent stress and constant friction coefficients. Then, more complex models with spatially heterogeneous dynamic parameters allow us to retrieve slip distributions similar to the target kinematic model and yield good agreement with seismic and geodetic observations. We discuss the consistency of the assumed constant or heterogeneous static and dynamic friction coefficients with mechanical properties of rocks at 3-10 km depth characterizing the Italian Central Apennines and their local geological and lithological implications. We suggest that suites of well-fitting dynamic rupture models belonging to the same family generally exist and can be derived by exploiting the trade-offs between dynamic parameters. Our approach will be applicable to validate the viability of kinematic models and classify spontaneous dynamic rupture scenarios that match seismic and geodetic observations as well as geological constraints.
    Beschreibung: T.U., T., D.L., and A.-A. Gabriel are supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (TEAR, agreement No. 852992 and ChEESE, grant no. 823844), the German Research Foundation (DFG project grants no. GA 2465/2-1 and GA 2465/3-1) and by KAUST-CRG (grant no. ORS-2017-CRG6 3389.02). E.T. was supported by Progetti di Ricerca Sapienza (RM120172A2EAC019). Computing resources were provided by the Leibniz Supercomputing Centre (LRZ, project no. pr63qo on SuperMUC-NG).
    Beschreibung: Published
    Beschreibung: 117237
    Beschreibung: 3T. Fisica dei terremoti e Sorgente Sismica
    Beschreibung: JCR Journal
    Schlagwort(e): earthquake source ; dynamic rupture ; high-performance computing ; frictional heterogeneity ; 04.06. Seismology ; 05.05. Mathematical geophysics
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...