ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04.06. Seismology  (30)
  • Creep observations and analysis
  • Drosophila
  • Triticum aestivum
  • stability
  • Oxford University Press - The Royal Astronomical Society  (10)
  • Wiley-AGU  (7)
  • Egu-Copernicus  (4)
  • EGU - Copernicus
  • Wiley
  • Wiley Agu
  • 1
    Publication Date: 2021-01-22
    Description: Spectral analysis has been applied to almost thou-sand seismic events recorded at Vesuvius volcano (Naples,southern Italy) in 2018 with the aim to test a new tool fora fast event classification. We computed two spectral pa-rameters, central frequency and shape factor, from the spec-tral moments of order 0, 1, and 2, for each event at sevenseismic stations taking the mean among the three compo-nents of ground motion. The analyzed events consist ofvolcano-tectonic earthquakes, low frequency events and un-classified events (landslides, rockfall, thunders, quarry blasts,etc.). Most of them are of low magnitude, and/or low maxi-mum signal amplitude, therefore the signal to noise ratio isvery different between the low noise summit stations andthe higher noise stations installed at low elevation aroundthe volcano. The results of our analysis show that volcano-tectonic earthquakes and low frequency events are easily dis-tinguishable through the spectral moments values, particu-larly at seismic stations closer to the epicenter. On the con-trary, unclassified events show the spectral parameters valuesdistributed in a broad range which overlap both the volcano-tectonic earthquakes and the low frequency events. Since thecomputation of spectral parameters is extremely easy and fastfor a detected event, it may become an effective tool for eventclassification in observatory practice.
    Description: Published
    Description: 67–74
    Description: 1SR TERREMOTI - Sorveglianza Sismica e Allerta Tsunami
    Description: N/A or not JCR
    Keywords: Vesuvius ; Spectral Analisys ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-01-11
    Description: The Alto Tiberina normal fault (ATF) in central Italy is a 50-km-long crustal structure that dips at a low angle (15–20◦). Events on the fault plane are about 10 times less frequent than those located in its shallower syn- and antithetic hanging-wall splays. To enhance ATF catalog and achieve a better understanding of the degree of coupling in the fault system, we apply a template matching technique in the 2010–2014 time window.We augment by a factor 5 the detections and decrease the completeness magnitude to negative values. Contrary to what previously observed on ATF, we highlight intermittent seismic activity and long-lasting clusters interacting with sequences on the shallower splays. One of these episodes of prolonged seismic activity, detected at the end of 2013 on a 30-km-long ATF segment, suggest the ATF active role during an aseismic transient unraveled by geodetic data.
    Description: Published
    Description: e2020GL089039
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-05-12
    Description: Speleoseismological research carried out in the Central Apennines (Italy) contributed to understanding the behavior of active normal faults that are potentially able to generate Mw 6.5–7 earthquakes documented by paleoseismology and by historical and instrumental seismology. Radiometric (U‐Th, AMS‐14C, and bulk‐14C) dating of predeformation and postdeformation layers from collapsed speleothems found in Cola Cave indicates that at least three speleoseismic events occurred in the cave during the last ~12.5 ka and were ostensibly caused by seismic slip on one or more of the active faults located in the region surrounding the cave. We modeled the collapse of a tall (173 cm high) stalagmite to find a causative association of this event with one among the potential seismogenic sources. We defined the uniform hazard spectrum (UHS) for each seismogenic source at the site, and we used the calculated spectra in a deterministic approach to study the behavior of the speleothem, through a numerical finite element modeling (FEM). Although our analysis suggests the “Liri” fault as the most likely source responsible for the ground shaking recorded in the cave, the “Fucino” fault system, responsible for a Mw 7 earthquake in 1915, cannot be excluded as a potential source of speleoseismic damage. Results of this work provide new constraints on the seismotectonic history of this sector of Central Apennines and highlight the performance of integrated speleoseismological, seismic hazard, and numerical studies.
    Description: Published
    Description: e2020TC006289
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: JCR Journal
    Keywords: Speleoseismology ; Central Apennines ; seismic hazard ; finite element modeling ; 04.04. Geology ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-01-05
    Description: In December 2018, Etna volcano experienced one of the largest episodes of unrest since the installation of geophysical monitoring networks in 1970. The unrest culminated in a short eruption with a small volume of lava erupted, a significant seismic crisis and deformation of the entire volcanic edifice of magnitude never recorded before at Mount Etna. Here we describe the evolution of the 2018 eruptive cycle from the analysis of seismic and geodetic data collected in the months preceding, during, and following the intrusion. We model the space‐time evolution of high‐rate deformation data starting from the active source previously identified from deformation data and the propagation of seismicity in a 3‐D velocity model. The intrusion model suggests emplacement of two dikes: a smaller dike located beneath the eruptive fissure and a second, deeper dike between 1 and 5 kmbelow sea level that opened ~2 m. The rise and eruption of magma from the shallower dike did not interrupt the pressurization of a long‐lasting deeper reservoir (~6 km) that induced continuous inflation and intense deformation of the eastern flank. Shortly after the intrusion, on 26 December 2018, aML4.8 earthquake occurred near Pisano, destroying buildings and roads in two villages. We propose a time‐dependent intrusion model that supports the hypothesis of the inflation inducing flank deformation and that this process has been active since September 2018.
    Description: Published
    Description: e2020GC009218
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Keywords: 2018 Mount Etna Eruption, time‐dependent intrusion model, modelling of high‐rate deformations ; 04.08. Volcanology ; 04.03. Geodesy ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-12-18
    Description: Tectonic styles and distributions of nodal planes are an essential input for probabilistic seismic hazard assessment. As a part of a recent elaboration of a new seismic hazard model for Italy, we adopted a cascade criteria approach to parametrize the tectonic style of expected earthquake ruptures and their uncertainty in an area-based seismicity model. Using available or recomputed seismic moment tensors for relevant seismic events (Mw starting from 4.5), first arrival focal mechanisms for less recent earthquakes, and also geological data on past activated faults, we collected a database for the last ~ 100 yrs gathering a thousand of data all over the Italian peninsula and regions around it. The adopted procedure consists, in each seismic zone, of separating the available seismic moment tensors in the three main tectonic styles, making summation within each group, identifying possible nodal plane(s) taking into account the different percentages of tectonic styles and including, where necessary, total or partial random source contributions. Referring to the used area source model, for several seismic zones we obtained robust results, e.g. along the southern Apennines we expect future earthquakes to be mostly extensional, although in the outer part of the chain strike-slip events are possible. In the Northern part of the Apennines we also expect different tectonic styles for different hypocentral depths. In zones characterized by a low seismic moment release, the possible tectonic style of future earthquakes is less clear and it has been represented using different combination (total or partial) of random sources.
    Description: Published
    Description: 3577–3592
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: JCR Journal
    Keywords: 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-05-25
    Description: We explore the three‐dimensional structure of the 2016–2017 Central Italy sequence using ~34,000 ML ≥ 1.5 earthquakes that occurred between August 2016 and January 2018. We applied cross‐correlation and double‐difference location methods to waveform and parametric data routinely produced at the Italian National Institute of Geophysics and Volcanology. The sequence activated an 80 km long system of normal faults and near‐horizontal detachment faults through the MW 6.0 Amatrice, the MW 5.9 Visso, and the MW 6.5 Norcia mainshocks and aftershocks. The system has an average strike of N155°E and dips 38°–55° southwestward and is segmented into 15–30 km long faults individually activated by the cascade of MW ≥ 5.0 shocks. The two main normal fault segments, Mt. Vettore‐Mt. Bove to the North and Mt. della Laga to the South, are separated by an NNE‐SSW‐trending lateral ramp of the Sibillini thrust, a regional structure inherited from the previous compressional tectonic phase putting into contact diverse lithologies with different seismicity patterns. Space‐time reconstruction of the fault system supports a composite rupture scenario previously proposed for the MW 6.5 Norcia earthquake, where the rupture possibly propagated also along an oblique portion of the Sibillini thrust. This dissected set of normal fault segments is bounded at 8–10 km depth by a continuous 2 km thick seismicity layer of extensional nature slightly dipping eastward and interpreted as a shear zone. All three mainshocks in the sequence nucleated along the high‐angle planes at significant distance from the shear zone, thus complicating the interpretation of the mechanisms driving strain partitioning between these structures.
    Description: Published
    Description: e2019JB018440
    Description: 3T. Sorgente sismica
    Description: JCR Journal
    Keywords: normal fault ; shear zone ; fault segmentation ; apennines ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-12-15
    Description: We investigated the seismic fault structure and the rupture characteristics of the MW 6.6, 2 May 2020, Cretan Passage earthquake through tsunami data inverse modelling. Our results suggest a shallow crustal event with a reverse mechanism within the accretionary wedge rather than on the Hellenic Arc subduction interface. The study identifies two possible ruptures: a steeply sloping reverse splay fault and a back-thrust rupture dipping south, with a more prominent dip angle.
    Description: We present a source solution for the tsunami generated by the Mw 6.6 earthquake that occurred on 2 May 2020, about 80 km offshore south of Crete, in the Cretan Passage, on the shallow portion of the Hellenic Arc subduction zone (HASZ). The tide gauges recorded this local tsunami on the southern coast of Crete and Kasos island. We used Crete tsunami observations to constrain the geometry and orientation of the causative fault, the rupture mechanism, and the slip amount. We first modelled an ensemble of synthetic tsunami waveforms at the tide gauge locations, produced for a range of earthquake parameter values as constrained by some of the available moment tensor solutions. We allow for both a splay and a back-thrust fault, corresponding to the two nodal planes of the moment tensor solution. We then measured the misfit between the synthetic and the Ierapetra observed marigram for each source parameter set. Our results identify the shallow, steeply dipping back-thrust fault as the one producing the lowest misfit to the tsunami data. However, a rupture on a lower angle fault, possibly a splay fault, with a sinistral component due to the oblique convergence on this segment of the HASZ, cannot be completely ruled out. This earthquake reminds us that the uncertainty regarding potential earthquake mechanisms at a specific location remains quite significant. In this case, for example, it is not possible to anticipate if the next event will be one occurring on the subduction interface, on a splay fault, or on a back-thrust, which seems the most likely for the event under investigation. This circumstance bears important consequences because back-thrust and splay faults might enhance the tsunamigenic potential with respect to the subduction interface due to their steeper dip. Then, these results are relevant for tsunami forecasting in the framework of both the long-term hazard assessment and the early warning systems.
    Description: Published
    Description: 3713–3730
    Description: 8T. Sismologia in tempo reale e Early Warning Sismico e da Tsunami
    Description: JCR Journal
    Keywords: Tsunami, Mediterranean, Early Warning ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-02-11
    Description: Seismic event detection and phase picking are the base of many seismological workflows. In recent years, several publications demonstrated that deep learning approaches significantly outperform classical approaches, achieving human-like performance under certain circumstances. However, as studies differ in the datasets and evaluation tasks, it is unclear how the different approaches compare to each other. Furthermore, there are no systematic studies about model performance in cross-domain scenarios, that is, when applied to data with different characteristics. Here, we address these questions by conducting a large-scale benchmark. We compare six previously published deep learning models on eight data sets covering local to teleseismic distances and on three tasks: event detection, phase identification and onset time picking. Furthermore, we compare the results to a classical Baer-Kradolfer picker. Overall, we observe the best performance for EQTransformer, GPD and PhaseNet, with a small advantage for EQTransformer on teleseismic data. Furthermore, we conduct a cross-domain study, analyzing model performance on data sets they were not trained on. We show that trained models can be transferred between regions with only mild performance degradation, but models trained on regional data do not transfer well to teleseismic data. As deep learning for detection and picking is a rapidly evolving field, we ensured extensibility of our benchmark by building our code on standardized frameworks and making it openly accessible. This allows model developers to easily evaluate new models or performance on new data sets. Furthermore, we make all trained models available through the SeisBench framework, giving end-users an easy way to apply these models.
    Description: This work was supported by the Helmholtz Association Initiative and Networking Fund on the HAICORE@KIT partition. J. Münchmeyer acknowledges the support of the Helmholtz Einstein International Berlin Research School in Data Science (HEIBRiDS). The authors thank the Impuls-und Vernetzungsfonds of the HGF to support the REPORT-DL project under the grant agreement ZT-I-PF-5-53. This work was also partially supported by the project INGV Pianeta Dinamico 2021 Tema 8 SOME (CUP D53J1900017001) funded by Italian Ministry of University and Research “Fondo finalizzato al rilancio degli investimenti delle amministrazioni centrali dello Stato e allo sviluppo del Paese, legge 145/2018.” Open access funding enabled and organized by Projekt DEAL.
    Description: Published
    Description: e2021JB023499
    Description: 3T. Fisica dei terremoti e Sorgente Sismica
    Description: JCR Journal
    Keywords: seismic phase recognition ; deep learnig ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-11-17
    Description: The geographic distribution of earthquake effects quantified in terms of macroseismic intensities, the so-called macroseismic field, provides basic information for several applications including source characterization of pre-instrumental earthquakes and risk analysis. Macroseismic fields of past earthquakes as inferred from historical documentation may present spatial gaps, due to the incompleteness of the available information. We present a probabilistic approach aimed at integrating incomplete intensity distributions by considering the Bayesian combination of estimates provided by intensity prediction equations (IPEs) and data documented at nearby localities, accounting for the relevant uncertainties and the discrete and ordinal nature of intensity values. The performance of the proposed methodology is tested at 28 Italian localities with long and rich seismic histories and for two well-known strong earthquakes (i.e., 1980 southern Italy and 2009 central Italy events). A possible application of the approach is also illustrated relative to a 16th-century earthquake in the northern Apennines.
    Description: Published
    Description: 2299–2311
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: JCR Journal
    Keywords: 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-12-23
    Description: The SW Iberian margin is one of the most seismogenic and tsunamigenic areas in W-Europe, where large historical and instrumental destructive events occurred. To evaluate the sensitivity of the tsunami impact on the coast of SW Iberia and NW Morocco to the fault geometry and slip distribution for local earthquakes, we carried out a set of tsunami simulations considering some of the main known active crustal faults in the region: the Gorringe Bank (GBF), Marquês de Pombal (MPF), Horseshoe (HF), North Coral Patch (NCPF) and South Coral Patch (SCPF) thrust faults, and the Lineament South strike-slip fault. We started by considering for all of them relatively simple planar faults featuring with uniform slip distribution; we then used a more complex 3D fault geometry for the faults constrained with a large 2D multichannel seismic dataset (MPF, HF, NCPF, and SCPF); and finally, we used various heterogeneous slip distributions for the HF. Our results show that using more complex 3D fault geometries and slip distributions, the peak wave height at the coastline can double compared to simpler tsunami source scenarios from planar fault geometries. Existing tsunami hazard models in the region use homogeneous slip distributions on planar faults as initial conditions for tsunami simulations and therefore underestimate tsunami hazard. Complex 3D fault geometries and non-uniform slip distribution should be considered in future tsunami hazard updates. The tsunami simulations also support the finding that submarine canyons attenuate the wave height reaching the coastline, while submarine ridges and shallow shelves have the opposite effect.
    Description: Published
    Description: e2021JB022127
    Description: 2T. Deformazione crostale attiva
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: 2TR. Ricostruzione e modellazione della struttura crostale
    Description: 2IT. Laboratori analitici e sperimentali
    Description: JCR Journal
    Keywords: tsunami ; earthquake ; complex fault geometry ; heterogeneous slip distribution ; tsunami numerical modeling ; seismic and tsunami hazard ; 04.04. Geology ; 04.06. Seismology ; 05.08. Risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...