ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (1,424)
  • Copernicus Publications (EGU)  (1,090)
  • Inter Research  (334)
  • 101
    Publication Date: 2021-02-08
    Description: We evaluated NOVAC (Network for Observation of Volcanic and Atmospheric Change) gas emission data from the 2015 eruption of Cotopaxi volcano (Ecuador) for BrO/SO2 molar ratios. Statistical analysis of the data revealed a conspicuous periodic pattern with a periodicity of about two weeks in a three month time series. While the time series is too short to rule out a chance recurrence of transient geological or meteorological events as a possible origin for the periodic signal, we nevertheless took this observation as a motivation to examine the influence of natural forcings with periodicities of around two weeks on volcanic gas emissions. One strong aspirant with such a periodicity are the Earth tides, which are thus central in this study. We present the BrO/SO2 data, analyse the reliability of the periodic signal, discuss a possible meteorological or eruption-induced origin of this signal, and compare the signal with the theoretical ground surface displacement pattern caused by the Earth tides. Central result is the observation of a significant correlation between the BrO/SO2 molar ratios with the North-South and vertical components of the calculated tide-induced surface displacement with correlation coefficients of 47 % and 36 %, respectively. From all other investigated parameters, only the correlation between the BrO/SO2 molar ratios and the relative humidity in the local atmosphere resulted in a comparable correlation coefficient of about 33 %.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 102
    Publication Date: 2021-03-04
    Description: Numerous studies have been conducted on the effect of ocean acidification on calcifiers inhabiting nearshore benthic habitats, such as the blue mussel Mytilus edulis. The majority of these experiments was performed under stable CO2 partial pressure (pCO2), carbonate chemistry and oxygen (O2) levels, reflecting present or expected future open ocean conditions. Consequently, levels and variations occurring in coastal habitats, due to biotic and abiotic processes, were mostly neglected, even though these variations largely override global long-term trends. To highlight this hiatus and guide future research, state-of-the-art technologies were deployed to obtain high-resolution time series of pCO2 and [O2] on a mussel patch within a Zostera marina seagrass bed, in Kiel Bay (western Baltic Sea) in August and September 2013. Combining the in situ data with results of discrete sample measurements, a full seawater carbonate chemistry was derived using statistical models. An average pCO2 more than 50 % (~ 640 µatm) higher than current atmospheric levels was found right above the mussel patch. Diel amplitudes of pCO2 were large: 765 ± 310 (mean ± SD). Corrosive conditions for calcium carbonates (Ωarag and Ωcalc 〈 1) centered on sunrise were found, but the investigated habitat never experienced hypoxia throughout the study period. It is estimated that mussels experience conditions limiting calcification for 12–15 h per day, based on a regional calcium carbonate concentration physiological threshold. Our findings call for more extensive experiments on the impact of fluctuating corrosive conditions on mussels. We also stress the complexity of the interpretation of carbonate chemistry time series data in such dynamic coastal environments.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 103
    Publication Date: 2021-02-08
    Description: Atmospheric carbon dioxide (CO2) levels continue to rise, increasing the risk of severe impacts on the Earth system, and on the ecosystem services that it provides. Artificial ocean alkalinization (AOA) is capable of reducing atmospheric CO2 concentrations and surface warming and addressing ocean acidification. Here, we simulate global and regional responses to alkalinity (ALK) addition (0.25 PmolALK yr−1) over the period 2020–2100 using the CSIRO-Mk3L-COAL Earth System Model, under high (Representative Concentration Pathway 8.5; RCP8.5) and low (RCP2.6) emissions. While regionally there are large changes in alkalinity associated with locations of AOA, globally we see only a very weak dependence on where and when AOA is applied. On a global scale, while we see that under RCP2.6 the carbon uptake associated with AOA is only ∼ 60 % of the total, under RCP8.5 the relative changes in temperature are larger, as are the changes in pH (140 %) and aragonite saturation state (170 %). The simulations reveal AOA is more effective under lower emissions, therefore the higher the emissions the more AOA is required to achieve the same reduction in global warming and ocean acidification. Finally, our simulated AOA for 2020–2100 in the RCP2.6 scenario is capable of offsetting warming and ameliorating ocean acidification increases at the global scale, but with highly variable regional responses.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 104
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Earth System Dynamics, 9 (1). pp. 15-31.
    Publication Date: 2021-03-26
    Description: This study introduces the Systematic Correlation Matrix Evaluation (SCoMaE) method, a bottom–up approach which combines expert judgment and statistical information to systematically select transparent, nonredundant indicators for a comprehensive assessment of the state of the Earth system. The methods consists of two basic steps: (1) the calculation of a correlation matrix among variables relevant for a given research question and (2) the systematic evaluation of the matrix, to identify clusters of variables with similar behavior and respective mutually independent indicators. Optional further analysis steps include (3) the interpretation of the identified clusters, enabling a learning effect from the selection of indicators, (4) testing the robustness of identified clusters with respect to changes in forcing or boundary conditions, (5) enabling a comparative assessment of varying scenarios by constructing and evaluating a common correlation matrix, and (6) the inclusion of expert judgment, for example, to prescribe indicators, to allow for considerations other than statistical consistency. The example application of the SCoMaE method to Earth system model output forced by different CO2 emission scenarios reveals the necessity of reevaluating indicators identified in a historical scenario simulation for an accurate assessment of an intermediate–high, as well as a business-as-usual, climate change scenario simulation. This necessity arises from changes in prevailing correlations in the Earth system under varying climate forcing. For a comparative assessment of the three climate change scenarios, we construct and evaluate a common correlation matrix, in which we identify robust correlations between variables across the three considered scenarios.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 105
    Publication Date: 2020-02-06
    Description: Nitrification, the step-wise oxidation of ammonium to nitrite and nitrate, is important in the marine environment because it produces nitrate, the most abundant marine dissolved inorganic nitrogen (DIN) component and N-source for phytoplankton and microbes. This study focused on the second step of nitrification, which is carried out by a distinct group of organisms, nitrite-oxidizing bacteria (NOB). The growth of NOB is characterized by nitrite oxidation kinetics, which we investigated for 4 pure cultures of marine NOB (Nitrospina watsonii 347, Nitrospira sp. Ecomares 2.1, Nitrococcus mobilis 231, and Nitrobacter sp. 311). We further compared the kinetics to those of non-marine species because substrate concentrations in marine environments are comparatively low, which likely influences kinetics and highlights the importance of this study. We also determined the isotope effect during nitrite oxidation of a pure culture of Nitrospina (Nitrospina watsonii 347) belonging to one of the most abundant marine NOB genera, and for a Nitrospira strain (Nitrospira sp. Ecomares 2.1). The enzyme kinetics of nitrite oxidation, described by Michaelis-Menten kinetics, of 4 marine genera are rather narrow and fall in the low end of half-saturation constant (Km) values reported so far, which span over 3 orders of magnitude between 9 and 〉1000 µM NO2-. Nitrospina has the lowest Km (19 µM NO2-), followed by Nitrobacter (28 µM NO2-), Nitrospira (54 µM NO2-), and Nitrococcus (120 µM NO2-). The isotope effects during nitrite oxidation by Nitrospina watsonii 347 and Nitrospira sp. Ecomares 2.1 were 9.7 ± 0.8 and 10.2 ± 0.9‰, respectively. This confirms the inverse isotope effect of NOB described in other studies; however, it is at the lower end of reported isotope effects. We speculate that differences in isotope effects reflect distinct nitrite oxidoreductase (NXR) enzyme orientations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 106
    Publication Date: 2021-03-18
    Description: Magmatic sill intrusions into organic-rich sediments cause the release of thermogenic CH4 and CO2. Pore fluids from the Guaymas Basin (Gulf of California), a sedimentary basin with recent magmatic activity, were investigated to constrain the link between sill intrusions and fluid seepage as well as the timing of sill-induced hydrothermal activity. Sampling sites were close to a hydrothermal vent field at the northern rift axis and at cold seeps located up to 30km away from the rift. Pore fluids close to the active hydrothermal vent field showed a slight imprint by hydrothermal fluids and indicated a shallow circulation system transporting seawater to the hydrothermal catchment area. Geochemical data of pore fluids at cold seeps showed a mainly ambient diagenetic fluid composition without any imprint related to high temperature processes at greater depth. Seep communities at the seafloor were mainly sustained by microbial methane, which rose along pathways formed earlier by hydrothermal activity, driving the anaerobic oxidation of methane (AOM) and the formation of authigenic carbonates. Overall, our data from the cold seep sites suggest that at present, sill-induced hydrothermalism is not active away from the ridge axis, and the vigorous venting of hydrothermal fluids is restricted to the ridge axis. Using the sediment thickness above extinct conduits and carbonate dating, we calculated that deep fluid and thermogenic gas flow ceased 28 to 7kyr ago. These findings imply a short lifetime of hydrothermal systems, limiting the time of unhindered carbon release as suggested in previous modeling studies. Consequently, activation and deactivation mechanisms of these systems need to be better constrained for the use in climate modeling approaches.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 107
    Publication Date: 2018-03-05
    Description: Organic material entering the oceanic mesopelagic zone may either reenter the euphotic zone or settle into deeper waters. Therefore it is important to know about mechanisms and efficiency of substrate conversion in this water layer. Bacterial biomass, bacteria secondary production (BSP). extra­cellular peptidase activity (EPA) and particulate organic nitrogen (PON) were measured in vertical pro­files of the North Atlantic (46° N 18° W; 57° N 23° W) during the Joint Global Ocean Flux Study (JGOFS) cruise in May 1989. The magnitude of these parameters decreased differently with depth. The strong­est decreases were observed for bacterial production (3H-thymidine incorporation) and peptide turn­over (using the substrate analog leucine-methylcoumarinylamide). Bacterial biomass and peptidase potential activity were not reduced as much in the mesopelagic zone. Peptidase potential per unit cell biomass of mesopelagic bacteria was 2 to 3 times higher than that of bacteria in surface water. Nevertheless bacterial growth at depth was slow, due to slow actual hydrolysis. Values of theoretical PON hydrolysis were calculated from PON measurements and protein hydrolysis rates. These corre­sponded well to bacterial production rates, and the degree of correspondence increased from a factor of 0.63 (PON hydrolysis/ESP) in the mixed surface layer to 0.87 in the mesopelagic zone. Thus we hypothesized an effective coupling between particle hydrolysis and uptake of hydrolysate by bacteria, which depletes the deeper water of easily degradable substrates as hydrolysates usually are. The low enzymatic PON turnover rate of 0.04 d- 1 in the subeuphotic zone suggests that residence time of parti­cles within a depth stratum may be important for its contribution to export. storage and recycling of organic matter.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 108
    Publication Date: 2018-03-07
    Description: Laboratory experiments were carried out to investigate the effect of protozoan, copepod and combined grazing on Phaeocystis biomass. Phaeocystis cf. globosa single cells were offered to 3 different protozoan species, to the calanoid copepod Temora longicornis, as well as to mixtures of both grazer types. The heterotrophic dinoflagellate Oxyrrhis marina and the oligotrich ciliate Strombidinopsis acuminatum ingested Phaeocystis at much higher rates than did the copepod. Nevertheless, protozoan growth and ingestion rates were submaximal, indicating Phaeocystis to be suboptimal food. The oligotrich ciliate Strombidium elegans did not feed on Phaeocystis. In grazing experiments with mixtures of both predator types, the decline of Phaeocystis single cells could be explained by protozoan grazing alone, implying no grazing by the copepods on Phaeocystis. Instead, copepods ingested the protozoans at high rates. Predation on 0. marina and S. acuminatum by T. longicornis resulted in a reduction of the total grazing pressure on Phaeocystis of 21 and 67 % respectively. We conclude that mesozooplankton predation on herbivorous ciliates and heterotrophic dinoflagellates, which consumed Phaeocystis cells, can considerably reduce the overall grazing pressure and may enhance Phaeocystis bloomng.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 109
    Publication Date: 2018-06-01
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 110
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 105 . pp. 291-299.
    Publication Date: 2018-06-18
    Description: The degradatlon of phytodetritus In the deep sea was studied in sediment samples of the NE Atlantic In spring and summer 1992 using I4C-labelled algal cells (Anacystis sp , Cyanophyceae) fed to the benthic population in ship-board experiments and measuring the liberation of labelled I4CO2 over time. The mineralization process showed a 2-step behaviour with an initial rapic rate whhich later slowed down, indicating the initial attack of easily degradable material of the complex food and the later utilization of less labile matter. The profile of degradation activity with sedimend depth showed no clear vertical gradient in March, but in August the activity in the top horizon increased by a factor of 6.1 to 7.8, which was coherent with increased bacterial numbers or biomass (factor of 1.3 to 1.7), respectively, and might be caused by the seasonal input of phytodetritus to the deep-sea bottom. The degradation measured was positively influenced by elevated incubation pressure mostly in summer, indicating that the summer stimulation of microbial activity in 1992 was based on the metabolic activation of the indigenous benthic community while surface-derived organisms attached to sedimented particles were of lesser importance whith respect to consumption of phytodetritus. Several aspects on quality of phytodetritus for nutrition of the deep-sea benthos, seasonality of detritus degradation, and influence of pressure on microbial activity are discussed
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 111
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 6 (4). pp. 535-544.
    Publication Date: 2019-09-23
    Description: The relative importance of potential source and sink terms for bromoform (CHBr3) in the tropical Atlantic Ocean is investigated with a coupled physical-biogeochemical water column model. Bromoform production is either assumed to be linked to primary production or to phytoplankton losses; bromoform decay is treated as light dependent (photolysis), and in addition either vertically uniform, proportional to remineralisation or to nitrification. All experiments lead to the observed subsurface maximum of bromoform, corresponding to the subsurface phytoplankton biomass maximum. In the surface mixed layer, the concentration is set by entrainment from below, photolysis in the upper few meters and the outgassing to the atmosphere. The assumed bromoform production mechanism has only minor effects on the solution, but the various loss terms lead to significantly different bromoform concentrations below 200 m depth. The best agreement with observations is obtained when the bromoform decay is coupled to nitrification (parameterised by an inverse proportionality to the light field). Our model results reveal a pronounced seasonal cycle of bromoform outgassing, with a minimum in summer and a maximum in early winter, when the deepening surface mixed layer reaches down into the bromoform production layer
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 112
    Publication Date: 2019-09-23
    Description: Previous studies have suggested that phytoplankton play an important role in the biogeochemical cycling of iodine, due to the appearance of iodide in the euphotic zone. Changes in the speciation of iodine over the course of the growth cycle were examined in culture media for a variety of phytoplankton taxa (diatoms, dinoflagellates and prymnesiophytes). All species tested showed the apparent ability to reduce iodate to iodide, though production rates varied considerably between species (0.01 to 0.26 nmol l–1 µg–1 chl a d–1), with Eucampia antarctica the least and Pseudo-nitzschia turgiduloides the most efficient iodide producers. Production was found to be species specific and was not related to biomass (indicated by e.g. cell size, cell volume, or chl a content). In all species, except for the mixotrophic dinoflagellate Scrippsiella trochoidea, iodide production commenced in the stationary growth phase and peaked in the senescent phase of the algae, indicating that iodide production is connected to cell senescence. This suggests that iodate reduction results from increased cell permeability, which we hypothesize is due to subsequent reactions of iodate with reduced sulphur species exuded from the cell. A shift from senescence back to the exponential growth phase resulted in a decline in iodide and indicated that phytoplankton-mediated oxidation of iodide to iodate was likely to be occurring. Iodide production could not be observed in healthy cells kept in the dark for short periods. Bacterial processes appeared to play only a minor role in the reduction of iodate to iodide.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 113
    Publication Date: 2019-09-23
    Description: Effects of elevated temperature on the formation and subsequent degradation of diatom aggregates were studied in a laboratory experiment with a natural plankton community from the Kiel Fjord (Baltic Sea). Aggregates were derived from diatom blooms that developed in indoor mesocosms at 2.5 and 8.5 degrees C, corresponding to the 1993 to 2002 mean winter in situ temperature of the Western Baltic Sea and the projected sea surface temperature during winter in 2100, respectively. Formation and degradation of diatom aggregates at these 2 temperatures in the dark were promoted with roller tanks over a period of 11 d. Comparison of the 2 temperature settings revealed an enhanced aggregation potential of diatom cells at elevated temperature, which was likely induced by an increased concentration of transparent exopolymer particles (TEP). The enhanced aggregation potential led to a significantly higher proportion of particulate organic matter in aggregates at 8.5 degrees C. Moreover, the elevated temperature favoured the growth of bacteria, bacterial biomass production, and the activities of sugar- and protein-degrading extracellular enzymes in aggregates. Stimulating effects of rising temperature on growth and metabolism of the bacterial community resulted in an earlier onset of aggregate degradation and silica dissolution. Remineralization of carbon in aggregates at elevated temperature was partially compensated by the formation of carbon-rich TEP during dark incubation. Hence, our results suggest that increasing temperature will affect both formation and degradation of diatom aggregates. We conclude that the vertical export of organic matter through aggregates may change in the future, depending on the magnitude and vertical depth penetration of warming in the ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 114
    Publication Date: 2021-04-21
    Description: The Mediterranean Sea is a semi-enclosed sea characterized by high salinities, temperatures and densities. The net evaporation exceeds the precipitation, driving an anti-estuarine circulation through the Strait of Gibraltar, contributing to very low nutrient concentrations. The Mediterranean Sea has an active overturning circulation, one shallow cell that communicates directly with the Atlantic Ocean, and two deep overturning cells, one in each of the two main basins. It is surrounded by populated areas and is thus sensitive to anthropogenic forcing. Several dramatic changes in the oceanographic and biogeochemical conditions have been observed during the past several decades, emphasizing the need to better monitor and understand the changing conditions and their drivers. During 2011 three oceanographic cruises were conducted in a coordinated fashion in order to produce baseline data of important physical and biogeochemical parameters that can be compared to historic data and be used as reference for future observational campaigns. In this article we provide information on the Mediterranean Sea oceanographic situation, and present a short review that will serve as background information for the special issue in Ocean Science on "Physical, chemical and biological oceanography of the Mediterranean Sea". An important contribution of this article is the set of figures showing the large-scale distributions of physical and chemical properties along the full length
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 115
    Publication Date: 2020-10-20
    Description: Recent studies on the impacts of ocean acidification on pelagic communities have identified changes in carbon to nutrient dynamics with related shifts in elemental stoichiometry. In principle, mesocosm experiments provide the opportunity of determining temporal dynamics of all relevant carbon and nutrient pools and, thus, calculating elemental budgets. In practice, attempts to budget mesocosm enclosures are often hampered by uncertainties in some of the measured pools and fluxes, in particular due to uncertainties in constraining air–sea gas exchange, particle sinking, and wall growth. In an Arctic mesocosm study on ocean acidification applying KOSMOS (Kiel Off-Shore Mesocosms for future Ocean Simulation), all relevant element pools and fluxes of carbon, nitrogen and phosphorus were measured, using an improved experimental design intended to narrow down the mentioned uncertainties. Water-column concentrations of particulate and dissolved organic and inorganic matter were determined daily. New approaches for quantitative estimates of material sinking to the bottom of the mesocosms and gas exchange in 48 h temporal resolution as well as estimates of wall growth were developed to close the gaps in element budgets. However, losses elements from the budgets into a sum of insufficiently determined pools were detected, and are principally unavoidable in mesocosm investigation. The comparison of variability patterns of all single measured datasets revealed analytic precision to be the main issue in determination of budgets. Uncertainties in dissolved organic carbon (DOC), nitrogen (DON) and particulate organic phosphorus (POP) were much higher than the summed error in determination of the same elements in all other pools. With estimates provided for all other major elemental pools, mass balance calculations could be used to infer the temporal development of DOC, DON and POP pools. Future elevated pCO2 was found to enhance net autotrophic community carbon uptake in two of the three experimental phases but did not significantly affect particle elemental composition. Enhanced carbon consumption appears to result in accumulation of dissolved organic carbon under nutrient-recycling summer conditions. This carbon over-consumption effect becomes evident from mass balance calculations, but was too small to be resolved by direct measurements of dissolved organic matter. Faster nutrient uptake by comparatively small algae at high CO2 after nutrient addition resulted in reduced production rates under future ocean CO2 conditions at the end of the experiment. This CO2 mediated shift towards smaller phytoplankton and enhanced cycling of dissolved matter restricted the development of larger phytoplankton, thus pushing the system towards a retention type food chain with overall negative effects on export potential.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 116
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Earth System Science Data, 5 . pp. 289-294.
    Publication Date: 2021-04-21
    Description: Here we report on data from an oceanographic cruise on the German research vessel Meteor covering large parts of the Mediterranean Sea during spring of 2011. The main objectives of this cruise was to conduct measurements of physical, chemical and biological variables on a section across the Mediterranean Sea with the goal of producing a synoptic picture of the distribution of relevant physical and biogeochemical properties, in order to compare those to historic data sets. During the cruise, a comprehensive data set of relevant variables following the guide lines for repeat hydrography outlined by the GO-SHIP group (http://www.go-ship.org/) was collected. The measurements include; salinity and temperature (CTD), an over-determined carbonate system, inorganic nutrients, oxygen, transient tracers (CFC-12, SF6), Helium isotopes and tritium, and carbon isotopes. The cruise sampled all major basins of the Mediterranean Sea following roughly an east-to-west section from the coast of Lebanon to through the Strait of Gibraltar, and to the coast of Portugal. Also a south-to-north section from the Ionian Sea to the Adriatic Sea was carried out. Additionally, sampling in the Aegean, Adriatic and Tyrrhenian Seas were carried out. The sections roughly followed lines and positions that have been sampled previously during other programs, thus providing the opportunity for comparative investigations of the temporal development of various parameters.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 117
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  The Cryosphere, 9 (6). pp. 2027-2041.
    Publication Date: 2017-01-17
    Description: Based upon thermal-infrared satellite imagery in combination with ERA-Interim atmospheric reanalysis data, we derive long-term polynya characteristics such as polynya area, thin-ice thickness distribution, and ice-production rates for a 13-year investigation period (2002–2014) for the austral winter (1 April to 30 September) in the Antarctic southern Weddell Sea. All polynya parameters are derived from daily cloud-cover corrected thin-ice thickness composites. The focus lies on coastal polynyas which are important hot spots for new-ice formation, bottom-water formation, and heat/moisture release into the atmosphere. MODIS has the capability to resolve even very narrow coastal polynyas. Its major disadvantage is the sensor limitation due to cloud cover. We make use of a newly developed and adapted spatial feature reconstruction scheme to account for cloud-covered areas. We find the sea-ice areas in front of the Ronne and Brunt ice shelves to be the most active with an annual average polynya area of 3018 ± 1298 and 3516 ± 1420 km2 as well as an accumulated volume ice production of 31 ± 13 and 31 ± 12 km3, respectively. For the remaining four regions, estimates amount to 421 ± 294 km2 and 4 ± 3 km3 (Antarctic Peninsula), 1148 ± 432 km2 and 12 ± 5 km3 (iceberg A23A), 901 ± 703 km2 and 10 ± 8 km3 (Filchner Ice Shelf), as well as 499 ± 277 km2 and 5 ± 2 km3 (Coats Land). Our findings are discussed in comparison to recent studies based on coupled sea-ice/ocean models and passive-microwave satellite imagery, each investigating different parts of the southern Weddell Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 118
    Publication Date: 2021-05-19
    Description: Localized open-ocean low-oxygen “dead zones” in the eastern tropical North Atlantic are recently discovered ocean features that can develop in dynamically isolated water masses within cyclonic eddies (CE) and anticyclonic mode-water eddies (ACME). Analysis of a comprehensive oxygen dataset obtained from gliders, moorings, research vessels and Argo floats reveals that “dead-zone” eddies are found in surprisingly high numbers and in a large area from about 4 to 22° N, from the shelf at the eastern boundary to 38° W. In total, 173 profiles with oxygen concentrations below the minimum background concentration of 40 µmol kg−1 could be associated with 27 independent eddies (10 CEs; 17 ACMEs) over a period of 10 years. Lowest oxygen concentrations in CEs are less than 10 µmol kg−1 while in ACMEs even suboxic (〈 1 µmol kg−1) levels are observed. The oxygen minimum in the eddies is located at shallow depth from 50 to 150 m with a mean depth of 80 m. Compared to the surrounding waters, the mean oxygen anomaly in the core depth range (50 and 150 m) for CEs (ACMEs) is −38 (−79) µmol kg−1. North of 12° N, the oxygen-depleted eddies carry anomalously low-salinity water of South Atlantic origin from the eastern boundary upwelling region into the open ocean. Here water mass properties and satellite eddy tracking both point to an eddy generation near the eastern boundary. In contrast, the oxygen-depleted eddies south of 12° N carry weak hydrographic anomalies in their cores and seem to be generated in the open ocean away from the boundary. In both regions a decrease in oxygen from east to west is identified supporting the en-route creation of the low-oxygen core through a combination of high productivity in the eddy surface waters and an isolation of the eddy cores with respect to lateral oxygen supply. Indeed, eddies of both types feature a cold sea surface temperature anomaly and enhanced chlorophyll concentrations in their center. The low-oxygen core depth in the eddies aligns with the depth of the shallow oxygen minimum zone of the eastern tropical North Atlantic. Averaged over the whole area an oxygen reduction of 7 µmol kg−1 in the depth range of 50 to 150 m (peak reduction is 16 µmol kg−1 at 100 m depth) can be associated with the dispersion of the eddies. Thus the locally increased oxygen consumption within the eddy cores enhances the total oxygen consumption in the open eastern tropical North Atlantic Ocean and seems to be an contributor to the formation of the shallow oxygen minimum zone.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 119
    Publication Date: 2019-09-23
    Description: The eastern Pacific benthic foraminifer Nonionella stella Cushman & Moyer, 1930 was recorded for the first time in the Skagerrak (North Sea) and its fjords. In this short note we evaluate its migration, considering both dispersal by propagules and ship ballast tanks. We suggest that the predominantly southward surface currents along the western European seaboard and Morocco would impede a wide-range dispersal of N. stella propagules and hypothesize transportation by ship ballast tanks as the possible vector of N. stella immigration into northern European seas.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 120
    Publication Date: 2019-09-23
    Description: Oxygen minimum zones (OMZs) that impinge on continental margins favor the release of phosphorus (P) from the sediments to the water column, enhancing primary productivity and the maintenance or expansion of low-oxygen waters. A comprehensive field program in the Peruvian OMZ was undertaken to identify the sources of benthic P at six stations, including the analysis of particles from the water column, surface sediments, and pore fluids, as well as in situ benthic flux measurements. A major fraction of solid-phase P was bound as particulate inorganic P (PIP) both in the water column and in sediments. Sedimentary PIP increased with depth in the sediment at the expense of particulate organic P (POP). The ratio of particulate organic carbon (POC) to POP exceeded the Redfield ratio both in the water column (202 ± 29) and in surface sediments (303 ± 77). However, the POC to total particulate P (TPP = POP + PIP) ratio was close to Redfield in the water column (103 ± 9) and in sediment samples (102 ± 15). This suggests that the relative burial efficiencies of POC and TPP are similar under low-oxygen conditions and that the sediments underlying the anoxic waters on the Peru margin are not depleted in P compared to Redfield. Benthic fluxes of dissolved P were extremely high (up to 1.04 ± 0.31 mmol m−2 d−1), however, showing that a lack of oxygen promotes the intensified release of dissolved P from sediments, whilst preserving the POC / TPP burial ratio. Benthic dissolved P fluxes were always higher than the TPP rain rate to the seabed, which is proposed to be caused by transient P release by bacterial mats that had stored P during previous periods when bottom waters were less reducing. At one station located at the lower rim of the OMZ, dissolved P was taken up by the sediments, indicating ongoing phosphorite formation. This is further supported by decreasing porewater phosphate concentrations with sediment depth, whereas solid-phase P concentrations were comparatively high.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 121
    Publication Date: 2020-02-06
    Description: The temporal evolution of the physical and biogeochemical structure of an oxygen-depleted anticyclonic modewater eddy is investigated over a 2-month period using high-resolution glider and ship data. A weakly stratified eddy core (squared buoyancy frequency N2  ∼  0.1  ×  10−4 s−2) at shallow depth is identified with a horizontal extent of about 70 km and bounded by maxima in N2. The upper N2 maximum (3–5  ×  10−4 s−2) coincides with the mixed layer base and the lower N2 maximum (0.4  ×  10−4 s−2) is found at about 200 m depth in the eddy centre. The eddy core shows a constant slope in temperature/salinity (T∕S) characteristic over the 2 months, but an erosion of the core progressively narrows down the T∕S range. The eddy minimal oxygen concentrations decreased by about 5 µmol kg−1 in 2 months, confirming earlier estimates of oxygen consumption rates in these eddies. Separating the mesoscale and perturbation flow components reveals oscillating velocity finestructure ( ∼  0.1 m s−1) underneath the eddy and at its flanks. The velocity finestructure is organized in layers that align with layers in properties (salinity, temperature) but mostly cross through surfaces of constant density. The largest magnitude in velocity finestructure is seen between the surface and 140 m just outside the maximum mesoscale flow but also in a layer underneath the eddy centre, between 250 and 450 m. For both regions a cyclonic rotation of the velocity finestructure with depth suggests the vertical propagation of near-inertial wave (NIW) energy. Modification of the planetary vorticity by anticyclonic (eddy core) and cyclonic (eddy periphery) relative vorticity is most likely impacting the NIW energy propagation. Below the low oxygen core salt-finger type double diffusive layers are found that align with the velocity finestructure. Apparent oxygen utilization (AOU) versus dissolved inorganic nitrate (NO3−) ratios are about twice as high (16) in the eddy core compared to surrounding waters (8.1). A large NO3− deficit of 4 to 6 µmol kg−1 is determined, rendering denitrification an unlikely explanation. Here it is hypothesized that the differences in local recycling of nitrogen and oxygen, as a result of the eddy dynamics, cause the shift in the AOU : NO3− ratio. High NO3− and low oxygen waters are eroded by mixing from the eddy core and entrain into the mixed layer. The nitrogen is reintroduced into the core by gravitational settling of particulate matter out of the euphotic zone. The low oxygen water equilibrates in the mixed layer by air–sea gas exchange and does not participate in the gravitational sinking. Finally we propose a mesoscale–submesoscale interaction concept where wind energy, mediated via NIWs, drives nutrient supply to the euphotic zone and drives extraordinary blooms in anticyclonic mode-water eddies.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 122
    Publication Date: 2018-12-31
    Description: Sensitivity of marine crustaceans to anthropogenic CO2 emissions and the associated acidification of the oceans may be less than that of other, especially lower, invertebrates. However, effects on critical transition phases or carry-over effects between life stages have not comprehensively been explored. Here we report the impact of elevated seawater PCO2 values (3100 µatm) on Hyas araneus during the last 2 weeks of their embryonic development (pre-hatching phase) and during development while in the consecutive zoea I and zoea II larval stages (post-hatching phase). We measured oxygen consumption, dry weight, developmental time and mortality in zoea I to assess changes in performance. Feeding rates and survival under starvation were investigated at different temperatures to detect differences in thermal sensitivities of zoea I and zoea II larvae depending on pre-hatch history. When embryos were pre-exposed to elevated PCO2 during maternal care, mortality increased about 60% under continued CO2 exposure during the zoea I phase. The larvae that moulted into zoea II, displayed a developmental delay by about 20 days compared to larvae exposed to control PCO2 during embryonic and zoeal phases. Elevated PCO2 caused a reduction in zoea I dry weight and feeding rates, while survival of the starved larvae was not affected by the seawater CO2 concentration. In conclusion, CO2 effects on egg masses under maternal care carried over to the first larval stages of crustaceans and reduced their survival and development to levels below those previously reported in studies exclusively focussing on acute PCO2 effects on the larval stages.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 123
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Atmospheric Chemistry and Physics, 16 . pp. 12925-12944.
    Publication Date: 2019-02-01
    Description: To understand solar cycle signals on the Earth's surface and identify the physical mechanisms responsible, surface temperature variations from observations as well as climate model data are analyzed to characterize their spatial structure. The solar signal in the annual mean surface temperature is characterized by (i) mid-latitude warming and (ii) no warming in the tropics. The mid-latitude warming during solar maxima in both hemispheres is associated with a downward penetration of zonal mean zonal wind anomalies from the upper stratosphere during late winter. During Northern Hemisphere winter this is manifested in a modulation of the polar-night jet whereas in the Southern Hemisphere the subtropical jet plays the major role. Warming signals are particularly apparent over the Eurasian continent and ocean frontal zones, including a previously reported lagged response over the North Atlantic. In the tropics, local warming occurs over the Indian and central Pacific oceans during high solar activity. However, this warming is counter balanced by cooling over the cold tongue sectors in the southeastern Pacific and the South Atlantic, and results in a very weak zonally averaged tropical mean signal. The cooling in the ocean basins is associated with stronger cross-equatorial winds resulting from a northward shift of the ascending branch of the Hadley circulation during solar maxima. To understand the complex processes involved in the solar signal transfer, results of an idealized middle atmosphere–ocean coupled model experiment on the impact of stratospheric zonal wind changes are compared with solar signals in observations. The model results suggest that both tropical and extra-tropical solar surface signals can result from circulation changes in the upper stratosphere through (i) a downward migration of wave–zonal mean flow interactions and (ii) changes in the stratospheric mean meridional circulation. These experiments support earlier evidence of an indirect solar influence from the stratosphere.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 124
    Publication Date: 2021-04-21
    Description: The stable carbon isotope composition of dissolved inorganic carbon (δ13C-DIC) can be used to quantify fluxes within the carbon system. For example, knowing the δ13C signature of the inorganic carbon pool can help in describing the amount of anthropogenic carbon in the water column. The measurements can also be used for evaluating modeled carbon fluxes, for making basin-wide estimates of anthropogenic carbon, and for studying seasonal and interannual variability or decadal trends in interior ocean biogeochemistry. For all these purposes, it is not only important to have a sufficient amount of data, but these data must also be internally consistent and of high quality. In this study, we present a δ13C-DIC dataset for the North Atlantic which has undergone secondary quality control. The data originate from oceanographic research cruises between 1981 and 2014. During a primary quality control step based on simple range tests, obviously bad data were flagged. In a second quality control step, biases between measurements from different cruises were quantified through a crossover analysis using nearby data of the respective cruises, and values of biased cruises were adjusted in the data product. The crossover analysis was possible for 24 of the 32 cruises in our dataset, and adjustments were applied to 11 cruises. The internal accuracy of this dataset is 0.017 ‰.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 125
    Publication Date: 2021-04-23
    Description: Global climate change involves an increase in oceanic CO2 concentrations as well as thermal stratification of the water column, thereby reducing nutrient supply from deep to surface waters. Changes in inorganic carbon (C) or nitrogen (N) availability have been shown to affect marine primary production, yet little is known about their interactive effects. To test for these effects, we conducted continuous culture experiments under N limitation and exposed the bloomforming dinoflagellate species Scrippsiella trochoidea and Alexandrium fundyense (formerly A. tamarense) to CO2 partial pressures (pCO(2)) ranging between 250 and 1000 mu atm. Ratios of particulate organic carbon (POC) to organic nitrogen (PON) were elevated under N limitation, but also showed a decreasing trend with increasing pCO(2). PON production rates were highest and affinities for dissolved inorganic N were lowest under elevated pCO(2), and our data thus demonstrate a CO2-dependent trade-off in N assimilation. In A. fundyense, quotas of paralytic shellfish poisoning toxins were lowered under N limitation, but the offset to those obtained under N-replete conditions became smaller with increasing pCO(2). Consequently, cellular toxicity under N limitation was highest under elevated pCO(2). All in all, our observations imply reduced N stress under elevated pCO(2), which we attribute to a reallocation of energy from C to N assimilation as a consequence of lowered costs in C acquisition. Such interactive effects of ocean acidification and nutrient limitation may favor species with adjustable carbon concentrating mechanisms and have consequences for their competitive success in a future ocean.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 126
    Publication Date: 2019-02-01
    Description: Southeast Asian rivers convey large amounts of organic carbon, but little is known about the fate of this terrestrial material in estuaries. Although Southeast Asia is, by area, considered a hotspot of estuarine carbon dioxide (CO2) emissions, studies in this region are very scarce. We measured dissolved and particulate organic carbon, as well as CO2 partial pressures and carbon monoxide (CO) concentrations in two tropical estuaries in Sarawak, Malaysia, whose coastal area is covered by carbon-rich peatlands. We surveyed the estuaries of the rivers Lupar and Saribas during the wet and dry season, respectively. Carbon-to-nitrogen ratios suggest that dissolved organic matter (DOM) is largely of terrestrial origin. We found evidence that a large fraction of this carbon is respired. The median pCO(2) in the estuaries ranged between 640 and 5065 mu atm with little seasonal variation. CO2 fluxes were determined with a floating chamber and estimated to amount to 14-268 mol m(-2) yr(-1), which is high compared to other studies from tropical and subtropical sites. Estimates derived from a merely wind-driven turbulent diffusivity model were considerably lower, indicating that these models might be inappropriate in estuaries, where tidal currents and river discharge make an important contribution to the turbulence driving water-air gas exchange. Although an observed diurnal variability of CO concentrations suggested that CO was photochemically produced, the overall concentrations and fluxes were relatively moderate (0.4-1.3 nmol L-1 and 0.7-1.8 mmol m(-2) yr(-1)) if compared to published data for oceanic or upwelling systems. We attributed this to the large amounts of suspended matter (4-5004 mg L-1), limiting the light penetration depth and thereby inhibiting CO photoproduction. We concluded that estuaries in this region function as an efficient filter for terrestrial organic carbon and release large amounts of CO2 to the atmosphere. The Lupar and Saribas rivers deliver 0.3 +/- 0.2 TgC yr(-1) to the South China Sea as organic carbon and their mid-estuaries release approximately 0.4 +/- 0.2 TgC yr(-1) into the atmosphere as CO2.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 127
    Publication Date: 2019-02-01
    Description: Changes in incoming solar ultraviolet radiation over the 11-year solar cycle affect stratospheric ozone abundances. It is important to quantify the magnitude, structure, and seasonality of the associated solar-ozone response (SOR) to understand the impact of the 11-year solar cycle on climate. Part 1 of this two-part study uses multiple linear regression analysis to extract the SOR in a number of recently updated satellite ozone datasets covering different periods within the epoch 1970 to 2013. The annual mean SOR in the updated version 7.0 (v7.0) Stratospheric Aerosol and Gas Experiment (SAGE) II number density dataset (1984–2004) is very consistent with that found in the previous v6.2. In contrast, we find a substantial decrease in the magnitude of the SOR in the tropical upper stratosphere in the SAGE II v7.0 mixing ratio dataset (∼ 1 %) compared to the v6.2 (∼ 4 %). This difference is shown to be largely attributable to the change in the independent stratospheric temperature dataset used to convert SAGE II ozone number densities to mixing ratios. Since these temperature records contain substantial uncertainties, we suggest that datasets based on SAGE II number densities are currently most reliable for evaluating the SOR. We further analyse three extended ozone datasets that combine SAGE II v7.0 number densities with more recent GOMOS (Global Ozone Monitoring by Occultation of Stars) or OSIRIS (Optical Spectrograph and Infrared Imager System) measurements. The extended SAGE–OSIRIS dataset (1984–2013) shows a smaller and less statistically significant SOR across much of the tropical upper stratosphere compared to the SAGE II data alone. In contrast, the two SAGE–GOMOS datasets (1984–2011) show SORs that are in closer agreement with the original SAGE II data and therefore appear to provide a more reliable estimate of the SOR. We also analyse the SOR in the recent Solar Backscatter Ultraviolet Instrument (SBUV) Merged Ozone Dataset (SBUVMOD) version 8.6 (VN8.6) (1970–2012) and SBUV Merged Cohesive VN8.6 (1978–2012) datasets and compare them to the previous SBUVMOD VN8.0 (1970–2009). Over their full lengths, the three records generally agree in terms of the broad magnitude and structure of the annual mean SOR. The main difference is that SBUVMOD VN8.6 shows a smaller and less significant SOR in the tropical upper stratosphere and therefore more closely resembles the SAGE II v7.0 mixing ratio data than does the SBUV Merged Cohesive VN8.6, which has a more continuous SOR of ∼ 2 % in this region. The sparse spatial and temporal sampling of limb satellite instruments prohibits the extraction of sub-annual variations in the SOR from SAGE-based datasets. However, the SBUVMOD VN8.6 dataset suggests substantial month-to-month variations in the SOR, particularly in the winter extratropics, which may be important for the proposed high-latitude dynamical response to the solar cycle. Overall, the results highlight substantial uncertainties in the magnitude and structure of the observed SOR from different satellite records. The implications of these uncertainties for understanding and modelling the effects of solar variability on climate should be explored.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 128
    Publication Date: 2019-09-23
    Description: Halocarbons are produced naturally in the oceans by biological and chemical processes. They are emitted from surface seawater into the atmosphere, where they take part in numerous chemical processes such as ozone destruction and the oxidation of mercury and dimethyl sulfide. Here we present oceanic and atmospheric halocarbon data for the Peruvian upwelling zone obtained during the M91 cruise onboard the research vessel METEOR in December 2012. Surface waters during the cruise were characterized by moderate concentrations of bromoform (CHBr3) and dibromomethane (CH2Br2) correlating with diatom biomass derived from marker pigment concentrations, which suggests this phytoplankton group is a likely source. Concentrations measured for the iodinated compounds methyl iodide (CH3I) of up to 35.4 pmol L−1, chloroiodomethane (CH2ClI) of up to 58.1 pmol L−1 and diiodomethane (CH2I2) of up to 32.4 pmol L−1 in water samples were much higher than previously reported for the tropical Atlantic upwelling systems. Iodocarbons also correlated with the diatom biomass and even more significantly with dissolved organic matter (DOM) components measured in the surface water. Our results suggest a biological source of these compounds as a significant driving factor for the observed large iodocarbon concentrations. Elevated atmospheric mixing ratios of CH3I (up to 3.2 ppt), CH2ClI (up to 2.5 ppt) and CH2I2 (3.3 ppt) above the upwelling were correlated with seawater concentrations and high sea-to-air fluxes. During the first part of the cruise, the enhanced iodocarbon production in the Peruvian upwelling contributed significantly to tropospheric iodine levels, while this contribution was considerably smaller during the second part.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 129
    Publication Date: 2021-04-23
    Description: The stable carbon isotope composition of dissolved inorganic carbon (δ13CDIC) in seawater was measured in samples collected during June—July 2014 in the subpolar North Atlantic. Sample collection was carried out on the RRS James Clark Ross cruise JR302, part of the "Radiatively Active Gases from the North Atlantic Region and Climate Change" (RAGNARoCC) research programme. The observed δ13CDIC values for cruise JR302 fall in a range from 0.07 ‰ to +1.95 ‰, relative to the Vienna Peedee Belemnite standard. From duplicate samples collected during the cruise, the 1σ precision for the 341 results is 0.08 ‰, which is similar to our previous work and other studies of this kind. We also performed a cross-over analysis using nearby historical δ13CDIC data, which indicated that there were no significant systematic offsets between our measurements and previously published results. We also included seawater reference material (RM) produced by A. G. Dickson (Scripps Institution of Oceanography, USA) in every batch of analysis, enabling us to improve upon the calibration and quality-control procedures from a previous study. The δ13CDIC is consistent within each RM batch, although its value is not certified. We report δ13CDIC values of 1.15 ± 0.03 ‰ and 1.27 ± 0.05 ‰ for batches 141 and 144 respectively. Our JR302 δ13CDIC data can be used – along with measurements of other biogeochemical variables – to constrain the processes that control DIC in the interior ocean, in particular the oceanic uptake of anthropogenic carbon dioxide and the biological carbon pump. Our δ13CDIC results are available from the British Oceanographic Data Centre – doi:10.5285/22235f1a-b7f3-687f-e053-6c86abc0c8a6.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 130
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 12 (13). pp. 4133-4148.
    Publication Date: 2016-03-30
    Description: The ocean is a substantial source of nitrous oxide (N2O) to the atmosphere, but little is known about how this flux might change in the future. Here, we investigate the potential evolution of marine N2O emissions in the 21st century in response to anthropogenic climate change using the global ocean biogeochemical model NEMO-PISCES. Assuming nitrification as the dominant N2O formation pathway, we implemented two different parameterizations of N2O production which differ primarily under low-oxygen (O2) conditions. When forced with output from a climate model simulation run under the business-as-usual high-CO2 concentration scenario (RCP8.5), our simulations suggest a decrease of 4 to 12 % in N2O emissions from 2005 to 2100, i.e., a reduction from 4.03/3.71 to 3.54/3.56 TgN yr−1 depending on the parameterization. The emissions decrease strongly in the western basins of the Pacific and Atlantic oceans, while they tend to increase above the oxygen minimum zones (OMZs), i.e., in the eastern tropical Pacific and in the northern Indian Ocean. The reduction in N2O emissions is caused on the one hand by weakened nitrification as a consequence of reduced primary and export production, and on the other hand by stronger vertical stratification, which reduces the transport of N2O from the ocean interior to the ocean surface. The higher emissions over the OMZ are linked to an expansion of these zones under global warming, which leads to increased N2O production, associated primarily with denitrification. While there are many uncertainties in the relative contribution and changes in the N2O production pathways, the increasing storage seems unequivocal and determines largely the decrease in N2O emissions in the future. From the perspective of a global climate system, the averaged feedback strength associated with the projected decrease in oceanic N2O emissions amounts to around −0.009 W m−2 K−1, which is comparable to the potential increase from terrestrial N2O sources. However, the assessment for a potential balance between the terrestrial and marine feedbacks calls for an improved representation of N2O production terms in fully coupled next-generation Earth system models.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 131
    Publication Date: 2019-09-23
    Description: Previous bioassays conducted in the oligotrophic Atlantic Ocean identified availability of inorganic nitrogen (N) as the proximate limiting nutrient control of primary production, but additionally displayed a synergistic growth effect of combined N and phosphorus (P) addition. To classify conditions of nutrient limitation of coastal phytoplankton in the tropical ocean, we performed an 11 d nutrient-enrichment experiment with a natural phytoplankton community from shelf waters off northwest Africa in shipboard mesocosms. We used pigment and gene fingerprinting in combination with flow cytometry for classification and quantification of the taxon-specific photoautotrophic response to differences in nutrient supply. The developing primary bloom was dominated by diatoms and was significantly higher in the treatments receiving initial N addition. The combined supply of N and P did not induce a further increase in phytoplankton abundance compared to high N addition alone. A secondary bloom during the course of the experiment again displayed higher primary producer standing stock in the N-fertilized treatments. Bacterial abundance correlated positively with phytoplankton biomass. Dominance of the photoautotrophic assemblage by N-limited diatoms in conjunction with a probable absence of any P-limited phytoplankton species prevented an additive effect of combined N and P addition on total phytoplankton biomass. Furthermore, after nutrient exhaustion, dinitrogen (N-2)-fixing cyanobacteria succeeded the bloom-forming diatoms. Shelf waters in the tropical eastern Atlantic may thus support growth of diazotrophic cyanobacteria such as Trichodesmium sp. subsequent to upwelling pulses.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 132
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Ocean Science, 12 . pp. 977-986.
    Publication Date: 2020-11-23
    Description: Deoxygenation in the Baltic Sea endangers fish yields and favours noxious algal blooms. Yet, vertical transport processes ventilating the oxygen-deprived waters at depth and replenishing nutrient-deprived surface waters (thereby fuelling export of organic matter to depth), are not comprehensively understood. Here, we investigate the effects of the interaction between surface currents and winds (also referred to as eddy/wind effects) on upwelling in an eddy-rich general ocean circulation model of the Baltic Sea. Contrary to expectations we find that accounting for current/wind effects does inhibit the overall vertical exchange between oxygenated surface waters and oxygen-deprived water at depth. At major upwelling sites, however, as e.g. off the south coast of Sweden and Finland, the reverse holds: the interaction between topographically steered surface currents with winds blowing over the sea results in a climatological sea surface temperature cooling of 0.5 K. This implies that current/wind effects drive substantial local upwelling of cold and nutrient-replete waters.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 133
    Publication Date: 2016-04-11
    Description: The biogeochemistry of the river-sea interface was studied in the Kem' River (the largest river flowing to the White Sea from Karelian coast) estuary and adjacent area of the White Sea onboard the RV "Ekolog" in summer 2001, 2002 and 2003. The study area can be divided into 3 zones: I - the estuary itself, with water depth from 1 to 5m and low salinity in the surface layer (salinity is lower than 0.2psu in the Kem' River and varies from 15 to 20psu in outer part of this zone); II - the intermediate zone with depths from 5 to 10m and salinity at the surface from 16 to 22psu; III - the marine zone with depths from 10 to 29 m and salinity 21-24.5psu. Highest concentrations of the suspended particulate matter (SPM) were registered in the Kem' mouth (5-7mg/l). They sharply decreased to values 〈1mg/l towards the sea. At beginning of July 2001, particulate organic carbon (POC) concentration in the river mouth was 404µg/l and POC content in total SPM was 5.64%. In the marine part of the studied area the POC concentration varied from 132 to 274µg/l and the POC contents in suspended matter increased to 19-52.6%. These studies show, that the majority of riverborne suspended matter in the Kem' estuary deposits near the river mouth within the 20psu isohaline, where sedimentation of the suspended matter takes place. The role of fresh-water phytoplankton species decreases and the role of marine species increases from the river to sea and the percentage of green algae decreases and the role of diatoms increases. The organic carbon (Corg) to nitrogen (N) ratio (Corg/N) in both suspended matter and bottom sediments decreases from the river to the marine part of the mixing zone (from 8.5 to 6.1 in the suspended matter and from 14.6 to 7.5 in the bottom sediments), demonstrating that content of terrestrial-derived organic matter decreases and content of marine organic matter increases from the river mouth to the sea. The Kem' estuary exhibits a similar character of biogeochemial processes as in the large Arctic estuaries, but the scale of these processes (amount of river input of SPM, POC, area of estuaries) is different.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 134
    Publication Date: 2019-02-01
    Description: We use numerical climate simulations, paleoclimate data, and modern observations to study the effect of growing ice melt from Antarctica and Greenland. Meltwater tends to stabilize the ocean column, inducing amplifying feedbacks that increase subsurface ocean warming and ice shelf melting. Cold meltwater and induced dynamical effects cause ocean surface cooling in the Southern Ocean and North Atlantic, thus increasing Earth's energy imbalance and heat flux into most of the global ocean's surface. Southern Ocean surface cooling, while lower latitudes are warming, increases precipitation on the Southern Ocean, increasing ocean stratification, slowing deepwater formation, and increasing ice sheet mass loss. These feedbacks make ice sheets in contact with the ocean vulnerable to accelerating disintegration. We hypothesize that ice mass loss from the most vulnerable ice, sufficient to raise sea level several meters, is better approximated as exponential than by a more linear response. Doubling times of 10, 20 or 40 years yield multi-meter sea level rise in about 50, 100 or 200 years. Recent ice melt doubling times are near the lower end of the 10–40-year range, but the record is too short to confirm the nature of the response. The feedbacks, including subsurface ocean warming, help explain paleoclimate data and point to a dominant Southern Ocean role in controlling atmospheric CO2, which in turn exercised tight control on global temperature and sea level. The millennial (500–2000-year) timescale of deep-ocean ventilation affects the timescale for natural CO2 change and thus the timescale for paleo-global climate, ice sheet, and sea level changes, but this paleo-millennial timescale should not be misinterpreted as the timescale for ice sheet response to a rapid, large, human-made climate forcing. These climate feedbacks aid interpretation of events late in the prior interglacial, when sea level rose to +6–9 m with evidence of extreme storms while Earth was less than 1 °C warmer than today. Ice melt cooling of the North Atlantic and Southern oceans increases atmospheric temperature gradients, eddy kinetic energy and baroclinicity, thus driving more powerful storms. The modeling, paleoclimate evidence, and ongoing observations together imply that 2 °C global warming above the preindustrial level could be dangerous. Continued high fossil fuel emissions this century are predicted to yield (1) cooling of the Southern Ocean, especially in the Western Hemisphere; (2) slowing of the Southern Ocean overturning circulation, warming of the ice shelves, and growing ice sheet mass loss; (3) slowdown and eventual shutdown of the Atlantic overturning circulation with cooling of the North Atlantic region; (4) increasingly powerful storms; and (5) nonlinearly growing sea level rise, reaching several meters over a timescale of 50–150 years. These predictions, especially the cooling in the Southern Ocean and North Atlantic with markedly reduced warming or even cooling in Europe, differ fundamentally from existing climate change assessments. We discuss observations and modeling studies needed to refute or clarify these assertions.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 135
    Publication Date: 2015-05-28
    Description: Coastal zones are important source regions for a variety of trace gases including halocarbons and sulphur-bearing species. While salt-marshes, macroalgae and phytoplankton communities have been intensively studied, little is known about trace gas fluxes in seagrass meadows. Here we report results of a newly developed dynamic flux chamber system that can be deployed in intertidal areas over full tidal cycles allowing for high time resolved measurements. The trace gases measured in this study included carbon dioxide (CO2), methane (CH4) and a variety of hydrocarbons, halocarbons and sulphur-bearing compounds. The high time resolved CO2 and CH4 flux measurements revealed a complex dynamic mediated by tide and light. In contrast to most previous studies our data indicate significantly enhanced fluxes during tidal immersion relative to periods of air exposure. Short emission peaks occured with onset of the feeder current at the sampling site. We suggest an overall strong effect of advective transport processes to explain the elevated fluxes during tidal immersion. Many emission estimates from tidally influenced coastal areas still rely on measurements carried out during low tide only. Hence, our results may have significant implications for budgeting trace gases in coastal areas. This dynamic flux chamber system provides intensive time series data of community respiration (at night) and net community production (during the day) of shallow coastal systems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 136
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 512 . pp. 89-98.
    Publication Date: 2018-06-25
    Description: In complex ecosystem models, relationships between species include a large number of direct interactions and indirect effects. In order to unveil some simple and better understandable relationships, it is useful to study the asymmetry of inter-specific effects. We present a simple approach for this based on stochastic food web simulations from previous studies. We refer to the Prince William Sound (Gulf of Alaska) marine ecosystem model for illustration. Real data were used to parameterize a dynamical food web model. Through simulations and sensitivity analysis, we determined the strength of the effects between all species. We calculated the asymmetry between the mutual effects species have on each other, and selected the top 5% most asymmetrical interactions. The set of these highly asymmetrical relationships is illustrated by a separate graph in which we calculated the positional importance of the species and correlated this to other independent properties such as population size and trophic position. Results suggest that halibut is the key species dominating this system of asymmetrical interactions, but sablefish and adult arrowtooth flounder also seem to be of high importance. Nearshore demersals display the highest number of connections in the graph of asymmetrical links, suggesting that this trophic group regulates the dynamics of many species in the food web. This approach identifies key interactions and most asymmetrical relationships, potentially increasing the efficiency of management efforts and aiding conservation efforts.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 137
    Publication Date: 2015-05-28
    Description: In this study we present gas-exchange measurements conducted in a large-scale wind–wave tank. Fourteen chemical species spanning a wide range of solubility (dimensionless solubility, α = 0.4 to 5470) and diffusivity (Schmidt number in water, Scw = 594 to 1194) were examined under various turbulent (u10 = 0.73 to 13.2 m s−1) conditions. Additional experiments were performed under different surfactant modulated (two different concentration levels of Triton X-100) surface states. This paper details the complete methodology, experimental procedure and instrumentation used to derive the total transfer velocity for all examined tracers. The results presented here demonstrate the efficacy of the proposed method, and the derived gas-exchange velocities are shown to be comparable to previous investigations. The gas transfer behaviour is exemplified by contrasting two species at the two solubility extremes, namely nitrous oxide (N2O) and methanol (CH3OH). Interestingly, a strong transfer velocity reduction (up to a factor of 3) was observed for the relatively insoluble N2O under a surfactant covered water surface. In contrast, the surfactant effect for CH3OH, the high solubility tracer, was significantly weaker
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 138
    Publication Date: 2019-09-23
    Description: Linking lower and higher trophic levels requires special focus on the essential role played by mid-trophic levels, i.e., the zooplankton. One of the most relevant pieces of information regarding zooplankton in terms of flux of energy lies in its size structure. In this study, an extensive data set of size measurements is presented, covering parts of the western European continental shelf and slope, from the Galician coast to the Ushant front, during the springs from 2005 to 2012. Zooplankton size spectra were estimated using measurements carried out in situ with the Laser Optical Plankton Counter (LOPC) and with an image analysis of WP2 net samples (200 μm mesh size) performed following the ZooScan methodology. The LOPC counts and sizes particles within 100–2000 μm of spherical equivalent diameter (ESD), whereas the WP2/ZooScan allows for counting, sizing and identification of zooplankton from ~ 400 μm ESD. The difference between the LOPC (all particles) and the WP2/ZooScan (zooplankton only) was assumed to provide the size distribution of non-living particles, whose descriptors were related to a set of explanatory variables (including physical, biological and geographic descriptors). A statistical correction based on these explanatory variables was further applied to the LOPC size distribution in order to remove the non-living particles part, and therefore estimate the size distribution of zooplankton. This extensive data set provides relevant information about the zooplankton size distribution variability, productivity and trophic transfer efficiency in the pelagic ecosystem of the Bay of Biscay at a regional and interannual scale.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 139
    Publication Date: 2014-12-08
    Description: The oceanic biological carbon pump is an important factor in the global carbon cycle. Organic carbon is exported from the surface ocean mainly in the form of settling particles derived from plankton production in the upper layers of the ocean. The large variability in current estimates of the global strength of the biological carbon pump emphasises that our knowledge of a major planetary carbon flux remains poorly constrained. We present a database of 723 estimates of organic carbon export from the surface ocean derived from the 234Th technique. The dataset is archived on the data repository PANGEA® (www.pangea.de) under doi:10.1594/PANGAEA.809717. Data were collected from tables in papers published between 1985 and early 2013. We also present sampling dates, publication dates and sampling areas. Most of the open ocean provinces are represented by multiple measurements. However, the western Pacific, the Atlantic Arctic, South Pacific and the southern Indian Ocean are not well represented. There is a variety of integration depths ranging from surface to 300 m. Globally the fluxes ranged from 0 to 1500 mg C m−2 d−1.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 140
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 12 (6). pp. 1967-1981.
    Publication Date: 2017-11-28
    Description: Bromoform (CHBr3) is one important precursor of atmospheric reactive bromine species that are involved in ozone depletion in the troposphere and stratosphere. In the open ocean bromoform production is linked to phytoplankton that contains the enzyme bromoperoxidase. Coastal sources of bromoform are higher than open ocean sources. However, open ocean emissions are important because the transfer of tracers into higher altitude in the air, i.e. into the ozone layer, strongly depends on the location of emissions. For example, emissions in the tropics are more rapidly transported into the upper atmosphere than emissions from higher latitudes. Global spatio-temporal features of bromoform emissions are poorly constrained. Here, a global three-dimensional ocean biogeochemistry model (MPIOM-HAMOCC) is used to simulate bromoform cycling in the ocean and emissions into the atmosphere using recently published data of global atmospheric concentrations (Ziska et al., 2013) as upper boundary conditions. Our simulated surface concentrations of CHBr3 match the observations well. Simulated global annual emissions based on monthly mean model output are lower than previous estimates, including the estimate by Ziska et al. (2013), because the gas exchange reverses when less bromoform is produced in non-blooming seasons. This is the case for higher latitudes, i.e. the polar regions and northern North Atlantic. Further model experiments show that future model studies may need to distinguish different bromoform-producing phytoplankton species and reveal that the transport of CHBr3 from the coast considerably alters open ocean bromoform concentrations, in particular in the northern sub-polar and polar regions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 141
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 519 . pp. 103-113.
    Publication Date: 2020-01-21
    Description: The combined effects of warming and overwintering copepod densities on the spring succession of Baltic Sea plankton were investigated using indoor mesocosms. Three zooplankton (1.5, 4 and 10 copepods L-1) and two temperature levels called ∆0°C and ∆6°C (0°C and 6°C above the present day temperature scenario for Kiel Bight) were chosen. Both, the timing and the duration of the protozooplankton (PZP) bloom were significantly affected by temperature, but not by copepod density. In contrast, the bloom intensity of PZP was highly affected by the factors temperature and copepod density and its interaction. This suggests that at elevated temperature conditions PZP grows faster but, at the same time, are subject to higher top-down control by copepods. At low temperatures and low copepod densities, PZP in turn fully escaped from copepod predation. Further changes in the overwintering copepod densities resulted in a strong ciliate suppression of which small-sized ciliates (〈30 µm) were especially vulnerable to copepod predation while other PZP size classes remained unaffected. In conclusion, the results presented point at a pivotal regulating role of overwintering copepods under future warming condition. Further, warming was shown to cause a distinct match between phytoplankton and PZP thus strengthening trophic pathways through PZP. Our findings are discussed in the context of the ‘trophic link-sink’ debate by considering potential alterations in the flux of matter and energy up the food web.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 142
    Publication Date: 2015-05-28
    Description: In this study we report fluxes of chloromethane (CH3Cl), bromomethane (CH3Br), iodomethane (CH3I), and bromoform (CHBr3) from two sampling campaigns (summer and spring) in the seagrass dominated subtropical lagoon Ria Formosa, Portugal. Dynamic flux chamber measurements were performed when seagrass patches were either air-exposed or submerged. Overall, we observed highly variable fluxes from the seagrass meadows and attributed them to diurnal cycles, tidal effects, and the variety of possible sources and sinks in the seagrass meadows. The highest emissions with up to 130 nmol m−2 h−1 for CH3Br were observed during tidal changes, from air exposure to submergence and conversely. Furthermore, during the spring campaign, the emissions of halocarbons were significantly elevated during tidal inundation as compared to air exposure. Accompanying water sampling performed during both campaigns revealed elevated concentrations of CH3Cl and CH3Br, indicating productive sources within the lagoon. Stable carbon isotopes of halocarbons from the air and water phase along with source signatures were used to allocate the distinctive sources and sinks in the lagoon. Results suggest that CH3Cl was rather originating from seagrass meadows and water column than from salt marshes. Aqueous and atmospheric CH3Br was substantially enriched in 13C in comparison to source signatures for seagrass meadows and salt marshes. This suggests a significant contribution from the water phase on the atmospheric CH3Br in the lagoon. A rough global upscaling yields annual productions from seagrass meadows of 2.3–4.5 Gg yr−1, 0.5–1.0 Gg yr−1, 0.6–1.2 Gg yr−1, and 1.9–3.7 Gg yr−1 for CH3Cl, CH3Br, CH3I, and CHBr3 respectively. This suggests a minor contribution from seagrass meadows to the global production of CH3Cl and CH3Br with about 0.1 and 0.7%, respectively. In comparison to the known marine sources for CH3I and CHBr3, seagrass meadows are rather small sources.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 143
    Publication Date: 2014-12-16
    Description: Variability and trends in seasonal and interannual ice area export out of the Laptev Sea between 1992 and 2011 are investigated using satellite-based sea ice drift and concentration data. We found an average total winter (October to May) ice area transport across the northern and eastern Laptev Sea boundaries (NB and EB) of 3.48 × 10hoch5 km2. The average transport across the NB (2.87 × 10hoch5 km2)is thereby higher than across the EB (0.61 × 10hoch5 km2), with a less pronounced seasonal cycle. The total Laptev Sea ice area flux significantly increased over the last decades (0.85 × 10hoch5 km2 decade−1, p 〉 0.95), dominated by increasing export through the EB (0.55 × 10hoch5 km2 decade−1, p 〉 0.90), while the increase in export across the NB is smaller (0.3 × 10hoch5 km2 decade−1) and statistically not significant. The strong coupling between across-boundary SLP gradient and ice drift velocity indicates that monthly variations in ice area flux are primarily controlled by changes in geostrophic wind velocities, although the Laptev Sea ice circulation shows no clear relationship with large-scale atmospheric indices. Also there is no evidence of increasing wind velocities that could explain the overall positive trends in ice export. The increased transport rates are rather the consequence of a changing ice cover such as thinning and/or a decrease in concentration. The use of a back-propagation method revealed that most of the ice that is incorporated into the Transpolar Drift is formed during freeze-up and originates from the central and western part of the Laptev Sea, while the exchange with the East Siberian Sea is dominated by ice coming from the central and southeastern Laptev Sea. Furthermore, our results imply that years of high ice export in late winter (February to May) have a thinning effect on the ice cover, which in turn preconditions the occurence of negative sea ice extent anomalies in summer.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 144
    Publication Date: 2014-12-05
    Description: To examine the potentially competing influences of microzooplankton and calcite mineral ballast on organic matter remineralization, we incubated diatoms in darkness in rolling tanks with and without added calcite minerals (coccoliths) and microzooplankton (rotifers). Concentrations of particulate organic matter (POM in suspension or in aggregates), of dissolved organic matter (DOM), and of dissolved inorganic nutrients were monitored over 8 days. The presence of rotifers enhanced the remineralization of ammonium and phosphate, but not dissolved silicon, from the biogenic particulate matter, up to 40% of which became incorporated into aggregates early in the experiment. Added calcite resulted in rates of excretion of ammonium and phosphate by rotifers that were depressed by 67% and 36%, respectively, demonstrating the potential for minerals to inhibit the destruction of POM by zooplankton in the water column. Lastly, the presence of the rotifers and added calcite minerals resulted in a more rapid initial rate of aggregation, although not a greater overall amount of aggregation during the experiment.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 145
    Publication Date: 2014-12-08
    Description: Meridional and vertical distributions of several biogeochemical parameters were studied along a section in the southeastern Atlantic and the Southern Ocean south of South Africa during the austral summer 2008 of the International Polar Year to characterize the biogeochemical provinces and to assess the seasonal net diatom production. Based on analyses of macro-nutrients, ammonium (NH4), chlorophyll a, (Chl a), phaeopigments, biogenic silica (BSi), particulate inorganic carbon (PIC), and particulate organic carbon and nitrogen (POC and PON, respectively), four biogeochemical domains were distinguished along the section: the subtropical Atlantic, the confluence zone of the subtropical and subantarctic domains, the Polar Frontal Zone (PFZ) in the Antarctic Circumpolar Current (ACC), and the north-eastern branch of the Weddell Gyre. The subtropical region displayed extremely low nutrient concentrations featuring oligotrophic conditions, and sub-surface maxima of Chl a and phaeopigments never exceeded 0.5 µg L−1 and 0.25 µg L−1, respectively. The anticyclonic and cyclonic eddies crossed in the Cape Basin were characterized by a deepening and a rise, respectively, of the nutrients isoclines. The confluence zone of the subtropical domain and the northern side of the ACC within the subantarctic domain displayed remnant nitrate and phosphate levels, whereas silicate concentrations kept to extremely low levels. In this area, Chl a level of 0.4–0.5 µg L−1 distributed homogenously within the mixed layer, and POC and PON accumulated to values up to 10 µM and 1.5 µM, respectively, indicative of biomass accumulation along the confluence zone during the late productive period. In the ACC domain, the Polar Frontal Zone was marked by a post-bloom of diatoms that extended beyond the Polar Front (PF) during this late summer condition, as primarily evidenced by the massive depletion of silicic acid in the surface waters. The accumulation of NH4 to values up to 1.25 µM at 100 m depth centred on the PF and the accumulation of BSi up to 0.5 µM in the surface waters of the central part of the PFZ also featured a late stage of the seasonal diatom bloom. The silica daily net production rate based on the seasonal depletion of silicic acid was estimated to be 11.9 ± 6.5 mmol m−2 d−1 in the domain of the vast diatom post-bloom, agreeing well with the previously recorded values in this province. The Weddell Gyre occasionally displayed relative surface depletion of silicic acid, suggesting a late stage of a relatively minor diatom bloom possibly driven by iceberg drifting releases of iron. In this domain the estimated range of silica daily net production rate (e.g. 21.1 ± 8.8 mmol m−2 d−1) is consistent with previous studies, but was not significantly higher than that in the Polar Front region.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 146
    Publication Date: 2014-12-08
    Description: As part of the Bonus-GoodHope (BGH) campaign, 15N-labelled nitrate, ammonium and urea uptake measurements were made along the BGH transect from Cape Town to ~60° S in late austral summer, 2008. Our results are categorised according to distinct hydrographic regions defined by oceanic fronts and open ocean zones. High regenerated nitrate uptake rate in the oligotrophic Subtropical Zone (STZ) resulted in low f-ratios (f = 0.2) with nitrogen uptake being dominated by ρurea, which contributed up to 70 % of total nitrogen uptake. Size fractionated chlorophyll data showed that the greatest contribution (〉50 %) of picophytoplankton (〈2 μm) were found in the STZ, consistent with a community based on regenerated production. The Subantarctic Zone (SAZ) showed the greatest total integrated nitrogen uptake (10.3 mmol m−2 d−1), mainly due to enhanced nutrient supply within an anticyclonic eddy observed in this region. A decrease in the contribution of smaller size classes to the phytoplankton community was observed with increasing latitude, concurrent with a decrease in the contribution of regenerated production. Higher f-ratios observed in the SAZ (f = 0.49), Polar Frontal Zone (f= 0.41) and Antarctic Zone (f = 0.45) relative to the STZ (f = 0.24), indicate a higher contribution of NO3−-uptake relative to total nitrogen and potentially higher export production. High ambient regenerated nutrient concentrations are indicative of active regeneration processes throughout the transect and ascribed to late summer season sampling. Higher depth integrated uptake rates also correspond with higher surface iron concentrations. No clear correlation was observed between carbon export estimates derived from new production and 234Th flux. In addition, export derived from 15N estimates were 2–20 times greater than those based on 234Th flux. Variability in the magnitude of export is likely due to intrinsically different methods, compounded by differences in integration time scales for the two proxies of carbon export.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 147
    Publication Date: 2015-02-19
    Description: Knowledge of calcium phosphate (Ca-P) solubility is crucial for understanding temporal and spatial variations of phosphorus (P) concentrations in water bodies and sedimentary reservoirs. In situ relationships between liquid-and solid-phase levels cannot be fully explained by dissolved analytes alone and need to be verified by determining particular sediment P species. Lack of quantification methods for these species limits the knowledge of the P cycle. To address this issue, we (i) optimized a specifically developed conversion-extraction (CONVEX) method for P species quantification using standard additions, and (ii) simultaneously determined solubilities of Ca-P standards by measuring their pH-dependent contents in the sediment matrix. Ca-P minerals including various carbonate fluorapatite (CFAP) specimens from different localities, fluorapatite (FAP), fish bone apatite, synthetic hydroxylapatite (HAP) and octacalcium phosphate (OCP) were characterized by XRD, Raman, FTIR and elemental analysis. Sediment samples were incubated with and without these reference minerals and then sequentially extracted to quantify Ca-P species by their differential dissolution at pH values between 3 and 8. The quantification of solid-phase phosphates at varying pH revealed solubilities in the following order: OCP〉 HAP〉 CFAP (4.5% CO3)〉 CFAP (3.4% CO3)〉 CFAP (2.2% CO3)〉 FAP. Thus, CFAP was less soluble in sediment than HAP, and CFAP solubility increased with carbonate content. Unspiked sediment analyses together with standard addition analyses indicated consistent differential dissolution of natural sediment species vs. added reference species and therefore verified the applicability of the CONVEX method in separately determining the most prevalent Ca-P minerals. We found surprisingly high OCP contents in the coastal sediments analyzed, which supports the hypothesis of apatite formation by an OCP precursor mechanism.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 148
    Publication Date: 2013-01-31
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 149
    Publication Date: 2013-01-31
    Description: Here we make an initial step toward the development of an ocean assimilation system that can constrain the modelled Atlantic Meridional Overturning Circulation (AMOC) to support climate predictions. A detailed comparison is presented of 1° and 1/4° resolution global model simulations with and without sequential data assimilation, to the observations and transport estimates from the RAPID mooring array across 26.5° N in the Atlantic. Comparisons of modelled water properties with the observations from the merged RAPID boundary arrays demonstrate the ability of in situ data assimilation to accurately constrain the east-west density gradient between these mooring arrays. However, the presence of an unconstrained "western boundary wedge" between Abaco Island and the RAPID mooring site WB2 (16 km offshore) leads to the intensification of an erroneous southwards flow in this region when in situ data are assimilated. The result is an overly intense southward upper mid-ocean transport (0–1100 m) as compared to the estimates derived from the RAPID array. Correction of upper layer zonal density gradients is found to compensate mostly for a weak subtropical gyre circulation in the free model run (i.e. with no assimilation). Despite the important changes to the density structure and transports in the upper layer imposed by the assimilation, very little change is found in the amplitude and sub-seasonal variability of the AMOC. This shows that assimilation of upper layer density information projects mainly on the gyre circulation with little effect on the AMOC at 26° N due to the absence of corrections to density gradients below 2000 m (the maximum depth of Argo). The sensitivity to initial conditions was explored through two additional experiments using a climatological initial condition. These experiments showed that the weak bias in gyre intensity in the control simulation (without data assimilation) develops over a period of about 6 months, but does so independently from the overturning, with no change to the AMOC. However, differences in the properties and volume transport of North Atlantic Deep Water (NADW) persisted throughout the 3 year simulations resulting in a difference of 3 Sv in AMOC intensity. The persistence of these dense water anomalies and their influence on the AMOC is promising for the development of decadal forecasting capabilities. The results suggest that the deeper waters must be accurately reproduced in order to constrain the AMOC.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 150
    Publication Date: 2013-01-31
    Description: Since April 2004 the RAPID array has made continuous measurements of the Atlantic Meridional Overturning Circulation (AMOC) at 26° N. Two key components of this system are Ekman transport zonally integrated across 26° N and western boundary current transport in the Florida Straits. Whilst measurements of the AMOC as a whole are somewhat in their infancy, this study investigates what useful information can be extracted on the variability of the Ekman and Florida Straits transports using the decadal timeseries already available. Analysis is also presented for Sverdrup transports zonally integrated across 26° N. The seasonal cycles of Florida Straits, Ekman and Sverdrup transports are quantified at 26° N using harmonic analysis of annual and semi-annual constituents. Whilst Sverdrup transport shows clear semi-annual periodicity, calculations of seasonal Florida Straits and Ekman transports show substantial interannual variability due to contamination by variability at non-seasonal frequencies; the mean seasonal cycle for these transports only emerges from decadal length observations. The Florida Straits and Ekman mean seasonal cycles project on the AMOC with a combined peak-to-peak seasonal range of 3.5 Sv. The combined seasonal range for heat transport is 0.40 PW. The Florida Straits seasonal cycle possesses a smooth annual periodicity in contrast with previous studies suggesting a more asymmetric structure. No clear evidence is found to support significant changes in the Florida Straits seasonal cycle at sub-decadal periods. Whilst evidence of wind driven Florida Straits transport variability is seen at sub-seasonal and annual periods, a model run from the 1/4° eddy-permitting ocean model NEMO is used to identify an important contribution from internal oceanic variability at sub-annual and interannual periods. The Ekman transport seasonal cycle possesses less symmetric structure, due in part to different seasonal transport regimes east and west of 50 to 60° W. Around 60% of non-seasonal Ekman transport variability occurs in phase section-wide at 26° N and is related to the NAO, whilst Sverdrup transport variability is more difficult to decompose.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 151
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 8 (6). pp. 1551-1464.
    Publication Date: 2019-09-23
    Description: Seawater concentrations of the four brominated trace gases dibromomethane (CH2Br2), bromodichloromethane (CHBrCl2), dibromochloromethane (CHBr2Cl) and bromoform (CHBr3) were measured at different depths of the water column in the Iberian upwelling off Portugal during summer 2007. Bromocarbon concentrations showed elevated values in recently upwelled and aged upwelled waters (mean values of 30 pmol L−1 for CHBr3), while values in the open ocean were significantly lower (7.4 pmol L−1 for CHBr3). Correlations with biological variables and marker pigments indicated that phytoplankton could be identified as a weak bromocarbon source in the open ocean. In upwelled water masses along the coast, halocarbons were not correlated to Chl-a, indicating an external source, overlapping the possible internal production by phytoplankton. We showed that the tidal frequency had a significant influence on halocarbon concentrations in the upwelling and we linked those findings to a strong intertidal coastal source, as well as to a transport of those halocarbon enriched coastal waters by westward surface upwelling currents. Coastal sources and transport can be accounted for maximum values of up to 185.1 pmol L−1 CHBr3 in the upwelling. Comparison with other productive marine areas revealed that the Iberian upwelling had stronger halocarbon sources than the phytoplankton dominated sources in the Mauritanian upwelling. However, the concentrations off the Iberian Peninsula were still much lower than those of coastal macroalgal influenced waters or those of polar regions dominated by cold water adapted diatoms
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 152
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  [Talk] In: EGU General Assembly 2010, 02.05.-07.05.2010, Vienna, Austria ; p. 4913 .
    Publication Date: 2013-02-18
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 153
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Nonlinear Processes in Geophysics, 11 (4). pp. 505-514.
    Publication Date: 2017-02-15
    Description: In this paper, we present a detailed evaluation of cross wavelet analysis of bivariate time series. We develop a statistical test for zero wavelet coherency based on Monte Carlo simulations. If at least one of the two processes considered is Gaussian white noise, an approximative formula for the critical value can be utilized. In a second part, typical pitfalls of wavelet cross spectra and wavelet coherency are discussed. The wavelet cross spectrum appears to be not suitable for significance testing the interrelation between two processes. Instead, one should rather apply wavelet coherency. Furthermore we investigate problems due to multiple testing. Based on these results, we show that coherency between ENSO and NAO is an artefact for most of the time from 1900 to 1995. However, during a distinct period from around 1920 to 1940, significant coherency between the two phenomena occurs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 154
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Nonlinear Processes in Geophysics, 11 (4). pp. 495-503.
    Publication Date: 2017-02-15
    Description: We study the inference of long-range correlations by means of Detrended Fluctuation Analysis (DFA) and argue that power-law scaling of the fluctuation function and thus long-memory may not be assumed a priori but have to be established. This requires the investigation of the local slopes. We account for the variability characteristic for stochastic processes by calculating empirical confidence regions. Comparing a long-memory with a short-memory model shows that the inference of long-range correlations from a finite amount of data by means of DFA is not specific. We remark that scaling cannot be concluded from a straight line fit to the fluctuation function in a log-log representation. Furthermore, we show that a local slope larger than α=0.5 for large scales does not necessarily imply long-memory. We also demonstrate, that it is not valid to conclude from a finite scaling region of the fluctuation function to an equivalent scaling region of the autocorrelation function. Finally, we review DFA results for the Prague temperature data set and show that long-range correlations cannot not be concluded unambiguously.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 155
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 8 (4). pp. 911-918.
    Publication Date: 2019-09-23
    Description: A steady state box model was developed to estimate the methane input into the Black Sea water column at various water depths. Our model results reveal a total input of methane of 4.7 Tg yr−1. The model predicts that the input of methane is largest at water depths between 600 and 700 m (7% of the total input), suggesting that the dissociation of methane gas hydrates at water depths equivalent to their upper stability limit may represent an important source of methane into the water column. In addition we discuss the effects of massive short-term methane inputs (e.g. through eruptions of deep-water mud volcanoes or submarine landslides at intermediate water depths) on the water column methane distribution and the resulting methane emission to the atmosphere. Our non-steady state simulations predict that these inputs will be effectively buffered by intense microbial methane consumption and that the upward flux of methane is strongly hampered by the pronounced density stratification of the Black Sea water column. For instance, an assumed input of methane of 179 Tg CH4 d−1 (equivalent to the amount of methane released by 1000 mud volcano eruptions) at a water depth of 700 m will only marginally influence the sea/air methane flux increasing it by only 3%.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 156
    Publication Date: 2012-07-06
    Description: The interaction between iron availability and the phytoplankton elemental composition was investigated during the in situ iron fertilization experiment EIFEX and in laboratory experiments with the Southern Ocean diatom species Fragilariopsis kerguelensis and Chaetoceros dichaeta. Contrary to other in situ iron fertilization experiments we observed an increase in the BSi:POC, BSi:PON, and BSi:POP ratios within the iron fertilized patch during EIFEX. This is possibly caused by a relatively stronger increase in diatom abundance compared to other phytoplankton groups and does not necessarily represent the amount of silicification of single diatom cells. In laboratory experiments with F. kerguelensis and C. dichaeta no changes in the POC:PON, PON:POP, and POC:POP ratios were found with changing iron availability in both species. BSi:POC, BSi:PON, and BSi:POP ratios were significantly lower in the high iron treatments compared to the controls. In F. kerguelensis this was caused by a decrease in cellular BSi concentrations and therefore possibly less silicification. In C. dichaeta no change in cellular BSi concentration was found. Here lower BSi:POC, BSi:PON, and BSi:POP ratios were caused by an increase in cellular C, N, and P under high iron conditions. These results indicate that iron limitation does not always increase silicification in diatoms and that changes in the BSi:POC, BSi:PON, and BSi:POP ratios under iron fertilization in the field are caused by a variety of different mechanisms. Our results therefore imply that simple cause-and-effect relationships are not always applicable for modeling of elemental ratios.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 157
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 173 . pp. 127-137.
    Publication Date: 2018-05-08
    Description: The stable carbon isotope composition (δ13C) of particulate organic carbon (POC) was measured in 3 size fractions (POCtotal, POC〉20 µm, POC〈20 µm) during a phytoplankton spring bloom dominated by the diatom Skeletonema costatum in Lindåspollene, a land-locked fjord in southern Norway. In addition to standard parameters for characterizing the phytoplankton bloom (chlorophyll, nutrient, and POC concentrations, and species composition), simultaneous measurements of δ13C of dissolved inorganic carbon (DIC), total alkalinity and DIC concentration were obtained to determine temporal trends in dissolved carbon dioxide concentration and in carbon isotope fractionation (ε p) of the POC size fractions. The carbon isotope composition of the 〉20 µm size fraction, which was dominated by diatoms, was ca 2o/oo heavier than that of the 〈20 µm fraction, which was mainly composed of flagellates. δ13C of both size fractions increased by about 3o/oo over the course of the bloom. A 5o/oo increase in δ13C-PO Ctotal during the bloom resulted partly from a shift in the phytoplankton community from a flagellate- to a diatom-dominated one. Carbon isotope fractionation of all fractions decreased with declining CO2(aq) concentration (14 to 〉6 µmol l-1). A positive correlation between ε p and [CO2(aq)] in the diatom size fraction was obtained for the period of exponential growth. Deviation from this correlation occurred after the peak in cell density and chlorphyll a (chl a) concentration, when POC still continued to increase, and may be related to changing phytoplankton growth rates or to possible effects of nutrient (nitrate) limitation on ε p. Comparison of these results with those of previous field studies shows that, while an inverse relationship is consistently observed between ε p and the ratio of instantaneous growth rate and CO2 concentration {µi/[CO2(aq)]}, considerable scatter exists in this relationship. While this scatter may have partly resulted from inconsistencies between the different studies in estimating phytoplankton growth rate, it could also reflect that factors other than growth rate and CO2 concentration significantly contribute to determining isotope fractionation by marine phytoplankton in the natural environment
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 158
    Publication Date: 2012-07-06
    Description: The subtropical Indian Ocean along 32° S was for the first time simultaneously sampled in 2002 for inorganic carbon and transient tracers. The vertical distribution and inventory of anthropogenic carbon (CANT) from five different methods: four data-base methods (ΔC*, TrOCA, TTD and IPSL) and a simulation from the OCCAM model are compared and discussed along with the observed CFC-12 and CCl4 distributions. In the surface layer, where carbon-based methods are uncertain, TTD and OCCAM yield the same result (7±0.2 molC m−2), helping to specify the surface CANT inventory. Below the mixed-layer, the comparison suggests that CANT penetrates deeper and more uniformly into the Antarctic Intermediate Water layer limit than estimated from the much utilized ΔC* method. Significant CFC-12 and CCl4 values are detected in bottom waters, associated with Antarctic Bottom Water. In this layer, except for ΔC* and OCCAM, the other methods detect significant CANT values. Consequently, the lowest inventory is calculated using the ΔC* method (24±2 molC m−2) or OCCAM (24.4±2.8 molC m−2) while TrOCA, TTD, and IPSL lead to higher inventories (28.1±2.2, 28.9±2.3 and 30.8±2.5 molC m−2 respectively). Overall and despite the uncertainties each method is evaluated using its relationship with tracers and the knowledge about water masses in the subtropical Indian Ocean. Along 32° S our best estimate for the mean CANT specific inventory is 28±2 molC m−2. Comparison exercises for data-based CANT methods along with time-series or repeat sections analysis should help to identify strengths and caveats in the CANT methods and to better constrain model simulations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 159
    Publication Date: 2019-07-03
    Description: A number of field-campaigns in the tropics have been conducted in recent years with two different LIDAR systems at Paramaribo (5.8° N, 55.2° W), Suriname. The lidars detect particles in the atmosphere with high vertical and temporal resolution and are capable of detecting extremely thin cloud layers which frequently occur in the tropical tropopause layer (TTL). Radiosonde as well as operational ECMWF analysis showed that equatorial Kelvin waves propagated in the TTL and greatly modulated its temperature structure. We found a clear correlation between the temperature anomalies introduced by these waves and the occurrence of thin cirrus in the TTL. In particular we found that extremely thin ice clouds form regularly where cold anomalies shift the tropopause to high altitudes. These findings suggest an influence of Kelvin wave activity on the dehydration in the TTL and thus on the global stratospheric water vapour concentration.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 160
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 96 . pp. 281-289.
    Publication Date: 2018-05-07
    Description: While marine snow aggregates were devoid of Phaeocystis in 1989, a large fraction of the Phaeocystis biomass was associated with aggregates two years later. This discrepancy corresponds to a significant difference in aggregate size between the two years studied, interpreted to be a consequence of different levels of turbulent mixing. Phaeocystis colonies remained freely suspended during 1989 when aggregates were small, and adhered loosely to the large aggregates observed forming during 1991. Overall, the aggregation potential of Phaeocystis was low in comparison to diatoms. Independent of the degree of aggregation, sedimentation was the dominant loss factor of Phaeocystis biomass from the upper layer
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 161
    facet.materialart.
    Unknown
    Inter Research
    In:  Aquatic Microbial Ecology, 19 . pp. 139-148.
    Publication Date: 2016-05-26
    Description: Phosphatase (P-ase) activity was determined together with other extracellular enzyme activities, bacterial abundance and production rates during the 2 SW Monsoon process studies of the German JGOFS Arabian Sea Program. Water samples were collected along the cruise tracks from the equator to the upwelling region at the shelf edge off Oman. Depth profiles of P-ase activity were strikingly different from those of the other enzymes. While values of aminopeptidase and β-glucosidase generally decreased below the euphotic zone, P-ase increased by factors of 1 to 7. The relation between peptidase- and P-ase activity was from 4 to 21 at the surface and from 3 to 5 at 800 m depth. Because P-ase production (dissolved and cell-bound) in deep waters is mainly dependent on bacteria, P-ase activities per bacterial cell were calculated: these were, on average, 37 times higher at 800 m than at the surface. We also observed a positive correlation of P-ase activity with phosphate concentrations in the depth profiles below the euphotic zone, while this relationship was much more variable in the mixed surface layer. These observations suggest that C-limited bacteria in the deep strata did not primarily focus on the phosphate generated by their P-ase activity but on the organic C compounds which were simultaneously produced and which could probably not be taken up prior to the hydrolytic detachment of phosphate. It is hypothesised that a considerable part of the measured P-ase activity was dissolved (though it might have originated from bacteria). These enzymes may be important for the slow, but steady regeneration of phosphate and organic C in mesopelagic waters.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 162
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 133 . pp. 275-285.
    Publication Date: 2018-05-08
    Description: A predictive model of carbon isotope fractionation (sigma p) and abundance (delta13C phyto) is presented under circumstances where photosynthesis is strictly based on CO2(aq) that passively diffuses into marine phytoplankton cells. Similar to other recent models, the one presented here is based on a formulation where the expression of intracellular enzymatic isotope fractionation relative to that imposed by CO2(aq) transport is scaled by the ratio of intracellular to external [CO2(aq)], ci/ce. Unlike previous models, an explicit calculation of ci is made that is dependent on ce as well as cell radius, cell growth rate, cell membrane permeability to CO2(aq), temperature, and, to a limited extent, pH and salinity. This allows direct scaling of ci/ce to each of these factors, and thus a direct prediction of sigma p and delta13C phyto responses to changes in each of these variables. These responses are described, and, where possible, compared to recent experimental and previous modeling results.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 163
    Publication Date: 2018-05-08
    Description: Stomach contents of 17 sperm whales Physeter macrocephalus stranded in Scotland and Denmark during 1990-96 were analysed. All were sub-adult or adult males and stranded between November and March. They had presumably entered the North Sea during their southward migration from feeding grounds in Arctic waters. Other studies indicate that the majority of the whales were apparently healthy. The diet of these whales was found to consist almost entirely of cephalopods, principally squid of the genus Gonatus (hereafter 'Gonatus', but probably G. fabricii, an oceanic species characteristic of Arctic waters). The other prey species identified were also mostly oceanic cephalopods: the squids Histioteuthis bonnellii, Teuthowenia megalops and Todarodes sagittatus and the octopus Haliphron atlanticus. Although these results are consistent with other recent studies in the area based on single stranded whales, they differ from results of work on whales caught during commercial whaling operations in Icelandic waters (1960s to 1980s) in that little evidence of predation on fish was found in the present study. Remains of single individuals of the veined squid Loligo forbesi, the northern octopus Eledone cirrhosa and the saithe Pollachius virens provided the only possible evidence of feeding in the North Sea. We infer that sperm whales do not enter the North Sea to feed. The timing, and large and uniform sizes of the Gonatus species eaten (most had mantle lengths in the range 195 to 245 mm), as estimated from measurements of the lower beaks, and the seasonality of the strandings is consistent with the whales having fed on mature squid, possibly spawning concentrations--as has recently been reported for bottlenose whales. Assuming that the diet recorded in this study was representative of sperm whales during the feeding season, as much as 500000 t of Gonatus could be removed by sperm whales in Norwegian waters each year and up to 3 times that figure from the eastern North Atlantic as a whole. Evidence from other studies indicates that Gonatus is an important food resource for a wide range of marine predators in Arctic waters.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 164
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 273 . pp. 251-267.
    Publication Date: 2018-05-30
    Description: Latitudinal declines of species richness from the tropics to the poles represent a general spatial pattern of diversity on land. For the marine realm, the generality of this pattern has frequently been questioned. Here, I use a database with nearly 600 published gradients (198 of which were marine) to assess whether there is a marine latitudinal diversity gradient of similar average strength and slope as that for terrestrial organisms. Using meta-analysis techniques, I also tested which characteristics of organisms or habitats affected gradient strength and slope. The overall strength and slope of the gradient for marine organisms was significantly negative and of similar magnitude compared to gradients for terrestrial organisms. Marine gradients were on average stronger as well as steeper than freshwater gradients. Latitudinal gradients were clearly a regional phenomenon, with stronger gradients and steeper slopes for diversity assessed on regional than on local scales. The gradient parameters differed also between oceans and between different habitats, with steeper gradients related to the pelagial rather than the benthos. There were on the other hand no significant differences between hemispheres and between different gradient ranges, although such differences have often been presumed. The most important organismal characteristic related to gradient structure was body mass, with significant gradients related to large organisms. A significant increase in gradient strength with increasing trophic level was observed. The meta-analysis also revealed strongest gradients for nekton and mobile epifauna, whereas the gradients were weak for sessile epifauna and for infauna. In conclusion, marine biota reveal a similar overall decline in diversity with latitude to that observed in terrestrial realms, but the strength and slope of the gradient are clearly subject to regional, habitat and organismal features.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 165
    Publication Date: 2016-10-11
    Description: The relation between the Agulhas Current retroflection location and the magnitude of Agulhas leakage, the transport of water from the Indian to the Atlantic Ocean, is investigated in a high-resolution numerical ocean model. Sudden eastward retreats of the Agulhas Current retroflection loop are linearly related to the shedding of Agulhas rings, where larger retreats generate larger rings. Using numerical Lagrangian floats a 37 year time series of the magnitude of Agulhas leakage in the model is constructed. The time series exhibits large amounts of variability, both on weekly and annual time scales. A linear relation is found between the magnitude of Agulhas leakage and the location of the Agulhas Current retroflection, both binned to three month averages. In the relation, a more westward location of the Agulhas Current retroflection corresponds to an increased transport from the Indian Ocean to the Atlantic Ocean. When this relation is used in a linear regression and applied to almost 20 years of altimetry data, it yields a best estimate of the mean magnitude of Agulhas leakage of 13.2 Sv. The early retroflection of 2000, when Agulhas leakage was probably halved, can be identified using the regression.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 166
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 185 . pp. 293-296.
    Publication Date: 2018-05-08
    Description: Interpretation of diving profiles of aquatic animals would be considerably enhanced by additional behavioural information. A new sensor is presented here which records animal movements. This sensor was tested on a captive loggerhead turtle Caretta caretta which showed similar activity patterns to free-living green turtles Chelonia mydas. A computer program with user-selectable options was developed to analyse the data consistently and rapidly. Using our sensor we calculated the total resting time, which differed by less than 5% from the real resting time when the sampling interval was 2 s. The method was additionally tested for different sampling intervals to find out its applicability for field studies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 167
    Publication Date: 2018-05-09
    Description: Grazing experiments were conducted with natural mesozooplankton from Kiel Bight, Germany, using radioactive labelled phytoplankton cultures and seston size fractions. The results of experiments using phytoplankton cultures indicated that bivalve veligers performed highest clearance of particles within a size range of 4.7 to 6.3 µm, whereas optimum particle size for copepods was 15 µm. The results of experiments using labelled natural seston size fractions identified bivalve veligers and appendicularians as those responsible for the removal of particles within the smallest size class (〈2 µm). Seston size fractions larger than 5 µm were mainly cleared by copepods and nauplii. As particle size increased, the contribution of copepod clearance to total zooplankton clearance within size classes increased from 57% (〈5 µm size class) to more than 81% (30 to 100 µm size class). When the nauplii clearance rates were included, the total copepod clearance accounted for 90 to 97.6% of the total volume cleared of particles bigger than 10 µm. Despite low abundances of bivalve veligers and appendicularians in Kiel Bight at the time of the experiment, we calculated that approximately 10 and 8.5%, respectively, of the carbon ingested by total mesozooplankton was due to veliger and appendicularian grazing. The importance of bivalve veligers might be seen in their grazing on seston particles that escape predation by copepods and on the amount of energy that is therefore directed from the water column to the benthos when larvae settle.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 168
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 376 .
    Publication Date: 2018-06-01
    Description: Models of multiple potentially limiting nutrients currently employ either multiplicative or threshold formulations, neither of which has a sound mechanistic explanation. Despite experimental evidence that lack of P severely constrains N assimilation, this mechanism has not been considered for constructing models of multi-nutrient limitation. We construct a phytoplankton optimal growth model linking C, chlorophyll (Chl), N, and P through a limitation chain in which P limits N assimilation, N limits photosynthesis and photosynthesis limits growth. The resulting formulation possesses characteristics of both multiplicative and threshold approaches and provides a mechanistic foundation for modelling multi-nutrient and light limitation of phytoplankton growth. The model compares well with experimental observations for a variety of unicellular phytoplankton species. It is suggested that the widely held view that N and P limitation act independently of each other is based on an invalid interpretation of experimental observations and that the transition from N to P limitation occurs over a wide range of colimitation rather than a sharply-defined transition point. If the species considered in this study are representative for marine phytoplankton, our model results indicate that most phytoplankton are colimited by N and P when inorganic N and P are simultaneously exhausted in the surface ocean. The model suggests that the close match between marine inorganic (Redfield) and phytoplankton N:P ratios results from optimal nutrient utilisation but does not indicate optimality of Redfield N:P.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 169
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 7 (8). pp. 2379-2396.
    Publication Date: 2012-07-06
    Description: The rugged submarine topography of the Azores supports a diverse heterozoan association resulting in intense biotically-controlled carbonate-production and accumulation. In order to characterise this cold-water (C) factory a 2-year experiment was carried out in the southern Faial Channel to study the biodiversity of hardground communities and for budgeting carbonate production and degradation along a bathymetrical transect from the intertidal to bathyal 500 m depth. Seasonal temperatures peak in September (above a thermocline) and bottom in March (stratification diminishes) with a decrease in amplitude and absolute values with depth, and tidal-driven short-term fluctuations. Measured seawater stable isotope ratios and levels of dissolved nutrients decrease with depth, as do the calcium carbonate saturation states. The photosynthetic active radiation shows a base of the euphotic zone in ~70 m and a dysphotic limit in ~150 m depth. Bioerosion, being primarily a function of light availability for phototrophic endoliths and grazers feeding upon them, is ~10 times stronger on the illuminated upside versus the shaded underside of substrates in the photic zone, with maximum rates in the intertidal (−631 g/m2/yr). Rates rapidly decline towards deeper waters where bioerosion and carbonate accretion are slow and epibenthic/endolithic communities take years to mature. Accretion rates are highest in the lower euphotic zone (955 g/m2/yr), where the substrate is less prone to hydrodynamic force. Highest rates are found – inversely to bioerosion – on down-facing substrates, suggesting that bioerosion may be a key factor governing the preferential settlement and growth of calcareous epilithobionts on down-facing substrates. In context of a latitudinal gradient, the Azores carbonate cycling rates plot between known values from the cold-temperate Swedish Kosterfjord and the tropical Bahamas, with a total range of two orders in magnitude. Carbonate budget calculations for the bathymetrical transect yield a mean 266.9 kg of epilithic carbonate production, −54.6 kg of bioerosion, and 212.3 kg of annual net carbonate production per metre of coastline in the Azores C factory.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 170
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 401 . pp. 77-85.
    Publication Date: 2018-06-19
    Description: Traditionally, consumer–prey interactions have been considered as purely negative, but herbivores may have positive effects on plants and their productivity. Grazing may enhance prey biomass-specific productivity by directly or indirectly reducing the competition for light, nutrients, and space. We studied the effect of 4 common mesograzers, the isopod Idotea baltica, the amphipod Gammarus oceanicus, and the gastropods Littorina littorea and Rissoa membranacea on epiphytes in an eelgrass Zostera marina L. system. Eelgrass was grown in laboratory mesocosms for a set of experiments manipulating mesograzer species identity, mesograzer density and nutrient concentration. We measured epiphyte biomass-specific productivity via incorporation of radioactive carbon. Herbivore effects on epiphyte photosynthetic capacity were strongly positive for R. membranacea, moderately positive for L. littorea and I. baltica and zero for G. oceanicus under low nutrient supply. Both gastropods increased the nitrogen content of epiphytes, especially the small R. membranacea, and enhanced epiphyte growth. The crustacean species did not increase epiphyte nutrient content, but I. baltica probably enhanced epiphyte productivity by removing the overstory of algal cells, and thus reducing competition for light, nutrients, and space. The positive effect of the 2 gastropod species disappeared under higher nutrient supply, implying the importance of nutrient limitation for this interaction. The positive effect of I. baltica remained at moderate grazer densities despite the higher nutrient concentrations.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 171
    Publication Date: 2019-09-23
    Description: The marine aragonite cycle has been included in the global biogeochemical model PISCES to study the role of aragonite in shallow water CaCO3 dissolution. Aragonite production is parameterized as a function of mesozooplankton biomass and aragonite saturation state of ambient waters. Observation-based estimates of marine carbonate production and dissolution are well reproduced by the model and about 60% of the combined CaCO3 water column dissolution from aragonite and calcite is simulated above 2000 m. In contrast, a calcite-only version yields a much smaller fraction. This suggests that the aragonite cycle should be included in models for a realistic representation of CaCO3 dissolution and alkalinity. For the SRES A2 CO2 scenario, production rates of aragonite are projected to notably decrease after 2050. By the end of this century, global aragonite production is reduced by 29% and total CaCO3 production by 19% relative to pre-industrial. Geographically, the effect from increasing atmospheric CO2, and the subsequent reduction in saturation state, is largest in the subpolar and polar areas where the modeled aragonite production is projected to decrease by 65% until 2100.
    Type: Article , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 172
    Publication Date: 2018-04-03
    Description: Fully coupled climate carbon cycle models are sophisticated tools that are used to predict future climate change and its impact on the land and ocean carbon cycles. These models should be able to adequately represent natural variability, requiring model validation by observations. The present study focuses on the ocean carbon cycle component, in particular the spatial and temporal variability in net primary productivity (PP) and export production (EP) of particulate organic carbon (POC). Results from three coupled climate carbon cycle models (IPSL, MPIM, NCAR) are compared with observation-based estimates derived from satellite measurements of ocean colour and results from inverse modelling (data assimilation). Satellite observations of ocean colour have shown that temporal variability of PP on the global scale is largely dominated by the permanently stratified, low-latitude ocean (Behrenfeld et al., 2006) with stronger stratification (higher sea surface temperature; SST) being associated with negative PP anomalies. Results from all three coupled models confirm the role of the low-latitude, permanently stratified ocean for anomalies in globally integrated PP, but only one model (IPSL) also reproduces the inverse relationship between stratification (SST) and PP. An adequate representation of iron and macronutrient co-limitation of phytoplankton growth in the tropical ocean has shown to be the crucial mechanism determining the capability of the models to reproduce observed interactions between climate and PP.
    Type: Article , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 173
    Publication Date: 2016-09-06
    Description: The recent introduction of Gracilaria vermiculophylla (Rhodophyta) to the Kiel Fjord area was a reason for concern, since this red macroalga performs best under mesohaline conditions and thus appears well adapted to thrive and spread in the Baltic Sea environment, A systematic survey on a coastal range of 500 km in 2006 and 2007 indicated considerable Multiplication and spreading of G. vermiculophylla within Kiel Fjord, but provided little evidence of long-distance transport. Nonetheless, flow-through growth experiments conducted at a range of salinities under ambient light showed that G. vermiculophylla should be able to grow in most of the Baltic Sea. Growth declined only below a salinity of 5.5. High water temperatures in summer seem to reduce resistance against low salinity. Growth of G, vermiculophylla in the SW Baltic is limited by light and is only possible during summer and above a depth of 3 m. Drifting fragments are dispersed by currents. Either they sink to deeper waters, where they degrade, or they accumulate in shallow and sheltered waters, where they form perennial mats. These overgrow not only soft bottom sediments, but also stones, which are an important habitat to Fucus vesiculosus, the main native perennial alga in the Baltic Sea. As compared to F. vesiculosus, G. vermiculophylla seems to represent a preferred refuge for mesograzers and other invertebrates, particularly in winter. Nonetheless, feeding trials showed that potential grazers avoided G. vermiculophylla relative to F vesiculosus. Daily biomass uptake by grazers associated with G. vermiculophylla in nature did not exceed 2 g kg(-1) and is 〈11% of average daily net growth (18.5 g kg(-1)) in the first 2 m below sea level. Consequently, feeding may not be sufficient to control the spread of G. vermiculophylla in the SW Baltic. Our study suggests that absence of feeding enemies and adaptation to brackish water may allow G. vermiculophylla to invade most shallow coastal waters of the inner Baltic Sea despite light limitation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 174
    Publication Date: 2015-02-26
    Description: A set of experiments utilizing different implementations of the global ORCA-LIM model with horizontal resolutions of 2°, 0.5° and 0.25° is used to investigate tropical and extra-tropical influences on equatorial Pacific SST variability at interannual to decadal time scales. The model experiments use a bulk forcing methodology building on the global forcing data set for 1958 to 2000 developed by Large and Yeager (2004) that is based on a blend of atmospheric reanalysis data and satellite products. Whereas representation of the mean structure and transports of the (sub-) tropical Pacific current fields is much improved with the enhanced horizontal resolution, there is only little difference in the simulation of the interannual variability in the equatorial regime between the 0.5° and 0.25° model versions, with both solutions capturing the observed SST variability in the Niño3-region. The question of remotely forced oceanic contributions to the equatorial variability, in particular, the role of low-frequency changes in the transports of the Subtropical Cells (STCs), is addressed by a sequence of perturbation experiments using different combinations of fluxes. The solutions show the near-surface temperature variability to be governed by wind-driven changes in the Equatorial Undercurrent. The relative contributions of equatorial and off-equatorial atmospheric forcing differ between interannual and longer, (multi-) decadal timescales: for the latter there is a significant impact of changes in the equatorward transport of subtropical thermocline water associated with the lower branches of the STCs, related to variations in the off-equatorial trade winds. A conspicuous feature of the STC variability is that the equatorward transports in the interior and along the western boundary partially compensate each other at both decadal and interannual time scales, with the strongest transport extrema occurring during El Niño episodes. The behaviour is rationalized in terms of a wobbling in the poleward extents of the tropical gyres, which is manifested also in a meridional shifting of the bifurcation latitudes of the North and South Equatorial Current systems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 175
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 408 . pp. 47-53.
    Publication Date: 2019-09-23
    Description: Previous studies on trait-mediated trophic interactions in marine ecosystems were restricted to pair-wise interactions between one species of meso-herbivore and plant, though multi-grazer interactions are more common in nature. We investigated whether the feeding of one consumer, either the periwinkle Littorina littorea or the isopod Idotea baltica, affected consumption by the other consumer via anti-herbivory defence induction in the brown seaweed Fucus vesiculosus. To test the generality of our findings, we ran similar experiments with seaweed/grazer populations in the North and Baltic Seas (NE Atlantic). Grazer-specificity in induction strength was assessed by using the same species of grazer for induction and consumption. ‘Indirect’ induction effects were assessed by using different species of grazers for induction and consumption. Palatability assays were run with live algae and with reconstituted food to distinguish between different mechanisms of resistance. Grazing by herbivores induced a chemical defence in F. vesiculosus. In the North Sea population, the induced defences were only effective against I. baltica, regardless of inducer identity. The sensitive responses of I. baltica to the induced defences were also detected in the reconstituted food assays using Baltic Sea organisms. Thus, marine meso-grazers may be affected by previous feeding through the same or a different species of consumer by modified prey traits, such as induced chemical defences. Furthermore, the magnitude of the effect in the induced defences can be determined by species-specific sensitivity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 176
    Publication Date: 2018-06-19
    Description: How multiple stressors influence fish stock dynamics is a crucial question in ecology in general and in fisheries science in particular. Using time-series covering a 30 yr period, we show that the body growth of the central Baltic Sea herring Clupea harengus, both in terms of condition and weight-at-age (WAA), has shifted from being mainly driven by hydro-climatic forces to an inter-specific density-dependent control. The shift in the mechanisms of regulation of herring growth is triggered by the abundance of sprat, the main food competitor for herring. Abundances of sprat above the threshold of ~18 × 1010 ind. decouple herring growth from hydro-climatic factors (i.e. salinity), and become the main driver of herring growth variations. At high sprat densities, herring growth is considerably lower than at low sprat levels, regardless of the salinity conditions, indicative of hysteresis in the response of herring growth to salinity changes. The threshold dynamic accurately explains the changes in herring growth during the past 3 decades and in turn contributes to elucidate the parallel drastic drop in herring spawning stock biomass. Studying the interplay between different stressors can provide fundamental information for the management of exploited resources. The management of the central Baltic herring stock should be adaptive and take into consideration the dual response of herring growth to hydro-climatic forces and food-web structure for a sound ecosystem approach to fisheries.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 177
    Publication Date: 2019-09-23
    Description: A simple prognostic tool for gas hydrate (GH) quantification in marine sediments is presented based on a diagenetic transport-reaction model approach. One of the most crucial factors for the application of diagenetic models is the accurate formulation of microbial degradation rates of particulate organic carbon (POC) and the coupled formation of biogenic methane. Wallmann et al. (2006) suggested a kinetic formulation considering the ageing effects of POC and accumulation of reaction products (CH4, CO2) in the pore water. This model is applied to data sets of several ODP sites in order to test its general validity. Based on a thorough parameter analysis considering a wide range of environmental conditions, the POC accumulation rate (POCar in g/m2/yr) and the thickness of the gas hydrate stability zone (GHSZ in m) were identified as the most important and independent controls for biogenic GH formation. Hence, depth-integrated GH inventories in marine sediments (GHI in g of CH4 per cm2 seafloor area) can be estimated as: GHI=a ·POCar·GHSZb ·exp(−GHSZc/POCar/d)+e with a = 0.00214, b = 1.234, c = −3.339, d = 0.3148, e = −10.265. The transfer function gives a realistic first order approximation of the minimum GH inventory in low gas flux (LGF) systems. The overall advantage of the presented function is its simplicity compared to the application of complex numerical models, because only two easily accessible parameters need to be determined.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 178
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 373 . pp. 303-309.
    Publication Date: 2019-09-23
    Description: Ocean acidification and associated changes in seawater carbonate chemistry negatively influence calcification processes and depress metabolism in many calcifying marine invertebrates. We present data on the cephalopod mollusc Sepia officinalis, an invertebrate that is capable of not only maintaining calcification, but also growth rates and metabolism when exposed to elevated partial pressures of carbon dioxide (pCO(2)). During a 6 wk period, juvenile S. officinalis maintained calcification under similar to 4000 and similar to 6000 ppm CO2, and grew at the same rate with the same gross growth efficiency as did control animals. They gained approximately 4%, body mass daily and increased the mass of their calcified cuttlebone by over 500 %. We conclude that active cephalopods possess a certain level of pre-adaptation to long-term increments in carbon dioxide levels. Our general understanding of the mechanistic processes that limit calcification must improve before we can begin to predict what effects future ocean acidification will have on calcifying marine invertebrates.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 179
    Publication Date: 2018-06-01
    Description: Generalist and opportunistic marine predators use flexible foraging behaviour to exploit prey bases that change in diversity and spatial and temporal distributions, Behavioural flexibility is constrained by characteristics Such as individual cognitive and physical capabilities, age, reproductive condition and central place foraging. To assess flexibility in the foraging tactics of a marine bird, we investigated the diets and foraging behaviour of the largest seabird predator in the North Atlantic Ocean. Northern gannets Sula bassana exploit abroad spectrum of pelagic prey that range in mass by more than 2 orders of magnitude, We investigated their foraging activity at their largest. offshore colony in the western Atlantic Ocean during 1998 to 2002, when they preyed primarily on shoals of spawning and post-spawning capelin Mallotus villosus, a small forage fish (similar to 15 g), and also on a much larger pelagic fish, post-smolt Atlantic salmon Salmo salar (similar to 200 g). Inter-annual dietary variation is associated with gannet and prey fish distributions. Landings of capelin at the colony by gannets were correlated with returns of larger foraging flocks from inshore, whereas landings of Atlantic salmon were associated with smaller flocks returning from offshore. Maximum foraging trip distances ranged from 20 to 200 km and averaged 57 +/- 12 (SE) km, consistent with distances to inshore capelin aggregations. When capelin abundance was low (in 2002), more gannets foraged offshore, preyed on large pelagic fishes (mostly Atlantic salmon) and exhibited the greatest dietary diversity. Though the Outbound portions of foraging trips were more sinuous than inbound routes, individual gannets exhibited general fidelity to foraging sites. These large avian predators used flexible foraging tactics to adjust to changing prey conditions and generate longer-term strategies to Lake advantage of diverse trophic interactions over a range of ocean ecosystems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 180
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 391 . pp. 257-265.
    Publication Date: 2018-06-01
    Description: Individual migratory schedules and wintering areas of northern gannets Morus bassanus were studied over 2 consecutive winters by deploying geolocation data loggers on breeding adults from the Bass Rock, UK. Northern gannets attended the breeding colony on Bass Rock until between 24 September and 16 October (median: 5 October). Afterwards, individual birds engaged in different migratory behaviour. Of the 22 birds tracked until at least December, 18% wintered in the North Sea and the English Channel, 27% in the Bay of Biscay and the Celtic Sea, 9% in the Mediterranean Sea and 45% off West Africa. Individual winter home ranges as measured by the 75% kernel density contours varied between 8 100 and 308 500 km(2) (mean = 134 000 km(2)). Several northern gannets migrated northwards from Bass Rock after leaving the colony for a stay of a few days to a few weeks, independent of whether they migrated to Africa or other southern areas later. Birds wintering off West Africa migrated to their wintering areas mostly within 3 to 5 wk, usually starting between early and late October. Most of these birds stayed off West Africa for a period of about 3 mo, where they remained in a relatively restricted area. Return migration was initiated between the end of January and mid-February, and took about as long as autumn migration. We conclude that individual gannets display very variable migratory behaviours, with discrete winter home ranges, and we infer that the migration habits of gannets may be changing in response to human impacts on marine ecosystems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 181
    Publication Date: 2018-06-01
    Description: We examined the influence of both season and hydrographic and meteorological factors on seabird abundance in the southern North Sea. Seabirds were counted from ships in a study area of 27.8 x 32.8 km on 407 d from 1990 to 2007. Two hydrographic and 5 meteorological parameters were taken from archived data. The relationships between bird abundance and abiotic parameters were investigated by generalised additive models for 3 distinct seasons. The species in the study area exhibited different seasonal patterns. While some species were present year-round, others occurred only at certain periods. Despite these substantial changes in abundances, the nature of the interactions between bird abundances and abiotic parameters did not vary much between seasons. All 5 meteorological and 2 hydrographic parameters significantly influenced the abundance of seabird species, though to a different degree. The single factors that most often had a significant influence in the single models were wind field, sea surface temperature anomaly, sea surface salinity anomaly and air pressure change. The quantitative composition of the seabird community differed significantly between onshore wind and offshore wind conditions. It is assumed that hydrographic parameters are relevant for the birds by determining their foraging habitats and that atmospheric parameters influence flight conditions during foraging and migration.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 182
    Publication Date: 2019-01-21
    Description: The first three Canadian Arctic Atmospheric Chemistry Experiment (ACE) Validation Campaigns at Eureka (80° N, 86° W) were during two extremes of Arctic winter variability: Stratospheric sudden warmings (SSWs) in 2004 and 2006 were among the strongest, most prolonged on record; 2005 was a record cold winter. New satellite measurements from ACE-Fourier Transform Spectrometer (ACE-FTS), Sounding of the Atmosphere using Broadband Emission Radiometry, and Aura Microwave Limb Sounder (MLS), with meteorological analyses and Eureka lidar and radiosonde temperatures, are used to detail the meteorology in these winters, to demonstrate its influence on transport and chemistry, and to provide a context for interpretation of campaign observations. During the 2004 and 2006 SSWs, the vortex broke down throughout the stratosphere, reformed quickly in the upper stratosphere, and remained weak in the middle and lower stratosphere. The stratopause reformed at very high altitude, above where it could be accurately represented in the meteorological analyses. The 2004 and 2006 Eureka campaigns were during the recovery from the SSWs, with the redeveloping vortex over Eureka. 2005 was the coldest winter on record in the lower stratosphere, but with an early final warming in mid-March. The vortex was over Eureka at the start of the 2005 campaign, but moved away as it broke up. Disparate temperature profile structure and vortex evolution resulted in much lower (higher) temperatures in the upper (lower) stratosphere in 2004 and 2006 than in 2005. Satellite temperatures agree well with Eureka radiosondes, and with lidar data up to 50–60 km. Consistent with a strong, cold upper stratospheric vortex and enhanced radiative cooling after the SSWs, MLS and ACE-FTS trace gas measurements show strongly enhanced descent in the upper stratospheric vortex during the 2004 and 2006 Eureka campaigns compared to that in 2005.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 183
    Publication Date: 2018-05-28
    Description: Filamentous sulfur-oxidizing bacteria and geochemical parameters of sediments at the Makran accretionary wedge in the northeastern Arabian Sea off Pakistan were studied. The upper continental slope between 350 and 850 m water depth, which is in the center of the oxygen-minimum zone, is characterized by numerous sites of small-scale seeps of methane- and sulfide-charged porewater. White bacterial mats with diameters 〈1 m were discovered at the surface of these sites using a photo-TV sled. Seep sediments, as well as non-seep sediments, in the vicinity were characterized by the occurrence of the bacterium Thioploca in near-surface layers between 0 and 13 cm depth. Thioploca bundles were up to 20 mm in length and contained up to 20 filaments of varying diameters, between 3 and 75 µm. Up to 169 ind. cm-2 were counted. Maximum numbers occurred in the top 9 cm of sediment, which contained very low concentrations of soluble sulfide (〈0.2 µM) and high amounts of elemental sulfur (up to 10 µmol cm-3). Moderate sulfate reduction activity (between 20 and 190 nmol cm-3 d-1) was detected in the top 10 cm of these sediments, resulting in a gradual downcore decrease of sulfate concentrations. CO2 fixation rates had distinct maxima at the sediment surface and declined to background values below 5 cm depth. The nutritional implications of the distinct morphology of Thioploca and of the geochemical setting are discussed and compared to other sites containing Thioploca communities.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 184
    Publication Date: 2012-07-06
    Description: The accurate reconstruction of sea surface temperature (SST) history in climate-sensitive regions (e.g. tropical and polar oceans) became a challenging task in palaeoceanographic research. Biogenic shell carbonate SST proxies successfully developed for tropical regions often fail in cool water environments. Their major regional shortcomings and the cryptic diversity now found within the major high latitude proxy carrier Neogloboquadrina pachyderma (sin.) highlight an urgent need to explore complementary SST proxies for these cool-water regions. Here we incorporate the genetic component into a calibration study of a new SST proxy for the high latitudes. We found that the calcium isotopic composition (δ44/40Ca) of calcite from genotyped net catches and core-top samples of the planktonic foraminifera Neogloboquadrina pachyderma (sin.) is related to temperature and unaffected by genetic variations. The temperature sensitivity has been found to be 0.17 (±0.02)‰ per 1°C, highlighting its potential for downcore applications in open marine cool-water environments. Our results further indicate that in extreme polar environments, below a critical threshold temperature of 2.0 (±0.5)°C associated with salinities below 33.0 (±0.5)‰, a prominent shift in biomineralization affects the δ44/40Ca of genotyped and core-top N. pachyderma (sin.), becoming insensitive to temperature. These findings highlight the need of more systematic calibration studies on single planktonic foraminiferal species in order to unravel species-specific factors influencing the temperature sensitivity of Ca isotope fractionation and to validate the proxies' applicability.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 185
    facet.materialart.
    Unknown
    Inter Research
    In:  Aquatic Microbial Ecology, 35 . pp. 153-162.
    Publication Date: 2016-05-26
    Description: Four in situ experiments were conducted to examine the potential top-down and bottom-up control of epibenthic ciliate communities. The experiments were run in the littoral of Lake Erken and at a brackish water site on the island of Väddö on the Baltic coast of Sweden, during the spring of 2000. The experimental manipulations were the presence/absence of the natural macrozoobenthos grazer community, cross-classified with the presence/absence of additional nutrients. Epibenthic ciliates responded to both manipulation of grazers and resources, but the response was group specific. Total ciliate abundance decreased when macrozoobenthos (largely chironomids, gastropods, trichopteran larvae, isopods and amphipods) were removed, thus excluding a direct predation effect of the macrozoobenthos community on ciliates. Total ciliate biomass, but not abundance, tended to increase in the presence of additional nutrients; an effect weakly dependent on season and site. The disparity between effects of nutrients on biomass and abundance was due to effects on heterotrichs, a group of large but relatively rare algivorous ciliates. The manipulations altered the ciliate community composition, and between lakes there were differences in species richness and diversity and experiments. However, neither the removal of macrozoobenthos nor the addition of nutrients changed species richness or diversity. This runs counter to work with other taxonomic groups, which shows maximal diversity at an intermediate level of resources or predation. This can only be partially explained by the lack of direct predation effects and the open nature of the experimental system.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 186
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 380 . pp. 33-41.
    Publication Date: 2018-06-01
    Description: Ecological stoichiometry can be a powerful tool to understand food web consequences of altered biogeochemical cycles as well as consequences of biodiversity loss on biogeochemistry and has proved to be a suitable framework to predict effects of consumers on the nutrient content of their prey. However, predictions from ecological stoichiometry have mainly been tested using single consumer species, whereas in most natural ecosystems several consumer species coexist. We conducted 2 outdoor mesocosm experiments with marine rock pool communities to test whether species richness and species combination of benthic invertebrates affected the nutrient content of periphyton. We independently manipulated 12 different consumer combinations ranging from 0 to 6 (2004) or 0 to 4 (2005) grazer species and measured the biomass and nutrient content of the algae. Grazers included 3 gastropods and 3 crustaceans. In 2005, we additionally analyzed animal nutrient content and N excretion rate. Algal biomass and C:N ratios decreased in the presence of grazers in both years, indicating that the remaining algae had higher internal N content. Also, both biomass (2004 and 2005) and C:N ratios (only 2004) decreased even further when grazer richness increased. In 2004, significant net diversity effects of grazer richness on periphyton C:N ratios indicated that periphyton N content under multispecies grazing could not be predicted from the effect of single species. In 2005, significant net diversity effects on C:N ratios were rare, but periphyton C:N ratios consistently decreased with increasing grazer excretion rate, indicating that higher nitrogen regeneration by grazers led to higher N incorporation by algae. The effects of species richness were mainly affected by the presence of one efficient grazer, the gastropod Littorina littorea. Our experiments indicate that non-additive intraguild interactions may qualitatively alter the stoichiometric effects of multispecies consumer assemblages.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 187
    Publication Date: 2016-11-14
    Description: A total of 354 adult European smelts Osmerus eperlanus (L.) were tested for their ability to survive the screen system of the cooling water inflow of a power plant. With increasing number of musculature parasitic third-stage larvae of Pseudoterranova decipiens, the survival rate of O. eperlanus decreased while the total number of externally visible injuries as well as the number of seriously injured specimens increased. The results indicate that even a single specimen of P. decipiens influences resistance and stamina and affects overall mortality of 7 to 20 cm long smelts. The initial effect of the parasites is to reduce swimming speed of infested fish, which leads to more frequent contact of these fish with the fine meshed screen of the cooling water inlet before they are removed by the automatic cleaning system. If the separated fishes are returned to the main stream, it becomes apparent that the cooling water inflow selectively reduces the number of living parasitised smelt in the area. Thus, the number of parasitic third-stage P. decipiens larvae in the local smelt population which are able to complete their life-cycle is also reduced. P. decipiens makes infested smelt more susceptible to negative anthropogenic influences such as cooling water intake or trawl fisheries.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 188
    Publication Date: 2018-05-08
    Description: Spatial and temporal variability in environmental factors can exert major influences on survival and growth of living organisms. However, in many key areas of fisheries science (e.g. growth, survival and recruitment determination), environmental heterogeneity is usually ignored because of insufficient environmental or fisheries data or lack of evidence that such heterogeneity impacts response variables. For the eastern Baltic Sea (ICES Subdivisions 25 to 32), we evaluated spatial and temporal differences in conditions affecting the survival of cod Gadus morhua L. eggs at survival on four distinct spawning sites within the assessment area. We intercalibrated ways of quantifying the volume of water ('reproductive volume') at each site where salinity, oxygen and temperature conditions permitted successful egg development. We have developed and compared a time series (1952 to 1996) of reproductive volumes among the areas to identify spatial differences. The results of 2 independent volume-estimation methods are comparable, indicating that highly significant differences exist among the sites, and that the westernmost spawning ground, Bornholm Basin, has on average the highest reproductive volume and the lowest variability among the 4 sites. These findings may be useful in evaluating how spatial and temporal variability in environmental conditions affect egg hatching success and possibly recruitment in the Baltic stock.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 189
    Publication Date: 2012-07-06
    Description: Iron is a key micronutrient for phytoplankton growth in the surface ocean. Yet the significance of volcanism for the marine biogeochemical iron-cycle is poorly constrained. Recent studies, however, suggest that offshore deposition of airborne ash from volcanic eruptions is a way to inject significant amounts of bio-available iron into the surface ocean. Volcanic ash may be transported up to several tens of kilometers high into the atmosphere during large-scale eruptions and fine ash may stay aloft for days to weeks, thereby reaching even the remotest and most iron-starved oceanic regions. Scientific ocean drilling demonstrates that volcanic ash layers and dispersed ash particles are frequently found in marine sediments and that therefore volcanic ash deposition and iron-injection into the oceans took place throughout much of the Earth's history. Natural evidence and the data now available from geochemical and biological experiments and satellite techniques suggest that volcanic ash is a so far underestimated source for iron in the surface ocean, possibly of similar importance as aeolian dust. Here we summarise the development of and the knowledge in this fairly young research field. The paper covers a wide range of chemical and biological issues and we make recommendations for future directions in these areas. The review paper may thus be helpful to improve our understanding of the role of volcanic ash for the marine biogeochemical iron-cycle, marine primary productivity and the ocean-atmosphere exchange of CO2 and other gases relevant for climate in the Earth's history.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 190
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 355 . pp. 1-7.
    Publication Date: 2019-09-23
    Description: Effects of global warming on marine ecosystems are far less understood than they are in terrestrial environments. Macrophyte-based coastal ecosystems are particularly vulnerable to global warming, because they often lack species redundancy. We tested whether summer heat waves have negative effects on an ecologically important ecosystem engineer, the eelgrass Zostera marina L., and whether high genotypic diversity may provide resilience in the face of climatic extremes. In a mesocosm experiment, we manipulated genotypic diversity of eelgrass patches fully crossed with water temperature (control vs. temperature stress) over 5 mo. We found a strong negative effect of warming and a positive effect of genotypic diversity on shoot densities of eelgrass. These results suggest that eelgrass meadows and associated ecosystem services will be negatively affected by predicted increases in summer temperature extremes. Genotypic diversity may provide critical response diversity for maintaining seagrass ecosystem functioning, and for adaptation to environmental change.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 191
    Publication Date: 2018-05-28
    Description: Natural marine bacteria populations collected from nearshore waters produce different types of siderophores depending on the degree of iron limitation. These siderophores can facilitate iron uptake in the marine diatom Phaeodactylum tricornutum. Water samples from 15 stations along the Italian coast of the northwest Adriatic Sea were collected and filter fractionated (3.0, 0.8 and 0.2 µm). Siderophore production in the fractions was determined using cross-feeding experiments with siderophore-auxotrophic bacteria. At most stations sampled, bacteria collected in the 3.0 and 0.8 µm filters produced siderophores which stimulated growth in Morganella morganii, the indicator strain for α-keto/ α-hydroxy acids. The results suggest that MGF (ŒMorganella-Growth Factor¹) production is common among filamentous and appendaged bacteria or strains associated with particles. Natural bacteria populations grown in iron-deficient media stimulated growth of all the indicator strains in the cross-feeding tests. Examples of known MGF which supply iron to M. morganii were tested for their ability to act as iron source for the marine diatom P. tricornutum. Iron uptake from 55Fe-MGFs was measured in P. tricornutum cells grown in Fe-sufficient and Fe-deficient media. Unchelated iron (55FeCl3 ) and 55FeEDTA were used as controls. The uptake of iron from the 55Fe-MGF and 55FeCl3 by Fe-deficient cells was higher (109 to 150 pgFe mg-1) than from 55FeEDTA (34 pgFe mg-1). Similarly, Fe-sufficient P. tricornutum took up iron from the 55Fe-MGF and 55FeCl3 to the same extent (~50 pgFe mg-1) while minimal uptake (8 pgFe mg-1) was measured from FeEDTA. In growth experiments where iron-deficient diatom cells were incubated in media containing different sources of iron, e.g. FeCl3, Fe-MGF and FeEDTA, a greater increase in number was observed in cells supplied with Fe-MGF. Further experiments also show that the uptake of Fe from MGF was enhanced by light and that a reduction step was involved in the uptake process. MGF also promoted the uptake of colloidal ferrihydrites. This study gives further evidence that siderophores produced by bacteria can be utilized by phytoplankton as an iron source. We therefore suggest that these substances play an important role in increasing the availability of iron to phytoplankton in coastal waters and thus are major factors defining the chemistry of iron in the marine environment.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 192
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 258 . pp. 233-241.
    Publication Date: 2018-05-30
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 193
    Publication Date: 2018-06-01
    Description: The effects of towed fishing gear on benthic fauna are under intense scrutiny and evidence is growing that trawling may significantly affect benthic communities in the North Sea. Most studies explore the current fauna or compare today’s situation with that of 2 or 3 decades ago, when North Sea-wide information on benthos and fishing became available. However, in the North Sea, extensive mechanised trawling began more than a century ago. This study compared historical and recent records in order to explore potential long-term links between changes in the epibenthos and fishing. Based on reconstructed species lists from museum specimens, we compared epibenthos data from 1902 to 1912 with those from 1982 to 1985 and 2000. We analysed changes in average taxonomic distinctness (AvTD), a biodiversity indicator, and changes in biogeographical species distributions. Landings data were collated for round- and flatfish caught in the northern, central and southern North Sea from 1906 to 2000 as proxies for total otter and beam trawl effort, respectively. These indicate that the southern and much of the central North Sea were fished intensively throughout the 20th century, whilst the northern North Sea was less exploited, especially in earlier decades; exploitation intensified markedly from the 1960s onwards. For epibenthos, the mean AvTD decreased significantly from the 1980s to 2000, when it was below expected values in 4 ICES rectangles, 3 of these located in heavily trawled areas. Biogeographical changes from the beginning to the end of the century occurred in 27 of 48 taxa. In 14 taxa, spatial presence was reduced by 50% or more, most notably in the southern and central North Sea; often these were long-lived, slow-growing species with vulnerable shells or tests. By contrast, 12 taxa doubled their spatial presence throughout the North Sea. Most biogeographical changes had happened by the 1980s. Given that other important environmental changes, including eutrophication and climate change, have gained importance mainly from the 1980s onwards, we have concluded that the changes in epibenthos observed since the beginning of the 20th century have resulted primarily from intensified fisheries.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 194
    Publication Date: 2012-07-06
    Description: Rates of dinitrogen (N2) fixation and primary production were measured during two 9 day transect cruises in the Baltic proper in June–July of 1998 and 1999. Assuming that the early phase of the bloom of cyanobacteria lasted a month, total rates of N2 fixation contributed 15 mmol N m−2 (1998) and 33 mmol N m−2 (1999) to new production (sensu Dugdale and Goering, 1967). This constitutes 12–26% more new N than other annual estimates (mid July–mid October) from the same region. The between-station variability observed in both total N2 fixation and primary productivity greatly emphasizes the need for multiple stations and seasonal sampling strategies in biogeochemical studies of the Baltic Sea. The majority of new N from N2 fixation was contributed by filamentous cyanobacteria. On average, cyanobacterial cells 〉20 µm were able to supply a major part of their N requirements for growth by N2 fixation in both 1998 (73%) and 1999 (81%). The between-station variability was high however, and ranged from 28–150% of N needed to meet the rate of C incorporation by primary production. The molar C:N rate incorporation ratio (C:NRATE) in filamentous cyanobacterial cells was variable (range 7–28) and the average almost twice as high as the Redfield ratio (6.6) in both years. Since the molar C:N mass ratio (C:NMASS) in filamentous cyanobacterial cells was generally lower than C:NRATE at a number of stations, we suggest that the diazotrophs incorporated excess C on a short term basis (carbohydrate ballasting and buoyancy regulation), released nitrogen or utilized other regenerated sources of N nutrients. Measured rates of total N2 fixation contributed only a minor fraction of 13% (range 4–24) in 1998 and 18% (range 2–45) in 1999 to the amount of N needed for the community primary production. An average of 9 and 15% of total N2 fixation was found in cells 〈5 µm. Since cells 〈5 µm did not show any detectable rates of N2 fixation, the 15N-enrichment could be attributed to regenerated incorporation of dissolved organic N (DON) and ammonium generated from larger diazotroph cyanobacteria. Therefore, N excretion from filamentous cyanobacteria may significantly contribute to the pool of regenerated nutrients used by the non-diazotroph community in summer. Higher average concentrations of regenerated N (ammonium) coincided with higher rates of N2 fixation found during the 1999 transect and a higher level of 15N-enrichment in cells 〈5 µm. A variable but significant fraction of total N2 fixation (1–10%) could be attributed to diazotrophy in cells between 5–20 µm.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 195
    Publication Date: 2019-10-10
    Description: Water column data of carbon and carbon relevant hydrographic and hydrochemical parameters from 188 previously non-publicly available cruises in the Arctic, Atlantic, and Southern Ocean have been retrieved and merged into a new database: CARINA (CARbon IN the Atlantic). The data have been subject to rigorous quality control (QC) in order to ensure highest possible quality and consistency. The data for most of the parameters included were examined in order to quantify systematic biases in the reported values, i.e. secondary quality control. Significant biases have been corrected for in the data products, i.e. the three merged files with measured, calculated and interpolated values for each of the three CARINA regions; the Arctic Mediterranean Seas (AMS), the Atlantic (ATL) and the Southern Ocean (SO). With the adjustments the CARINA database is consistent both internally as well as with GLODAP (Key et al., 2004) and is suitable for accurate assessments of, for example, oceanic carbon inventories and uptake rates and for model validation. The Arctic Mediterranean Seas include the Arctic Ocean and the Nordic Seas, and the quality control was carried out separately in these two areas. This contribution provides an overview of the CARINA data from the Nordic Seas and summarises the findings of the QC of the salinity data. One cruise had salinity data that were of questionable quality, and these have been removed from the data product. An evaluation of the consistency of the quality controlled salinity data suggests that they are consistent to at least ±0.005.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 196
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 211 . pp. 261-274.
    Publication Date: 2015-02-09
    Description: Marine angiosperms, or seagrasses, continue to be a major focus of marine biologists because of their important ecological role in many coastal ecosystems. Seagrass population biology could benefit from a population genetic perspective because genetic data enable the extraction of useful demographic information such as isolation and gene flow between demes. Moreover, population genetic processes may contribute to the growing ecological risks of local population extinction. Progress in seagrass genetics is partly driven by novel genetic markers which detect variation at the DNA level and overcome the limited polymorphism of allozymes. Key results of studies in the past decade, mostly using RAPD and microsatellites, were (1) considerable genetic and genotypic (clonal) diversity is present in several species in contrast to earlier notions of low polymorphism detected at allozyme loci, and (2) genetic differentiation among populations seems to be the rule despite earlier reports of genetic uniformity. Pronounced genetic structure was detected between populations of 4 species examined thus far (Posidonia oceanica, P. australis, Zostera marina, Thalassia testudinum). The FST estimates varied widely and ranged from 0.01 to 0.623 across studies and species. Genetic differentiation at a systematic range of scales was only studied in eelgrass Zostera marina, where it was positively correlated with geographic distance. The high polymorphism of RAPD or microsatellite markers will allow the augmention of indirect estimates of gene flow by methods detecting individual immigration events through paternity analysis or assignment tests. Important conservation related issues such as the level of inbreeding and the effective population size have also been obtained from genetic marker data, but results are too scarce at the moment to allow generalizations. In Zostera marina and Posidonia australis, several population genetic attributes such as clonal diversity, mating system and effective population size varied among populations within species, highlighting that there is no Œtypical¹ population. An important gap in our knowledge is whether the effects of natural population fragmentation and patchiness enhance the genetic isolation of populations due to anthropogenic disturbances. It is also unclear whether genetic differentiation displayed at marker loci are correlated with fitness-related plant traits, and whether genetic or genotypic diversity is important for medium- to long-term meadow persistence. An assessment of the genetic and genotypic diversity at marker loci should be combined with experiments on the ecological plasticity and reaction norms of genotypes composing the populations in question. This way, the role of genetic diversity for seagrass population maintenance and growth in the face of changing environmental conditions can be evaluated.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 197
    Publication Date: 2020-10-26
    Description: Constraints on the Mediterranean Sea's storage of anthropogenic CO2 are limited, coming only from data-based approaches that disagree by more than a factor of two. Here we simulate this marginal sea's anthropogenic carbon storage by applying a perturbation approach in a high-resolution regional model. Our model simulates that, between 1800 and 2001, basin-wide CO2 storage by the Mediterranean Sea has increased by 1.0 Pg C, a lower limit based on the model's weak deep-water ventilation, as revealed by evaluation with CFC-12. Furthermore, by testing a data-based approach (transit time distribution) in our model, comparing simulated anthropogenic CO2 to values computed from simulated CFC-12 and physical variables, we conclude that the associated basin-wide storage of 1.7 Pg, published previously, must be an upper bound. Out of the total simulated storage of 1.0 Pg C, 75% comes from the air-sea flux into the Mediterranean Sea and 25% comes from net transport from the Atlantic across the Strait of Gibraltar. Sensitivity tests indicate that the Mediterranean Sea's higher total alkalinity, relative to the global-ocean mean, enhances the Mediterranean's total inventory of anthropogenic carbon by 10%. Yet the corresponding average anthropogenic change in surface pH does not differ significantly from the global-ocean average, despite higher total alkalinity. In Mediterranean deep waters, the pH change is estimated to be between -0.005 and -0.06 pH units.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 198
    Publication Date: 2015-03-12
    Description: Dedicated to the memory of our colleague Klaus Hochheim, who tragically lost his life in the Arctic expedition in September 2013. A distinct, subsurface density front along the eastern St. Anna Trough in the northern Kara Sea is inferred from hydrographic observations in 1996 and 2008–2010. Direct velocity measurements show a persistent northward subsurface current (~ 18 cm s−1) along the St. Anna Trough eastern flank. This sheared flow, carrying the outflow from the Barents and Kara seas to the Arctic Ocean, is also evident from shipboard observations as well as from geostrophic velocities and numerical model simulations. Although we cannot substantiate our conclusions by direct observation-based estimates of mixing rates in the area, we hypothesize that the enhanced vertical mixing along the St. Anna Trough eastern flank favors the upward heat loss from the intermediate warm Atlantic water layer. Modeling results support this hypothesis. The upward heat flux inferred from hydrographic data and model simulations is of O(30–100) W m−2. The region of lowered sea ice thickness and concentration seen both in sea ice remote sensing observations and model simulations marks the Atlantic water pathway in the St. Anna Trough and adjacent Nansen Basin continental margin. In fact, the sea ice shows a delayed freeze-up onset during fall and a reduction in the sea ice thickness during winter. This is consistent with our results on the enhanced Atlantic water heat loss along the Atlantic water pathway in the St. Anna Trough.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 199
    Publication Date: 2019-01-01
    Description: Snow crabs Chionoecetes opilio are quite productive at suitable temperatures, but can also be abundant in water cold enough to depress settlement of larvae, growth, and reproduction. In much of the northern Bering Sea, bottom water temperatures are below -1°C for most or all of the year. Crab pelagic larvae prefer to settle at temperatures above 0°C, so we found high densities of juveniles only where intruding warm currents deposited larvae in localized areas. After settlement, maturing crabs appeared to exhibit ontogenetic migration toward deeper, warmer water. Cold temperatures excluded key predators, but decreased fecundity by restricting females to small body size (with associated small clutches) and to breeding every 2 yr. Migration to warmer water may allow females to breed annually and to encounter more adult males needed to fertilize subsequent clutches. Because older males also emigrate, remaining adolescent males probably inseminate newly maturing females. Without localized intrusion of warmer currents, snow crabs might not persist at high densities in such cold waters. However, they are currently very abundant, and export many pelagic larvae and adults.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 200
    Publication Date: 2015-03-13
    Description: Following the launch of ESA's Soil Moisture and Ocean Salinity (SMOS) mission, it has been shown that brightness temperatures at a low microwave frequency of 1.4 GHz (L-band) are sensitive to sea ice properties. In the first demonstration study, sea ice thickness up to 50 cm has been derived using a semi-empirical algorithm with constant tie-points. Here, we introduce a novel iterative retrieval algorithm that is based on a thermodynamic sea ice model and a three-layer radiative transfer model, which explicitly takes variations of ice temperature and ice salinity into account. In addition, ice thickness variations within the SMOS spatial resolution are considered through a statistical thickness distribution function derived from high-resolution ice thickness measurements from NASA's Operation IceBridge campaign. This new algorithm has been used for the continuous operational production of a SMOS-based sea ice thickness data set from 2010 on. The data set is compared to and validated with estimates from assimilation systems, remote sensing data, and airborne electromagnetic sounding data. The comparisons show that the new retrieval algorithm has a considerably better agreement with the validation data and delivers a more realistic Arctic-wide ice thickness distribution than the algorithm used in the previous study (Kaleschke et al., 2012).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...