ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.01. Gases  (8)
  • 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology  (5)
  • Springer-Verlag  (11)
  • Copernicus
  • Public Library of Science (PLoS)
Collection
Years
  • 1
    Publication Date: 2017-04-04
    Description: Continuous monitoring of soil CO2 dynamic concentration (which is proportional to the CO2 flux through the soil) was carried out at a peripheral site of Mt. Etna during the period November 1997 - September 2000 using an automated station. The acquired data were compared with SO2 flux from the summit craters measured two to three times a week during the same period. The high frequency of data acquisition with both methods allowed us to analyze in detail the time variations of both parameters. Anomalous high values of soil CO2 dynamic concentration always preceded periods of increased flux of plume SO2, and these in turn were followed by periods of summit eruptions. The variations were modeled in terms of gas efflux increase due to magma ascent to shallow depth and its consequent depressurization and degassing. This model is supported by data from other geophysical and volcanological parameters. The rates of increase both of soil CO2 dynamic concentration and of plume SO2 flux are interpreted to be positively correlated both to the velocity of magma ascent within the volcano and to lava effusion rate once magma is erupted at the surface. Low rates of the increase were recorded before the nine-month-long 1999 subterminal eruption. Higher rates of increase were observed before the violent summit eruption of September-November 1999, and the highest rates were observed during shorter and very frequent spike-like anomalies that preceded the sequence of short-lived but very violent summit eruptions that started in late January 2000 and continued until late June of the same year. Furthermore, the time interval between the peaks of CO2 and SO2 in a single sequence of gas anomalies is likely to be controlled by magma ascent velocity.
    Description: Consiglio Nazionale delle Ricerche of Italy (C.N.R.)Gruppo Nazionale per la Vulcanologia.
    Description: Published
    Description: 80-89
    Description: partially_open
    Keywords: Mt. Etna ; Soil CO2 emissions ; Plume SO2 flux ; COSPEC ; Continuous geochemical monitoring ; Eruptive activity ; Degassing model ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 535 bytes
    Format: 1644622 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Measurements of CO2 flux from the ground were periodically carried out on the island of Vulcano (Aeolian Islands, Italy) between 1984 and 1994. Three high-flux areas were identified at the foot of the volcanic cone (La Fossa), either inside or very close to the main village. Effect of the choice of the sampling grid was evaluated. A different sampling grid resulted in similar distribution patterns, but with different CO2 fluxes. Therefore, the absolute estimate of the total flux from the investigated area includes a large degree of uncertainty, but repeated measurements with permanent sampling sites are accurate and can detect small changes. No correlation of the flux with atmospheric parameters was found at sites with high fluxes. Some periods characterized by high CO2 fluxes were observed, and a close correlation was found between the gas emissions from the ground and other geochemical and geophysical parameters such as temperature, chemical composition, steam, and SO2 flux from fumaroles, seismic energy release, and ground deformations. The results show that major temporal variations of diffuse CO2 flux are related to variations in volcanic activity.
    Description: Gruppo Nazionale per la Vulcanologia CNR Italy.
    Description: Published
    Description: 219–228
    Description: partially_open
    Keywords: CO2 ; Flux measurements ; Gas emissions ; Soil gas ; Volcanic activity ; Vulcano ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 535 bytes
    Format: 368780 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Springer-Verlag
    Publication Date: 2017-04-04
    Description: The July-August 2001 eruption of Mt. Etna stimulated widespread public and media interest, caused significant damage to tourist facilities, and for several days threatened the town of Nicolosi on the S flank of the volcano. Seven eruptive fissures were active, five on the S flank between 3050 and 2100 m altitude, and two on the NE flank between 3080 and 2600 m elevation. All produced lava flows over various periods during the eruption, the most voluminous of which reached a length of 6.9 km. Mineralogically the 2001 lavas fall into two distinct groups, indicating that magma was supplied through two different and largely independent pathways, one extending laterally from the central conduit system through radial fissures, the other being a vertically ascending eccentric dike. Furthermore one of the eccentric vents, at 2570 m elevation, was the site of vigorous phreatomagmatic activity as the dike cut through a shallow aquifer, both during the intial and closing stages of the eruption. For six days the magma column feeding this vent was more or less effectively sealed from the aquifer, permitting powerful explosive and effusive magmatic activity. While the eruption was characterized by a highly dynamic evolution, complex interactions between some of the eruptive fissures, and changing eruptive styles, its total volume (~25 x 106 m3 of lava and 5-10 x 106 m3 of pyroclastics) was relatively small in comparison with other recent eruptions of Etna. Effusion rates were calculated on a daily basis and reached peaks of 14-16 m3 s-1 while the average effusion rate at all fissures was about 11 m3 s-1, which is not exceptionally high. The eruption showed a number of peculiar features, but none of these (except the contemporaneous lateral and eccentric activity) represented a significant deviation from Etna's eruptive behavior in the long term. However, the 2001 eruption could be but the first in a series of flank eruptions, some of which might be more voluminous and hazardous. Placed in a long-term context, the eruption confirms a distinct trend, initiated during the past 50 years, toward higher production rates and more frequent eruptions, which might bring Etna back to similar levels of activity as during the early to mid 17th century.
    Description: Published
    Description: 461-476
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Mt. Etna ; 2001 eruption ; Lava flow-field evolution ; Central-lateral vs. eccentric activity ; Phreatomagmatism ; Eruption dynamics ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Methane plays an important role in the Earth’s atmospheric chemistry and radiative balance being the second most important greenhouse gas after carbon dioxide. Methane is released to the atmosphere by a wide number of sources, both natural and anthropogenic, with the latter being twice as large as the former (IPCC, 2007). It has recently been established that significant amounts of geological methane, produced within the Earth’s crust, are currently released naturally into the atmosphere (Etiope, 2004). Active or recent volcanic/geothermal areas represent one of these sources of geological methane. But due to the fact that methane flux measurements are laboratory intensive, very few data have been collected until now and the contribution of this source has been generally indirectly estimated (Etiope et al., 2007). The Greek territory is geodynamically very active and has many volcanic and geothermal areas. Here we report on methane flux measurements made at two volcanic/geothermal systems along the South Aegean volcanic arc: Sousaki and Nisyros. The former is an extinct volcanic area of Plio-Pleistocene age hosting nowadays a low enthalpy geothermal field. The latter is a currently quiescent active volcanic system with strong fumarolic activity due to the presence of a high enthalpy geothermal system. Both systems have gas manifestations that emit significant amounts of hydrothermal methane and display important diffuse carbon dioxide emissions from the soils. New data on methane isotopic composition and higher hydrocarbon contents point to an abiogenic origin of the hydrothermal methane in the studied systems. Measured methane flux values range from –48 to 29,000 (38 sites) and from –20 to 1100 mg/mˆ2/d (35 sites) at Sousaki and Nisyros respectively. At Sousaki measurement sites covered almost all the degassing area and the diffuse methane output can be estimated in about 20 t/a from a surface of about 10,000 mˆ2. At Nisyros measurements covered the Stephanos and Kaminakia areas, which represent only a part of the entire degassing area. The two areas show very different methane degassing pattern with latter showing much higher flux values. Methane output can be estimated in about 0.25 t/a from an area of about 30,000 mˆ2 at Stephanos and about 1 t/a from an area of about 20,000 mˆ2 at Kaminakia. The total output from the entire geothermal system of Nisyros probably should not exceed 2 t/a.
    Description: Published
    Description: Vienna, Austria
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: open
    Keywords: methane output ; diffuse degassing ; volcanic/hydrothermal systems ; Greece ; 01. Atmosphere::01.01. Atmosphere::01.01.03. Pollution ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: A biomonitoring survey, above tree line level, using two endemic species (Senecio aethnensis and Rumex aethnensis) was performed on Mt. Etna, in order to evaluate the dispersion and the impact of volcanic atmospheric emissions. Samples of leaves were collected in summer 2008 from 30 sites in the upper part of the volcano (1500- 3000 m a.s.l). Acid digestion of samples was carried out with a microwave oven, and 44 elements were analyzed by using plasma spectrometry (ICP-MS and ICP-OES). The highest concentrations of all investigated elements were found in the samples collected closest to the degassing craters, and in the downwind sector, confirming that the eastern flank of Mt. Etna is the most impacted by volcanic emissions. Leaves collected along two radial transects from the active vents on the eastern flank, highlight that the levels of metals decrease one or two orders of magnitude with increasing distance from the source. This variability is higher for volatile elements (As, Bi, Cd, Cs, Pb, Sb, Tl) than for more refractory elements (Al, Ba, Sc, Si, Sr, Th, U). The two different species of plants do not show significant differences in the bioaccumulation of most of the analyzed elements, except for lanthanides, which are systematically enriched in Rumex leaves. The high concentrations of many toxic elements in the leaves allow us to consider these plants as highly tolerant species to the volcanic emissions, and suitable for biomonitoring researches in the Mt. Etna area.
    Description: Published
    Description: Vienna, Austria
    Description: 4.4. Scenari e mitigazione del rischio ambientale
    Description: open
    Keywords: Mt. Etna ; biomonitoring ; Trace elements ; 01. Atmosphere::01.01. Atmosphere::01.01.03. Pollution ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Significant changes in the helium and carbon isotopic composition of shallow thermal waters vs. gas and a crater fumarolic gas have been recorded at Stromboli prior and during the 2002–2003 eruption. The 3He/4He ratios corrected for air contamination (Rc/Ra), and δ13C of fumarolic gases gradually increased from May to November 2002 before the eruption onset. These variations imply early degassing of a gas-rich magma at depth that likely fed both the intense Strombolian activity and small lava overflows recorded during that period. The lava effusion of late December 2002 was shortly preceded by a marked Rc/Ra decrease both in water and fumarolic gases. Comparison of He/CO2 and CH4/CO2 ratios in dissolved gas and with δ13CCO2 values rules out the Rc/Ra decrease due to an increasing input of radiogenic 4He. The Rc/Ra decrease is attributed to the He isotope fractionation during rapid magma ascent and degassing. A new uprising of 3He-rich magma probably occurred in January to February 2003, when Rc/Ra ratios displayed the highest values in dissolved gases ever measured before (4.56 Rc/Ra). The increase in He/CO2 and CH4/CO2 ratios and decrease in δ13C of dissolved CO2 was recorded after the 5 April 2003 explosive paroxysm, likely caused by enhanced gas-water interaction inducing CO2 dissolution. No anomalous Rc/Ra values were recorded in the same period, when usual Strombolian activity gradually resumed.
    Description: Published
    Description: 118–134
    Description: partially_open
    Keywords: Stromboli ; Eruption ; Geochemistry ; Helium ; Isotopes ; Magma ascent ; Dissolved gases ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 535 bytes
    Format: 482068 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: Abstract After 16 months of quiescence, Mount Etna began to erupt again in mid-July 2006. The activity was concentrated at and around the Southeast Crater (SEC), one of the four craters on the summit of Etna, and eruptive activity continued intermittently for 5 months. During this period, numerous vents displayed a wide range of eruptive styles at different times. Virtually all explosive activities took place at vents at the summit of the SEC and on its flanks. Eruptive episodes, which lasted from 1 day to 2 weeks, became shorter and more violent with time. Volcanic activity at these vents was often accompanied by dramatic mass-wasting processes such as collapse of parts of the cone, highly unusual flowage processes involving both old rocks and fresh magmatic material, and magma– water interaction. The most dramatic events took place on 16 November, when numerous rockfalls and pyroclastic density currents (PDCs) were generated during the opening of a large fracture on the SE flank of the SEC cone. The largest PDCs were clearly triggered explosively, and there is evidence that much of the energy was generated during the interaction of intruding magma with wet rocks on the cone’s flanks. The most mobile PDCs traveled up to 1 km from their source. This previously unknown process on Etna may not be unique on this volcano and is likely to have taken place on other volcanoes. It represents a newly recognized hazard to those who visit and work in the vicinity of the summit of Etna.
    Description: A part of this research was funded by the Istituto Nazionale di Geofisica e Vulcanologia (INGV) and by the Dipartimento per la Protezione Civile (Italy).
    Description: Published
    Description: 1249–1268
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: open
    Keywords: Mount Etna ; Pyroclastic density currents ; Lava–water interaction ; Hydrothermal alteration ; Hazards ; Volcano instability ; 2006 eruption ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: Accurate and precisely located self-potential (SP), temperature (T) and CO2 measurements were carried out in the summit area of Stromboli along 72 straight profiles. SP data were acquired every metre and T data every 2.5 m. CO2 concentrations were acquired with the same density as T, but only along seven profiles. The high density of data and the diversity of the measured parameters allows us to study structures and phenomena at a scale rarely investigated. The shallow summit hydrothermal activity (Pizzoâ Fossa area) is indicated by large positive SP, T and CO2 anomalies. These anomalies are focused on crater faults, suggesting that the fracture zones are more permeable than surrounding rocks at Stromboli. The analysis of the distribution of these linear anomalies, coupled with the examination of the geologic, photographic and topographic data, has led us to propose a new structural interpretation of the summit of Stromboli. This newly defined structural framework comprises (1) a large Pizzo circular crater, about 350 m in diameter; (2) a complex of two concealed craters nested within the Pizzo crater (the Large and the Small Fossa craters), thought to have formed during the eruption of the Pizzo pyroclastites unit; the Small Fossa crater is filled with highly impermeable material that totally impedes the upward flow of hydrothermal fluids; and (3) The present complex of active craters. On the floor of the Fossa, short wavelength SP lows are organized in drainage-like networks diverging from the main thermal anomalies and converging toward the topographic low in the Fossa area, inside the Small Fossa crater. They are interpreted as the subsurface downhill flow of water condensed above the thermal anomalies. We suspect that water accumulates below the Small Fossa crater as a perched water body, representing a high threat of strong phreatic and phreatomagmatic paroxysms. T and CO2 anomalies are highly correlated. The two types of anomalies have very similar shapes, but the sensitivity of CO2 measurements seems higher for lowest hydrothermal flux. Above T anomalies, a pronounced high frequency SP signal is observed. Isotopic analyses of the fluids show similar compositions between the gases rising through the faults of the Pizzo and Large Fossa craters. This suggests a common origin for gases emerging along different structural paths within the summit of Stromboli. A site was found along the Large Fossa crater fault where high gas flux and low air contamination made gas monitoring possible near the active vents using the alkaline bottle sampling technique.
    Description: Published
    Description: 486â 504
    Description: partially_open
    Keywords: Carbon dioxide ; Hydrothermal system ; Soil gas ; Stromboli ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.03. Physical::03.03.01. Air/water/earth interactions ; 03. Hydrosphere::03.03. Physical::03.03.02. General circulation ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methods ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1326642 bytes
    Format: 535 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: New Sr–Nd–Pb isotopic ratios and trace element data for volcanic mafic rocks outcropping along a E–W transect in southern Italy, from Mt. Vulture to Neapolitan volcanoes, are reported. The variation of LILE/HFSE, HFSE/HFSE and radiogenic isotopes along this transect indicates that all of these volcanoes contain both intra-plate and subduction-related signatures, with the former decreasing from Mt. Vulture to Campanian volcanoes. New data are also reported for the Paleocene alkaline rocks from Pietre Nere (Apulia foreland), which show isotopic ratios mostly overlapping the values for Mediterranean intra-plate volcanoes as well as the Eocene–Oligocene alkaline mafic lavas from the northern Adria plate. Pietre Nere provides evidence for an OIB mantle composition of FOZO-type, free of subduction influences, that is present beneath the Adria plate (Africa) before its collision with Europe. After this collision, and formation of the southern Apennines, westward inflow of mantle from the Adria plate to the Campanian area occurred, as a consequence of slab break off. Interaction of subduction components with inflowing Adria mantle generated hybrid sources beneath the Vulture–Campania area, which can explain the compositional features of both Mt. Vulture and the Campanian mafic rocks. Therefore, mafic magmas from these volcanoes represent variable degrees of mixing between different mantle components.
    Description: Published
    Description: reserved
    Keywords: isotopic ; southern Italy ; Mt. Vulture ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 901510 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: Ash fallout collected during 4 days of sampling at Stromboli confirms that a crystal-rich (HP) degassed magma erupts during the Strombolian explosions that are characteristic of the normal activity of this volcano. We identified 3 different types of juvenile ash fragments (fluidal, spongy and dense), which formed through different mechanisms of fragmentation of the low-viscosity, physically heterogeneous (in terms of the size and spatial distribution of bubbles) shoshonitic magma. A small amount (less than 3 vol%) of volatile-rich magma with low porphyricity (LP), erupted as highly vesicular ash fragments, has been collected, together with the HP magma, during normal strombolian explosions. Laboratory experiments and the morphological, textural and compositional investigations of ash fragments reveal that the LP ash is fresh and not recycled from the last paroxysm (15 March 2007). We suggest that small droplets of LP magma are dragged to the surface by the time-variable but persistent supply of deep derived CO2-rich gas bubbles. This coupled ascent of bubbles and LP melts is transient and does not perturb the dynamics of the HP magma within the shallow reservoir. This finding provides a new perspective on how the Stromboli volcano works and has important implications for monitoring strategies.
    Description: Published
    Description: 471-477
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: JCR Journal
    Description: reserved
    Keywords: Stromboli ; Strombolian activity ; Ash ; Paroxysms ; Clast morphology ; Glass chemistry ; Bubble ascent ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2017-04-04
    Description: This study focuses on a pyroclastic sequence related to a large-scale paroxysm that occurred during the seventeenth century ad and which can be considered one of the most powerful and hazardous explosive events at the volcano in the past few centuries. Paroxysms are energetic, short-lived explosions which sporadically interrupt normal Strombolian activity at Stromboli and commonly erupt a deep-derived, volatile-rich crystal-poor high-potassium basalt (“low porphyricity” (LP)), together with a shallow, degassed crystal-rich high-potassium to shoshonitic basalt (“high porphyricity” (HP)), which feed normal activity at the volcano. The studied deposit, crops out along the flanks of Sciara del Fuoco and, from base to top, consists of: (1) a layer of HP and LP ash and lapilli; (2) an unwelded layer of coarse HP lapilli and flattened dark scoriae; (3) weakly welded spatter made up of dense HP pyroclasts at the base, overlain by strongly vesicular LP clasts. The textural and chemical zoning of minerals and the glass chemistry of the LP products record repeated mafic recharge events, mixing with an old mushy body and episodes of rapid crystallization due to sudden degassing. Collapse of a foam layer originated by deep degassing probably triggered this large-scale, spatter-forming paroxysm. Decompression induced rapid degassing and vesiculation of the deep volatile-rich magma. The rapid ascent of the foamy magma blob pushed the shallow HP magma out and finally produced a fire fountain that emplaced the LP portion of the spatter.
    Description: Published
    Description: 1393-1406
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: JCR Journal
    Description: reserved
    Keywords: Explosive paroxysm ; Mineral zoning ; Magma evolution ; Eruption dynamics ; Stromboli ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2020-02-24
    Description: Petrographic, minerochemical, and geothermobarometric data are reported for a suite of spinel-lherzolite pargasite xenoliths hosted in a Quaternary basanitic lava flow from the North-Western Ethiopian Plateau (Injibara, Lake Tana Province). Protogranular to porphyroclastic (deformed) rocks show evidence of a modal metasomatism, represented by a Cl-rich pargasitic amphibole, coupled with cryptic enrichment in Fe and Al. Equigranular rocks (granular) record a further cryptic metasomatism, represented by enrichment in Fe, Al, Na, and depletion in Ni, Cr and Cl. Some xenoliths (transitional) show intermediate textural and compositional characters, indicating that the granular samples represent an evolution of the deformed ones. All xenoliths give the same P–T equilibration conditions for Opx-Cpx pairs (947–1015 C and 1.3–2.0 GPa), but in granular samples, recrystallised olivine and spinel record T about 100 C higher. Two distinct metasomatic processes, probably connected with the emplacement of the Afar plume, are proposed. The first one is a pervasive modal metasomatism produced by water-rich fluids. The latter is a non-pervasive cryptic metasomatism, probably connected to migration of melts. The comparison the mantle beneath the Ethiopian Volcanic Plateau, the southern Main Ethiopian Rift and the central Main Ethiopian Rift suggests spatial heterogeneity of the mantle and variable mantle processes during asthenospheric upwelling.
    Description: Published
    Description: 47-78
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: lithosphere ; peridotite xenoliths ; Ethiopian Volcanic Plateau ; Metasomatism ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2017-04-04
    Description: One hundred and fifty samples of recent Na-alkalic lavas from the south-eastern flank of Mt. Etna, dating from about 5,000 years B.P. to 1886 were analyzed. They grade in time from more acid to more basic lavas, and show an overall range of variation much larger toward the more felsic end than previously known. Chondrite-normalized REE patterns of the least differentiated samples show LREE enrichment and HREE depletion; trace dement compositions suggest that Etnean products are similar to WPB, with a weak CAB signature. Sr-isotope ratios ranging from 0.70332 to 0.70355, vary even within samples from the same eruption, and generally tend to increase with time in historic lavas. Our data suggest that processes other than simple crystal fractionation are, in part, responsible for the variation of the analyzed sequence. In fact, RTF processes with successive influxes of mafic melts, each having distinct, slightly different geochemical and isotopic features, into reservoirs of variously differentiated magmas, may explain the overall observed data. The source region for Recent Mongibello lavas is located in the mantle, isotopically zoned, and Rb-depleted with respect to the Bulk Earth composition. Model and experimental data conform well with a low degree (〈 5%) modal melting of a garnet lherzolite source, depleted by an earlier melting event with respect to primitive mantle composition.
    Description: Published
    Description: 1-21
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: JCR Journal
    Description: reserved
    Keywords: Recent Mongibello ; Mount Etna ; magma differentiation ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...