ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (61,262)
  • Oxford University Press  (42,273)
  • Canadian Science Publishing  (18,989)
  • Geosciences  (61,262)
Collection
Years
Journal
  • 1
    Publication Date: 2020-09-01
    Description: Efforts to date have not advanced Indigenous participation, capacity building and knowledge in Arctic environmental science in Canada because Arctic environmental science has yet to acknowledge, or truly practice decolonizing research. The expanding literature on decolonizing and Indigenous research provides guidance towards these alternative research approaches, but less has been written about how you do this in practice and the potential role for non-Indigenous research partners in supporting Inuit self-determination in research. This paper describes the decolonizing methodology of a non-Indigenous researcher partner and presents a co-developed approach, called the Sikumiut model, for Inuit and non-Indigenous researchers interested in supporting Inuit self-determination. In this model the roles of Inuit and non-Indigenous research partners were redefined, with Inuit governing the research and non-Indigenous research partners training and mentoring Inuit youth to conduct the research themselves. The Sikumiut model shows how having Inuit in decision-making positions ensured Inuit data ownership, accessibility, and control over how their Inuit Qaujimajatuqangit is documented, communicated, and respected for its own scientific merit. It examines the benefits and potential to build on the existing research capacity of Inuit youth and describes the guidance and lessons learned from a non-Indigenous researcher in supporting Inuit self-determination in research. Pinasuktaujut maannamut pivaallirtittisimangimmata nunaqarqaarsimajunik ilautitauninginnik, pijunnarsivallianirmik ammalu qaujimajaujunik ukiurtartumi avatilirinikkut kiklisiniarnikkut kanata pijjutigillugu ukiurtartumi avatilirinikkut kiklisiniarnikkut ilisarsisimangimmata, uvaluunniit piliringimmata issaktausimangittunik silataanit qaujisarnirmut. Uqalimaagait issaktausimangittunit silataanit ammalu nunaqarqaarsimajut qaujisarningit piviqartittikmata tukimuagutaujunnarlutik asiagut qaujisarnikkut, kisiani titirartauqattanginnirsaukmat qanuq pilirigajarmangaata ammalu ilautitauningit nunaqarqaarsimangittut qaujisarnirmut ikajurtuilutik Inuit nangminiq qaujisaqattarnirmut. Taanna titirarsimajuq uqausiqartuq issaktausimangillutik iliqusiujumik nunaqarqaarsimangittut qaujisartiujut ammalu saqittillutik ikajurtigiiklutik pigiartittinirmik, taijaujuq sikumiut aturtanga, inungnut ammalu nunaqarqaarsimangittunut qaujisartinut pijumajunut ikajurtuilutik Inuit nangminiq qaujisarnirmut. Tavani aturtaujumi piliriaksangit Inuit ammalu nunaqarqaarsimangittut qaujisartiujut tukisinarsititaullutik, Inuit aulattillutik qaujisarnirmik ammalu nunaqarqaarsimangittut qausartit ilinniartittillutik ammalu pilimmaksaillutik makkuktunik inungnik nangminiq qaujisarunnarniarmata. Sikumiunut aturtaujuq takuksaujuq qanuq Inuit aaqiksuijiullutik Inuit pisimajiuniarlutik tinngirartaujunik, takujaujunnarningit ammalu aulatauningit qanuq inuit qaujimajatuqangit titirartaukmangaata, tusaumajjutaukmangaata ammaluikpigijaulutik kiklisiniarnikkut atuutiqarninginnik. Takunangniujuq pivaalliutaujunnartunik ammalu pirurpalliagajartunik maanna qaujisarniujumik pijunnarsiqullugit makkuktut Inuit ammalu uqausiulluni tukimuagutaujunnartut ammalu ilitausimajut nunaqarqaarsimangittunit qausartinit ikajurtuilutik inuit nangminiq qaujisarnirmut.
    Electronic ISSN: 2368-7460
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-08-25
    Description: A total of 344 soil cores were taken in annually cropped fields of Alberta, Saskatchewan, Manitoba, and Ontario from 2011 to 2013 in areas where the field shapes, or obstacles within fields, required the driving pattern of farm operations to overlap. Soil nitrate-N concentrations in overlapping areas were 60% greater, soil Olsen-P concentrations were 23% greater, and pH was 0.5 units greater at 0–15 cm depth compared with non-overlapping areas, suggesting smaller nutrient use efficiency and potential for greater nutrient loss.
    Print ISSN: 0008-4271
    Electronic ISSN: 1918-1841
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-08-25
    Description: Differences in soil water retention (SWR) characteristics between soil types and the factors driving those differences provide important information for land management, particularly in regions such as the Colombian Andes, which have limited water-storage infrastructure and where soils provide plant-available water and other ecosystem services. The objective of this study was to explore relationships between SWR and physical, chemical, and mineralogical properties of Andisols and Inceptisols through a case study of two watersheds in the Colombian Andes. This study identified a complex relationship between total carbon (TC), short-range order (SRO) minerals, and SWR. Both soil types had high SWR, with volumetric water content at permanent wilting point between 39% and 53%. Principal component analysis showed association of SWR with TC, SRO minerals, and % clay in both soil types. The Andisols of this study were coarse textured, allophanic (rich in allophane and imogolite — up to 17% in the B horizon), and with up to 15% TC in the A horizon. In contrast, the Inceptisols were fine textured (〉30% clay) and higher in ferrihydrite than the Andisols. The formation of organo-metallic complexes was observed in A horizons; however, TC was lower under pasture than forest in both soil types. The addition of organic matter to soils with SRO minerals, such as the soils of this study, may foster the formation of organo-metallic complexes, stabilize soil C, and enhance SWR. Consequently, both study sites may benefit from management practices that increase soil organic matter.
    Print ISSN: 0008-4271
    Electronic ISSN: 1918-1841
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-08-31
    Description: Summary On 24th August 2016 at 01:36 UTC a ML6.0 earthquake struck several villages in central Italy, among which Accumoli, Amatrice and Arquata del Tronto. The earthquake was recorded by about 350 seismic stations, causing 299 fatalities and damage with macroseismic intensities up to 11. The maximum acceleration was observed at Amatrice station (AMT) reaching 916 cm/s2 on E-W component, with epicentral distance of 15 km and Joyner and Boore distance to the fault surface (RJB) of less than a kilometre. Motivated by the high levels of observed ground motion and damage, we generate broadband seismograms for engineering purposes by adopting a hybrid method. To infer the low frequency seismograms, we considered the kinematic slip model by Tinti et al. (2016). The high frequency seismograms were produced using a stochastic finite-fault model approach based on dynamic corner-frequency. Broadband synthetic time series were therefore obtained by merging the low and high frequency seismograms. Simulated hybrid ground motions were compared both with the observed ground motions and the ground-motion prediction equations (GMPEs), to explore their performance and to retrieve the region-specific parameters endorsed for the simulations. In the near-fault area we observed that hybrid simulations have a higher capability to detect near source effects and to reproduce the source complexity than the use of GMPEs. Indeed, the general good consistency found between synthetic and observed ground motion (both in the time and frequency domain), suggests that the use of regional-specific source scaling and attenuation parameters together with the source complexity in hybrid simulations improves ground motion estimations. To include the site effect in stochastic simulations at selected stations, we tested the use of amplification curves derived from HVRSs (horizontal-to-vertical response spectra) and from HVSRs (horizontal-to-vertical spectral ratios) rather than the use of generic curves according to NTC-18 Italian seismic design code. We generally found a further reduction of residuals between observed and simulated both in terms of time histories and spectra.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-09-01
    Description: Summary We explore here the benefits of using constraints from seismic tomography in gravity data inversion and how inverted density distributions can be improved by doing so. The methodology is applied to a real field case in which we reconstruct the density structure of the Pyrenees along a southwest-northeast transect going from the Ebro basin in Spain to the Arzacq basin in France. We recover the distribution of densities by inverting gravity anomalies under constraints coming from seismic tomography. We initiate the inversion from a prior density model obtained by scaling a pre-existing compressional seismic velocity Vp model using a Nafe-Drake relationship : the Vp model resulting from a full-waveform inversion of teleseismic data. Gravity data inversions enforce structural similarities between Vp and density by minimizing the norm of the cross-gradient between the density and Vp models. We also compare models obtained from 2.5D and 3D inversions. Our results demonstrate that structural constraints allow us to better recover the density contrasts close to the surface and at depth, without degrading the gravity data misfit. The final density model provides valuable information on the geological structures and on the thermal state and composition of the western region of the Pyrenean lithosphere.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-09-18
    Description: Summary The relatively short duration of the early stages of subduction results in a poor geological record, limiting our understanding of this critical stage. Here, we utilize a 2D numerical model of incipient subduction, that is the stage after a plate margin has formed with a slab tip that extends to a shallow depth and address the conditions under which subduction continues or fails. We assess energy budgets during the evolution from incipient subduction to either a failed or successful state, showing how the growth of potential energy, and slab pull, is resisted by the viscous dissipation within the lithosphere and the mantle. The role of rheology is also investigated, as deformation mechanisms operating in the crust and mantle facilitate subduction. In all models, the onset of subduction is characterized by high lithospheric viscous dissipation and low convergence velocities, whilst successful subduction sees the mantle become the main area of viscous dissipation. In contrast, failed subduction is defined by the lithospheric viscous dissipation exceeding the lithospheric potential energy release rate and velocities tend towards zero. We show that development of a subduction zone depends on the convergence rate, required to overcome thermal diffusion and to localise deformation along the margin. The results propose a minimum convergence rate of ∼ 0.5 cm yr−1 is required to reach a successful state, with 100 km of convergence over 20 Myr, emphasizing the critical role of the incipient stage.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-09-22
    Description: Summary Although many studies have revealed that the atmospheric effects of electromagnetic wave propagation (including ionospheric and tropospheric water vapor) have serious impacts on Interferometric Synthetic Aperture Radar (InSAR) measurement results, atmospheric corrections have not been thoroughly and comprehensively investigated in many well-known cases of InSAR focal mechanism solutions, which means there is no consensus on whether atmospheric effects will affect the InSAR focal mechanism solution. Moreover, there is a lack of quantitative assessment on how much the atmospheric effect affects the InSAR focal mechanism solution. In this paper, we emphasized that it was particularly important to assess the impact of InSAR ionospheric and tropospheric corrections on the underground nuclear explosion modeling quantitatively. Therefore, we investigated the 4th North Korea (NKT-4) underground nuclear test using ALOS-2 liters-band SAR images. Because the process of the underground nuclear explosion was similar to the volcanic magma source activity, we modeled the ground displacement using the Mogi model. Both the ionospheric and tropospheric phase delays in the interferograms were investigated. Furthermore, we studied how the ionosphere and troposphere phase delays could bias the estimation of Mogi source parameters. The following conclusions were drawn from our case study: The ionospheric delay correction effectively mitigated the long-scale phase ramp in the full-frame interferogram, the standard deviation decreased from 1.83 cm to 0.85 cm compared to the uncorrected interferogram. The uncorrected estimations of yield and depth were 8.44 kt and 370.33 m, respectively. Compared to the uncorrected estimations, the ionospheric correction increased the estimation of yield and depth to 9.43 kt and 385.48 m while the tropospheric correction slightly raised them to 8.78 kt and 377.24 m. There were no obvious differences in the location estimations among the four interferograms. When both corrections were applied, the overall standard deviation was 1.16 cm, which was even larger than the ionospheric corrected interferogram. We reported the source characteristics of NKT-4 based on the modeling results derived from the ionospheric corrected interferogram. The preferred estimation of NKT-4 was a Mogi source located at 129°04′22.35‘E, 41°17′54.57″N buried at 385.48 m depth. The cavity radius caused by the underground explosion was 22.02 m. We reported the yield estimation to be 9.43 kt. This study showed that for large-scale natural deformation sources such as volcanoes and earthquakes, atmospheric corrections would be more significant, but even if the atmospheric signal did not have much complexity, the corrections should not be ignored.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-09-01
    Description: SUMMARY Self-consistent modelling of magmatic systems is challenging as the melt continuously changes its chemical composition upon crystallization, which may affect the mechanical behaviour of the system. Melt extraction and subsequent crystallization create new rocks while depleting the source region. As the chemistry of the source rocks changes locally due to melt extraction, new calculations of the stable phase assemblages are required to track the rock evolution and the accompanied change in density. As a consequence, a large number of isochemical sections of stable phase assemblages are required to study the evolution of magmatic systems in detail. As the state-of-the-art melting diagrams may depend on nine oxides as well as pressure and temperature, this is a 10-D computational problem. Since computing a single isochemical section (as a function of pressure and temperature) may take several hours, computing new sections of stable phase assemblages during an ongoing geodynamic simulation is currently computationally intractable. One strategy to avoid this problem is to pre-compute these stable phase assemblages and to create a comprehensive database as a hyperdimensional phase diagram, which contains all bulk compositions that may emerge during petro-thermomechanical simulations. Establishing such a database would require repeating geodynamic simulations many times while collecting all requested compositions that may occur during a typical simulation and continuously updating the database until no additional compositions are required. Here, we describe an alternative method that is better suited for implementation on large-scale parallel computers. Our method uses the entries of an existing preliminary database to estimate future required chemical compositions. Bulk compositions are determined within boundaries that are defined manually or through principal component analysis in a parameter space consisting of clustered database entries. We have implemented both methods within a massively parallel computational framework while utilizing the Gibbs free energy minimization program Perple_X. Results show that our autonomous approach increases the resolution of the thermodynamic database in compositional regions that are most likely required for geodynamic models of magmatic systems.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-07-24
    Description: Transformation of refractory cratonic mantle into more fertile lithologies is the key to the fate of cratonic lithosphere. This process has been extensively studied in the eastern North China Craton (NCC) while that of its western part is still poorly constrained. A comprehensive study of newly-found pyroxenite xenoliths from the Langshan area, in the northwestern part of this craton is integrated with a regional synthesis of pyroxenite and peridotite xenoliths to constrain the petrogenesis of the pyroxenites and provide an overview of the processes involved in the modification of the deep lithosphere. The Langshan pyroxenites are of two types, high-Mg# [Mg2+/(Mg2++Fe2+)*100 = ∼ 90, atomic ratios] olivine-bearing websterites with high equilibration temperatures (880 ∼ 970 oC), and low-Mg# (70 ∼ 80) plagioclase-bearing websterites with low equilibration temperatures (550 ∼ 835 oC). The high-Mg# pyroxenites show trade-off abundances of olivine and orthopyroxene, highly depleted bulk Sr-Nd (ƐNd = +11.41, 87Sr/86Sr = ∼0.7034) and low clinopyroxene Sr isotopic ratios (mean 87Sr/86Sr = ∼0.703). They are considered to reflect the reaction of mantle peridotites with silica-rich silicate melts derived from the convective mantle. Their depletion in fusible components (e.g., FeO, TiO2 and Na2O) and progressive exhaustion of incompatible elements suggest melt extraction after their formation. The low-Mg# pyroxenites display layered structures, convex-upward rare earth element patterns, moderately enriched bulk Sr-Nd isotopic ratios (ƐNd = -14.20 ∼ -16.74, 87Sr/86Sr = 0.7070 ∼ 0.7078) and variable clinopyroxene Sr-isotope ratios (87Sr/86Sr = 0.706-0.711). They are interpreted to be crustal cumulates from hypersthene-normative melts generated by interaction between the asthenosphere and heterogeneous lithospheric mantle. Combined with studies on regional peridotite xenoliths, it is shown that the thinning and refertilization of the lithospheric mantle was accompanied by crustal rejuvenation and that such processes occurred ubiquitously in the northwestern part of the NCC. A geodynamic model is proposed for the evolution of the deep lithosphere, which includes long-term mass transfer through a mantle wedge into the deep crust from the Paleozoic to the Cenozoic, triggered by subduction of the Paleo-Asian ocean and the Late Mesozoic lithospheric extension of eastern Asia.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-07-21
    Description: In severely deficit soil, lentil (Lens culinaris Medic) crop requires micronutrients for increased production. Micronutrient management is, therefore, very important for lentil productivity but mostly ignored. This study was carried out from 2014–2015 to 2016–2017 to understand the effects of zinc (Zn), boron (B), and molybdenum (Mo) on lentil productivity, nodulation, and nutrient uptake and how these elements improve soil micronutrient fertility. The experiment was laid out in randomized complete block design, and the treatments were replicated thrice. Different combinations of Zn, Mo, and B were contrasted with no application of micronutrients. The treatments were Zn alone (Zn), B alone (B), Mo alone (Mo), Zn combined with B (ZnB), Zn with Mo (ZnMo), B with Mo (BMo), and Zn combined with B and Mo (ZnBMo). Doses of Zn, B, and Mo were 3, 2, and 1 kg ha−1, respectively. In this trial, the highest average seed yield (1807 kg ha−1) and yield increment (44%) was obtained in ZnBMo combined application with macronutrients. Single, dual, and combined application of Zn, B, and Mo had significant effects on yield parameters and yield of lentil (P 
    Print ISSN: 0008-4271
    Electronic ISSN: 1918-1841
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...