ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology  (39)
  • INGV  (24)
  • Società Geologica Italiana  (13)
  • Blackwell Publishing Ltd  (2)
  • International Union of Crystallography (IUCr)
  • Molecular Diversity Preservation International
Collection
Keywords
Publisher
Years
  • 1
    Publication Date: 2021-06-30
    Description: The NNE-trending Yangsan Fault (YSF) is the most prominent fault in the southeastern part of the Korean Peninsula and has a continuous trace about 200 km long. Activity on this fault was recently investigated using aerial photographs, topographic analysis, and trenching. The geomorphologic evidence of Late Quaternary faulting is clearly recognized on both the northern (Yugyeri and Tosung-ri areas) and southern parts (Eonyang to Tongdosa area) of the fault. The main YSF is marked by a zone of shattered rock that is tens of meters wide and zone of fault gouge. During the Late Quaternary, right-lateral movement occurred mainly on the southern part, as shown by lowangle striations on the fault plane, elongation of deformation features in the fault gouge. The estimated vertical slip rate is about 0.02-0.07 mm/yr, and the lateral slip rate may be several times larger than the vertical rate. The most recent event occurred prior to deposition of Holocene alluvium. In the northern part, the fault locally changes trend to almost N-S, dips to the east and has reverse movement. The average vertical slip rate is estimated less than 0.1 mm/yr. The most recent event probably occurred after 1314 cal. years BP (A.D. 536).
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: Yangsan Fault (YSF) ; Korean Peninsula ; averge slip rate ; most recent event ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1191475 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-01-11
    Description: Although the Altyn Tagh Fault (ATF) is thought to play a key role in accommodating India-Eurasian convergence, little is known about its earthquake history. Studies of this strike-slip fault are important for interpretation of the role of faulting versus distributed deformation in the accommodation of the India- Eurasia collision. In addition, the 〉 1200 km long fault represents one of the most important and exemplary intracontinental strike-slip faults in the world. We mapped fault trace geometry and interpreted paleoseismic trench exposures to characterize the seismogenic behavior of the ATF. We identified 2 geometric segment boundaries in a 270 km long reach of the central ATF. These boundaries define the westernmost Wuzhunxiao, the Central Pingding, and the easternmost Xorxol (also written as Suekuli or Suo erkuli) segments. In this paper, we present the results from the Camel paleoseismic site along the Xorxol Segment at 91.759°E, 38.919°N. There evidence for the last two earthquakes is clear and 14C dates from layers exposed in the excavation bracket their ages. The most recent earthquake occurred between 1456 and 1775 cal A.D. and the penultimate event was between 60 and 980 cal A.D. Combining the Camel interpretations with our published results for the central ATF, we conclude that multiple earthquakes with shorter rupture lengths (?? 50 km) rather than complete rupture of the Xorxol Segment better explain the paleoseismic data. We found 2-3 earthquakes in the last 2-3 kyr. When coupled with typical amounts of slip per event (5-10 m), the recurrence times are tentatively consistent with 1-2 cm/yr slip rates. This result favors models that consider the broader distribution of collisional deformation, rather than those with northward motion of India into Asia absorbed along a few faults bounding rigid blocks.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: paleoseismology ; Altyn Tagh Fault ; strike-slip faults ; India-Eurasia collision ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1161909 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-06-16
    Description: The North Tabriz Fault is a major seismogenic fault in NW Iran. The last damaging earthquakes on this fault occurred in 1721, rupturing the southeastern fault segment, and in 1780, rupturing the northwestern one. The understanding of the seismic behavior of this fault is critical for assessing the hazard in Tabriz, one of the major cities of Iran; the city suffered major damage in both the 1721 and 1780 events. Our study area is located on the northwestern fault segment, west of the city of Tabriz. We performed geomorphic and trenching investigations, which allowed us to recognize evidence for repeated faulting events since the Late Pleistocene. From the trenches, we found evidence for at least four events during the past 3.6 ka, the most recent one being the 1780 earthquake. On the basis of different approaches, horizontal slip per event and slip rates are found in the ranges of 4 ± 0.5 m and 3.1-6.4 mm/yr, respectively. We also attempted an estimate of the average recurrence intervals which appears to be in the range 350-1430 years, with a mean recurrence interval of 821 ± 176 years. On the basis of these results, the northwestern segment of the North Tabriz Fault does not appear to present a major seismic potential for the near future, however, not enough is known about the southeastern segment of the fault to make a comparable conclusion.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: active tectonics ; paleoseismology ; Iran Tabriz ; earthquake ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 986628 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-06-03
    Description: Il 6 Aprile 2009 un terremoto di Ml=5.8 (Mw=6.2) ha colpito L’Aquila e la media valle dell’Aterno in Abruzzo. In questo lavoro presentiamo in maniera sintetica i rilievi geologici effettuati in campagna dal gruppo di lavoro EmerGeo a seguito della sequenza sismica aquilana. Le attività di rilevamento condotte sono consistite principalmente nella verifica, definizione e caratterizzazione delle deformazioni cosismiche superficiali osservate lungo le strutture tettoniche note in letteratura; sono stati inoltre rilevati e riportati altri effetti cosismici locali (fratture su asfalto, frane e scivolamenti) non direttamente collegati alla presenza di strutture tettoniche. In totale sono stati rilevati oltre 300 punti di osservazione su una porzione di territorio estesa circa 900 km2. L’analisi preliminare dei rilievi effettuati indica che le rotture osservate lungo la faglia di Paganica, per la continuità e le caratteristiche, rappresentano l’espressione superficiale della faglia responsabile dell’evento del 6 aprile 2009, e che le rotture lungo le faglie di Bazzano e di Monticchio-Fossa possono rappresentare l’espressione in superficie di una struttura antitetica riattivata durante l’evento.
    Description: Published
    Description: 1-79
    Description: 3.2. Tettonica attiva
    Description: N/A or not JCR
    Description: open
    Keywords: coseismic ruptures ; Central Apennines ; April, 6 2009 earthquake ; Aterno valley ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-02-03
    Description: The outermost, NE-verging fronts of the Northern Apennines (Italy) are overlain by a thick syntectonic sedimentary wedge filling up the basin beneath the Po Plain. Due to fast sedimentation rates and comparatively low tectonic rates, the fronts are generally buried. Evidence for their activity includes scattered historical and instrumental earthquakes and drainage anomalies controlled by growing buried anticlines. The largest earthquakes, up to Mw 5.8, are associated with active compression with a GPS-documented shortening rate 〈1 mm/a. We used geological, structural and morphotectonic data to draw a N-S–striking section between Bologna and Ferrara, aimed at analyzing whether and how the deformation is partitioned among the frontal thrusts of the Northern Apennines and identifying the potential sources of damaging earthquakes. We pointed out active anticlines based on the correspondence among drainage anomalies, historical seismicity and buried ramps. We also analyzed the evolution of the Plio-Quaternary deformation by modeling in a sandbox the geometry, kinematics and growth patterns of the thrust fronts. Our results (i) confirm that some of the main Quaternary thrusts are still active and (ii) highlight the partitioning of deformation in the overlap zones. We remark that the extent and location of some of the active thrusts are compatible with the location and size of the main historical earthquakes and discuss the hypothesis that they may correspond to their causative seismogenic faults.
    Description: In press
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: open
    Keywords: Fold-and-thrust belt ; active tectonics ; seismogenic sources ; Po Plain ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: The different geomorphological characteristics of the footwall and hanging wall sectors of Apennine active normal faults usually prevent the possibility to correlate synchronous geomorphological features across the fault and, therefore, to define the kinematic parameters. This is particularly evident in case of faults active during the Late Pleistocene – Holocene, evolving along mountain fronts in piedmont areas. Therefore, the use of geomorphological features such as paleolandscapes and chronologically constrained deposits of pre-Late Quaternary age can be useful for the definition of kinematic parameters. Following this approach we have analysed three cases in Central Apennines: 1) the Magnola Mts. normal fault, 2) the Mt. Morrone normal fault system and 3) the Norcia basin fault system. As for the cases at points 1 and 2, isochronous sub-horizontal breccias have been detected both in the hanging wall and in the footwall sectors of the Magnola Mts. fault and of the western fault segment of the Mt. Morrone fault system (made of two parallel fault branches) laying on an almost flat paleolandscape of older age, characterized by relict surfaces gently dipping towards the basin bottom, whose formation occurred close to the local base level. Since BOSI et alii (2003) attributed this kind of breccias to the Early Pleistocene, we can hypothesize that the formation of the fault-related slopes occurred subsequently to the Early Pleistocene. The vertical offset affecting the breccias can be quantified in 650 m for the Magnola Mts. fault and in 350 m for the Mt. Morrone western fault segment. Therefore, assuming that a reliable age for these deposits is 10.2 Ma, a slip rate ranging from 0.54 to 0.81 mm/yr can be estimated for the Magnola Mts. fault and ranging between 0.30 and 0.43 mm/yr for the Mt. Morrone western fault segment. As for the Norcia basin fault system, alluvial fans attributed to the Middle Pleistocene are geomorphologically embedded in almost flat relict surfaces carved into the limestone bedrock and detectable in the highest sectors of the relief representing the eastern basin border. Considering the difference in elevation between these paleosurfaces and the present bottom of the basin (assuming that surfaces or deposits synchronous to those present in the footwall are “contained” in the succession filling the depression), a minimum vertical offset due to the fault activity following the formation of the relict surfaces can be estimated in about 900 m. Moreover, considering that these relict surfaces may have an age ranging between the Middle Pliocene (after the end of the compressive tectonic phase) and the Middle Pleistocene, a minimum vertical fault slip rate ranging between 0.25 and 1.15 mm/yr can be estimated.
    Description: Published
    Description: 365-374
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: fault scarps ; paleolandscape ; slip rate ; active faulting ; central Italy ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: The outermost, NE-verging fronts of the Northern Apennines (Italy) are overlain by a thick syntectonic sedimentary wedge filling up the basin beneath the Po Plain. Due to fast sedimentation rates and comparatively low tectonic rates, the fronts are generally buried. Evidence for their activity includes scattered historical and instrumental earthquakes and drainage anomalies controlled by growing buried anticlines. The largest earthquakes, up to Mw 5.8, are associated with active compression with a GPS-documented shortening rate 〈1 mm/a. We used geological, structural and morphotectonic data to draw a N-S–striking section between Bologna and Ferrara, aimed at analyzing whether and how the deformation is partitioned among the frontal thrusts of the Northern Apennines and identifying the potential sources of damaging earthquakes. We pointed out active anticlines based on the correspondence among drainage anomalies, historical seismicity and buried ramps. We also analyzed the evolution of the Plio-Quaternary deformation by modeling in a sandbox the geometry, kinematics and growth patterns of the thrust fronts. Our results (i) confirm that some of the main Quaternary thrusts are still active and (ii) highlight the partitioning of deformation in the overlap zones. We note that the extent and location of some of the active thrusts are compatible with the location and size of the main historical earthquakes and discuss the hypothesis that they may correspond to their causative seismogenic faults.
    Description: Published
    Description: 605-613
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: Seismotectonics of Po Plain ; Apennines thrust fronts ; Northern Italy seismicity ; Analogue modeling ; Fold-and-thrust belt ; Seismogenic sources ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: We present an overview of the seismogenic sources belonging to the interior and the border zones of the Adriatic microplate, included in the latest version of the Database of Individual Seismogenic Sources (DISS, v. 3.1.0; DISS WORKING GROUP, 2009).
    Description: Società Geologica Italiana Accademia Nazionale dei Lincei Accademia Nazionale delle Scienze detta dei XL Istituto Veneto di Scienze, Lettere ed Arti
    Description: Published
    Description: Venezia, Palazzo Loredan
    Description: 3.2. Tettonica attiva
    Description: open
    Keywords: Adria microplate, active tectonics, Seismogenic Sources. ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Extended abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: La zona di faglia Ravne è situata in un area di interazione fra due sistemi regionali di faglie con differente cinematica, entrambi collegati alla convergenza fra Adria e Eurasia: le faglie dinariche orientate NW-SE e le faglie del Sud-alpino orientate E-W. L’analisi di dati di geologia strutturale e di due sequenze sismiche recenti che hanno colpito l’area, ci permette di proporre un modello sismotettonico per la faglia di Ravne, che è stata interessata da diverse fasi tettoniche. La geometria originale e la storia evolutiva della zona di faglia svolgono un ruolo cruciale nella distribuzione recente dell’attività sismica e del potenziale sismogenetico dell’intera struttura. Infatti, la configurazione attuale della faglia Ravne, caratterizzata da fagliazione trascorrente su piani ad alto angolo a profondità crostali, è il risultato dell’iniziale geometria di un thrust orientato NW-SE e avente immersione verso NE, e della sua interazione con i piani di thrust diretti essenzialmente E-W. Partendo dai dati raccolti e tenendo in considerazione sia il quadro geodinamico che le relazioni empiriche, proponiamo tre possibili scenari con relativi potenziali sismogenetici per la possibile futura attività della faglia di Ravne.
    Description: Published
    Description: Udine
    Description: 3.2. Tettonica attiva
    Description: open
    Keywords: Ravne Fault ; Western Slovenia ; fault growth ; linkage processes ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Extended abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: A geological cross-section, oriented about N80°E and crossing the Colfiorito area, struck by the 1997-98 Umbria-Marche earthquaks has been built up, integrating surface geological data (field mapping, 1:10.000 scale) and the interpretation of a seismic reflection profile, kindly provided by Eni-Agip Division. The section extends from the Umbra Valley Basin, west of Assisi, through the M.Subasio anticline, the Topino valley syncline and the “Inner Ridge” of the Umbria- Marche Apennines; the latter consists of seven box-shaped anticlines, with a wavelength of about 3 km. The seismic profile shows that at least the shallower part of the Basement is involved in the compressional structures, forming three steps stacked at depths ranging from 5 to 8 km, located between the M.Subasio anticline and the “Inner Ridge” of the Umbria-Marche Apennines. The interpreted section also allows a reconstruction of the deep geometry of the presumably active faults bounding the Colfiorito, Annifo and S.Martino basins. These faults trend N140°+_10°, dip towards SW at ~40°, to a depth of 8-9 km. The faults geometry is comparable with that suggested by the seismological data (focal mechanisms and aftershocks hypocenters) recorded during the 1997-98 seismic events. Seismicity seems to be confined above the top of the Basement: this lithological and mechanical discontinuity is suitable to be the base of the seismogenic layer in this region.
    Description: Published
    Description: 891-900
    Description: 3.2. Tettonica attiva
    Description: open
    Keywords: seismic profiles ; geological sections ; basement depth ; earthquakes ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2017-04-04
    Description: On the Ionian Sea coast of southern Italy, spanning the transition from the Calabrian Arc to the Apennines, NE-directed motion of the thin-skinned frontal thrust belt of the Apennines toward the Apulian foreland reportedly ceased during the Early-Middle Pleistocene. The submarine extension of the frontal thrust belt is represented by the Amendolara ridge, which stretches for over 80 km to the SE beneath the Taranto Gulf. High-resolution marine geophysical data collected on the Amendolara ridge during the TEATIOCA_2011 cruise provided unequivocal constraints to assert active fault-related fold growth. Single-channel seismic (sparker) and acoustic CHIRP profiles, corroborated by multibeam mapping and shallow coring, form the novel dataset to constrain the near-bottom evolution. The new data were benchmarked to the crustal geometry by means of interpretation of existing multichannel seismic profiles.
    Description: Published
    Description: Arcavacata di Rende (CS)
    Description: 3.2. Tettonica attiva
    Description: open
    Keywords: Active fault-propagation folds ; Blind faults ; Seismogenic sources ; Jonian Sea ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Extended abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-11-04
    Description: Probabilistic seismic hazard analyses in Australia rely fundamentally on the assumption that earthquakes recorded in the past are indicative of where earthquakes will occur in the future. No attempt has yet been made to assess the potential contribution that data from active fault sources might make to the modelling process, despite successful incorporation of such data into United States and New Zealand hazard maps in recent years. In this paper we review the limited history of paleoseismological investigation in Australia and discuss the potential contribution of active fault source data towards improving our understanding of intraplate seismicity. The availability and suitability of Australian active fault source data for incorporation into future probabilistic hazard models is assessed, and appropriate methodologies for achieving this proposed.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: intraplate seismicity ; seismic hazard ; Australia ; paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1069908 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-11-04
    Description: Lichenometry is a surface-exposure-dating procedure that complements traditional trench-and-date stratigraphic studies of earthquakes. Lichens on the surficial blocks of a slump in the Seaward Kaikoura Range, South Island, New Zealand provide precise, accurate (± 2 years) dating of 20 post-landslide rockfall events. The coseismic character of these rockfall events is apparent when ages of lichen-size peaks are compared with dates of historical earthquakes. Most local prehistoric lichen-size peaks are synchronous with peaks at other lichenometry sites in a 20 000 km2 region. Lichenometry may be the best paleoseismic tool for describing the extent and intensity of seismic shaking caused by prehistoric earthquakes, and for dating earthquakes generated by concealed thrust faults and subduction fault zones.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: earthquakes ; lichens ; paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 05. General::05.04. Instrumentation and techniques of general interest::05.04.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 315978 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-11-04
    Description: New stratigraphic evidence from the Cascadia margin demonstrates that 13 earthquakes ruptured the margin from Vancouver Island to at least the California border following the catastrophic eruption of Mount Mazama. These 13 events have occurred with an average repeat time of ?? 600 years since the first post-Mazama event ?? 7500 years ago. The youngest event ?? 300 years ago probably coincides with widespread evidence of coastal subsidence and tsunami inundation in buried marshes along the Cascadia coast. We can extend the Holocene record to at least 9850 years, during which 18 events correlate along the same region. The pattern of repeat times is consistent with the pattern observed at most (but not all) localities onshore, strengthening the contention that both were produced by plate-wide earthquakes. We also observe that the sequence of Holocene events in Cascadia may contain a repeating pattern, a tantalizing look at what may be the long-term behavior of a major fault system. Over the last ?? 7500 years, the pattern appears to have repeated at least three times, with the most recent A.D. 1700 event being the third of three events following a long interval of 845 years between events T4 and T5. This long interval is one that is also recognized in many of the coastal records, and may serve as an anchor point between the offshore and onshore records. Similar stratigraphic records are found in two piston cores and one box core from Noyo Channel, adjacent to the Northern San Andreas Fault, which show a cyclic record of turbidite beds, with thirty- one turbidite beds above a Holocene/.Pleistocene faunal «datum». Thus far, we have determined ages for 20 events including the uppermost 5 events from these cores. The uppermost event returns a «modern» age, which we interpret is likely the 1906 San Andreas earthquake. The penultimate event returns an intercept age of A.D. 1664 (2 ?? range 1505- 1822). The third event and fourth event are lumped together, as there is no hemipelagic sediment between them. The age of this event is A.D. 1524 (1445-1664), though we are not certain whether this event represents one event or two. The fifth event age is A.D. 1204 (1057-1319), and the sixth event age is A.D. 1049 (981-1188). These results are in relatively good agreement with the onshore work to date, which indicates an age for the penultimate event in the mid-1600 s, the most likely age for the third event of ?? 1500-1600, and a fourth event ?? 1300. We presently do not have the spatial sampling needed to test for synchroneity of events along the Northern San Andreas, and thus cannot determine with confidence that the observed turbidite record is earthquake generated. However, the good agreement in number of events between the onshore and offshore records suggests that, as in Cascadia, turbidite triggers other than earthquakes appear not to have added significantly to the turbidite record along the northernmost San Andreas margin during the last ?? 2000 years.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: paleoseismology ; earthquake ; submarine ; recurrence patterns ; submarine landslides ; turbid flows ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 3112068 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-11-04
    Description: The Conway Segment of the dextral-slip Hope Fault is one of the fastest slipping fault segments along New Zealand s plate boundary, but has not ruptured co-seismically in the historic period and little paleoseismic data exist to constrain its large earthquake record. Two paleoseismic trenches were opened adjacent to Greenburn Stream near Kaikoura for the 2001 ILP Paleoseismology Conference. Both trenches were excavated into deposits ponded against an uphill-facing shutter scarp. Trench 1, dug through a cobbly soil and surface deposit was dominated by a thick fan/fluvial sequence that was radiocarbon dated at 4409 ± 60 C14 years BP (4844-5288 cal years BP) at the base of the trench. This trench exhibited evidence of complex deformation from many paleoseismic events. The most recent earthquakes are difficult to constrain due to a lack of cover stratigraphy on the fan deposits. However, the modern soil appears to be faulted and is covered by cobbles with a weathering rind-derived age of 220 ± 60 years. Trench 2, dug ?? 50 m to the west has an expanded sequence of the younger cover deposits. Paleoseismic event horizons have been recognised from the combined evidence of upwardterminating faults, offset and mismatched units, a sandblow deposit, and abrupt landscape change shown by the burial of paleosol surfaces that form the event horizons. Two paleosols underlying the modern soil are clearly faulted by two separate rupture events. A dome of sand interpreted as a liquefaction sandblow deposit overlies the lower paleosol (event horizon). Both paleosols are overlain by metre-thick debris deposits, interpreted as earthquake-induced rock avalanches that cascaded off the hillslope following Mw 7 + events. Four radiocarbon dates place some constraints on the timing of the three recent surface-rupturing events. The youngest and lowest date is 548 ± 60 C14 years BP (504-656 cal years BP) and occurs below the lower paleosol. It constrains the maximum duration of time in which the last 2 earthquake events occurred to be 545 years (1295-1840 A.D.). This is consistent with the average Recurrence Interval (RI) of 180-310 years that we determine using two independent paths. The soil record indicates that each event is separated by a significant period of time, comparable to the calculated RI. The most recent event is constrained between ca. 1780 A.D. ± 60 years, taking into account the dates from these trenches, a weathering rind age, and from stratigraphic correlation at the site. Event III probably occurred before 1220 A.D. A maximum dextral slip rate of 23 ± 4 mm/yr is calculated from the minimum fan age and the offset/deflection of a stream channel along the shutter ridge. In concert with the estimate of single event displacement (5-6 m), these results show that the Conway Segment of the Hope Fault is fast-slipping and has ruptured regularly as a result of large earthquakes prior to the European colonisation of New Zealand.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: Hope Fault ; paleoseismicity ; ConwaySegment ; Kaikoura ; neotectonics ; slip rate ; recurrence ; NZMS 260 sheet 031 ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1424205 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-11-04
    Description: The Umbria-Marche sequence represents the first case in Italy for which the surface effects of a moderate seismic event (5〈M〈6) were systematically investigated and documented. Surface fractures attributed to the events were mapped by several groups of researchers. The coseismic features were expressed mainly by NW-SE trending, discontinuous, linear open fractures, as well as fracture swarms, locally with centimetric vertical displacements. They affected rocks and loose deposits, buildings, and roads. Because of the earthquake sizes (M≤6), the deformation was faint, making the detection difficult and giving rise to different seismotectonic interpretations: specifically, surface rupture of the seismogenic fault, triggered slip on secondary faults, and shaking-induced sliding of debris. Consequently, different models of connection between surface offsets and displacements at depth were proposed that integrated geology with other geophysical data. However, whether direct or indirect expression of the deep dislocation, the geometry of these fractures reflected the seismogenic structure. Even in the case of these moderate-earthquakes features, geomorphical and paleoseismological studies provide data for reconstructing the recent tectonic evolution of the region and for determining the frequency and size of earthquakes. Finally, we learned a more efficient way to prepare for post-earthquake emergency response, particularly for long-lasting sequences in highly vulnerable built environments, such as the ancient villages within the Apennines.
    Description: Published
    Description: 361-381
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: open
    Keywords: Umbria-Marche seismic sequence ; coseismic surface fractures ; moderate size earthquakes ; post-earthquake emergency response ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-12-18
    Description: The Bojano plain corresponds to an elongated basin with Apennine direction, delimited by the Matese massif to SW and by the Sannio hills to NE. This area was studied utilizing geologic, geomorphologic and geophysical data, acquired mainly for microzoning of the Bojano town. Seismic reflection data reveal structural depressions nearby the centre of the town and two basins filled by recent fluvial-lacustrine deposits at the NW and SE sectors of the plain, respectively. Low angle tectonic structures correlate with the thrust of the Matese chain over the frontal more deformable sequences of the Sannio units, but any high angle active structure cutting the Matese thrusts at their eastern limit and in the first 1500 m has been imaged. The seismic sections have been complemented by H/V measurements of the seismic noise utilizing a seismological network installed for sites amplification analysis with a reference station and by an accurate study of the geomorphology of the area. Analyses of the morphogenetic processes contribute to the description of the evolution of the plain and of the depocentres, with depressions and structural highs or divides which strongly influenced the rivers action and the arrival of the alluvial cones.
    Description: Submitted
    Description: Sassari (Italy)
    Description: 3.2. Tettonica attiva
    Description: open
    Keywords: Appennino molisano ; Bojano ; geomorphology ; seismic reflection prospecting ; H/V spectral ratios analyses ; 04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.07. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Extended abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-11-04
    Description: Paleoseismological analyses were performed along the Campo Imperatore Fault (part of the Gran Sasso Range Fault System) in order to define the seismogenic behaviour (recurrence interval for surface faulting events, elapsed time since the last activation, maximum expected magnitude). Four trenches were excavated across secondary faults which are related to the main fault zone. The youngest event (E1) occurred after 3480-3400 years BP; a previous event (E2) occurred between 7155-7120/7035-6790 years BP and 5590-5565/5545-5475 years BP, while the oldest one (E3) has a Late Pleistocene age. The chronological interval between the last two displacement events ranges between 1995 and 6405 years. The minimum elapsed time since the last activation is 800 years, due to the absence of historical earthquakes which may have been caused by the Campo Imperatore Fault and based on the completeness of the historical catalogues for the large magnitude events in the last eight centuries. Based on the length of the fault surficial expression, earthquakes with M 6.95 may be expected from the activation of the entire Gran Sasso Range Fault System. The effects of the fault activation were investigated through the simulation of a damage scenario obtained by means of the FaCES computer code, made by the National Seismic Survey for civil protection purposes. The damage scenario shows that the activation of the Gran Sasso Range Fault System may be responsible for an earthquake with epicentral intensity I0 10.5 MCS, with a number of collapsed buildings ranging between 7900 and 31100 and a number of damaged buildings ranging between 99 000 and 234 000. The investigated case defines, therefore, a high risk level for the region affected by the Campo Imperatore Fault.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: paleoseismology ; active fault ; Holocene ; Central Italy ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 555590 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-11-04
    Description: The El Camp Fault (Catalan Coastal Ranges, NE Iberian Peninsula) is a slow slipping normal fault whose seismic potential has only recently been recognised. New geomorphic and trench investigations were carried out during a training course across the El Camp Fault at the La Porquerola alluvial fan site. A new trench (trench 8) was dug close to a trench made previously at this site (trench 4). With the aid of two long topographic profiles across the fault scarp we obtained a vertical slip rate ranging between 0.05 and 0.08 mm/yr. At the trench site, two main faults, which can be correlated between trenches 8 and 4, make up the fault zone. Using trench analysis three paleoseismic events were identified, two between 34.000 and 125.000 years BP (events 3 and 2) and another event younger than 13 500 years BP (event 1), which can be correlated, respectively, with events X (50.000- 125.000 years BP), Y (35.000-50.000 years BP) and Z (3000-25.000 years BP). The last seismic event at the La Porquerola alluvial fan site is described for the first time, but with some uncertainties.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: paleoseismicity ; trenching ; normal fault ; Catalan Coastal Ranges ; El Camp Fault ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 594834 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-11-04
    Description: Recent paleoseismic investigations have identified a number of active faults in Northern and Western Thailand. Northern Thailand is an intraplate basin and range province, comprised of north-south-trending Cenozoic intermontane grabens and half grabens, bounded by north- to northwest-striking normal to normal-oblique faults and northeast-striking left-lateral strike-slip faults. The basin-bounding normal faults are marked by steep, linear range fronts with triangular facets and wineglass canyons and have slip rates of 0.1 to 0.8 mm/yr. Based on limited data, the average vertical displacement-per-event is about 1.0 to 1.5 m. These faults are characterized by recurrence intervals of thousands to tens of thousands of years and are capable of generating earthquakes up to moment magnitude (M) 7, and larger. The northeast-striking strike-slip faults are marked by shutter ridges, and deflected drainages. Slip rates are 3 mm/yr or less. Western Thailand is dissected by a number of northwest- and north-northwest-striking, right-lateral strike-slip faults related to the Sagaing Fault in Myanmar. Although showing much less activity than the faults in neighboring Myanmar, these faults display abundant evidence for late Quaternary movement, including shutter ridges, sag ponds, and laterally offset streams. The slip rate on these faults is estimated to be 0.5 to 2.0 mm/yr. These faults are considered capable of generating maximum earthquakes of up to M 71/2.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: paleoseismicity ; active faulting ; Thailand ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 882039 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-11-04
    Description: The Zemuhe Fault is a prominent active fault in Southwestern China. Seven ravines along a 5 km long fault scarp indicate seven large magnitude earthquakes in the Holocene. The youngest four ravines were abandoned during four large magnitude earthquakes, the age of which are constrained by radiocarbon data: ravines 7, 6, and 4 formed in association with the earthquakes at A.D. 1850 and A.D. 814, B.C. 4477 ± 240 or older, and ravine 5 to a paleo-event between B.C. 4477 ± 240 and A.D. 814. Three trenches excavated by earlier workers together with a trench excavated and analyzed here revealed 3 or 4 earthquakes, which are consistent with those indicated by the youngest five ravines. These radiocarbon-dated earthquakes mainly occurred within two temporal clusters: the older cluster of two paleoearthquakes occurred approximately between B.C. 4250 and B.C. 6000, and the younger cluster includes two historical earthquakes of the A.D. 814 and A.D. 1850. Each cluster lasted about 1000-2000 years. A tranquil period of about 5000 years separates the two clusters, during which only one large magnitude earthquake occurred. Moreover, the average recurrence interval of large magnitude earthquake in the Holocene is about 1400-1700 years. Comparison of the maximum horizontal displacement of the A.D. 1850 earthquake, and the 85 ± 5 m cumulative lateral offset over the last 13-15 ka gives the average recurrence interval of 1000-1360 years. The different estimates may arise because moderate and small earthquakes produced a quite high cumulative lateral displacement along the Zemuhe Fault during the Holocene.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: Holocene earthquakes ; Zemuhe Fault ; Southwestern China ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 864111 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2020-02-24
    Description: An earthquake of Mw=6.3 struck L’Aquila town (central Italy) on April 6, 2009 rupturing an approximately 18 km long SW-dipping normal fault. The aftershock area extended for a length of more than 35 km and included major aftershocks on April 7 and 9, and thousands of minor events. Surface faulting occurred along the SW-dipping Paganica fault with a continuous extent of ~2.5 km. Ruptures consist of open cracks and vertical dislocations or warps (0.1 maximum throw) with an orientation of N130°-N140°. Small triggered slip and shaking effects also took place along nearby synthetic and antithetic normal faults. The observed limited extent, and small surface displacement, of the Paganica ruptures with respect to the height of the fault scarps and vertical throws of paleoearthquakes along faults in the area, puts the faulting associated with the L’Aquila earthquake in perspective with respect to the maximum expected magnitude, and the regional seismic hazard.
    Description: In press
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: open
    Keywords: 2009 L’Aquila seismic sequence ; co-seismic surface effects ; earthquake geology ; normal faulting earthquake ; Abruzzi, central Apennines ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2017-04-04
    Description: The present study is focused on a morphometric analysis of high resolution multibeam data (10m, 5m and, locally, 2m resolution), that were acquired during the oceanographic TEATIOCA 2011 campaign along a sector of the Ionian margin of northern Calabria. The integration of morphometric analysis with sparker and chirp data allowed to unveil basic but robust information about: 1. hierarchy of the fault systems controlling the bathymetric evolution; 2. the interplay between tectonic and erosional processes in sea-floor modeling; 3. uplift rates; 4. tilting processes.
    Description: Published
    Description: Arcavacata di Rende (CS)
    Description: 3.2. Tettonica attiva
    Description: open
    Keywords: fault modeling ; erosional marine terraces ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Extended abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2017-04-04
    Description: Morphotectonic analysis and fault numeric modeling of uplifted marine terraces along the southern half of the Taranto Gulf , between the Sibari and San Nicola plains (Fig. 1), allow us to place quantitative constraints on Middle Pleistocene-Holocene deformation in the Southern Apennines.
    Description: Published
    Description: Arcavacata di Rende (CS)
    Description: 3.2. Tettonica attiva
    Description: open
    Keywords: Marine terraces ; Regional uplift ; Fault propagation folds ; Fault modeling ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.02. Geochronology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Extended abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2017-04-04
    Description: This work aims at providing an updated and augmented view of present-day tectonics and seismogenic sources of the Abruzzi Apennines, focusing on its extensional domain. This paper was spurred by the 6 April 2009, L’Aquila earthquake (Mw 6.3), an event from which geologists learned important lessons-including rather surprising ones. Although the earthquake was not major compared with other catastrophic events that occurred in Italy and elsewhere, this destructive earthquake led to a thorough review of the geometry – and style, in some instances – that characterises earthquake faulting in this region. The poorly expressed field evidence of the 6 April event, especially in light of the damage it caused in the mesoseismal area, stressed the intrinsic limitation of the earthquake geologists’ toolbox. Abruzzi is the region of a true “seismological paradox”: despite the rather long earthquake history available for the region, the number of potential sources for earthquakes of M ≥ 6.0 proposed in the literature is two to five times larger than the number of events that appear in the full earthquake record. This circumstance is made even more paradoxical by recent palaeoseismological work that proposed recurrence times of only a few centuries for individual seismogenic sources. Do the evident faults mapped by previous workers all correspond to potential seismogenic sources? We aim at addressing this paradox by drawing an updated seismotectonic model of Abruzzi based on the lessons learned following the 2009 earthquake. The model is based on selected geological, geomorphological, seismological, historical and geodetic data and will ultimately feed an updated version of the DISS database (http://diss.rm.ingv.it/diss/).
    Description: Published
    Description: 309-329
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: partially_open
    Keywords: 6 April 2009 L’Aquila earthquake ; Active faults ; Seismogenic sources ; Active tectonics ; Seismic hazard ; Abruzzi region ; Central Apennines ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2017-12-11
    Description: For any scientist working in seismotectonics, the Calabrian Arc represents the most challenging area of Italy. Lying on top of a subduction zone, it is characterised by a complex geological structure largely inherited from the early stages of the collision between the Africa and Eurasia plates. The current and extremely vigorous seismogenic processes, although generated by a mechanism driven by the subduction, are no longer a direct consequence of plate convergence. About one fourth of the largest Italian earthquakes concentrates in a narrow strip of land (roughly 200x70 km) corresponding to the administrative region of Calabria. The present-day seismicity, both shallow and deep, provides little help in detecting the most insidious seismogenic structures, nor does the available record of GPS-detected strains. In addition to its fierce seismicity, the Calabrian Arc also experiences uplift at rates that are the largest in Italy, thus suggesting that active tectonic processes are faster here than elsewhere in the country. Calabrian earthquakes are strong yet inherently elusive, and even the largest of those that have occurred over the past two centuries do not appear to have caused unambiguous surface faulting. The identified active structures are not sufficient to explain in full the historical seismicity record, suggesting that some of the main seismogenic sources still lie unidentified, for instance in the offshore. As a result, the seismogenic processes of Calabria have been the object of a lively debate at least over the past three decades. In this work we propose to use the current geodynamic framework of the Calabrian Arc as a guidance to resolve the ambiguities that concern the identification of the presumed known seismogenic sources, and to identify those as yet totally unknown. Our proposed scheme is consistent with the location of the largest earthquakes, the recent evolution of the regions affected by seismogenic faulting, and the predictions of current evolutionary models of the crust overlying a W-dipping subduction zone.
    Description: Published
    Description: 365-388
    Description: 4IT. Banche dati
    Description: JCR Journal
    Description: open
    Keywords: Calabrian Arc ; Calabrian earthquakes ; Seismotectonics ; Seismogenic sources ; DISS database ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-11-04
    Description: The evaluation of any earthquake forecast hypothesis requires the application of rigorous statistical methods. It implies a univocal definition of the model characterising the concerned anomaly or precursor, so as it can be objectively recognised in any circumstance and by any observer.A valid forecast hypothesis is expected to maximise successes and minimise false alarms. The probability gain associated to a precursor is also a popular way to estimate the quality of the predictions based on such precursor. Some scientists make use of a statistical approach based on the computation of the likelihood of an observed realisation of seismic events, and on the comparison of the likelihood obtained under different hypotheses. This method can be extended to algorithms that allow the computation of the density distribution of the conditional probability of earthquake occurrence in space, time and magnitude. Whatever method is chosen for building up a new hypothesis, the final assessment of its validity should be carried out by a test on a new and independent set of observations. The implementation of this test could, however, be problematic for seismicity characterised by long-term recurrence intervals. Even using the historical record, that may span time windows extremely variable between a few centuries to a few millennia, we have a low probability to catch more than one or two events on the same fault. Extending the record of earthquakes of the past back in time up to several millennia, paleoseismology represents a great opportunity to study how earthquakes recur through time and thus provide innovative contributions to time-dependent seismic hazard assessment. Sets of paleoseimologically dated earthquakes have been established for some faults in the Mediterranean area: the Irpinia fault in Southern Italy, the Fucino fault in Central Italy, the El Asnam fault in Algeria and the Skinos fault in Central Greece. By using the age of the paleoearthquakes with their associated uncertainty we have computed, through a Montecarlo procedure, the probability that the observed inter-event times come from a uniform random distribution (null hypothesis). This probability is estimated approximately equal to 8.4% for the Irpinia fault, 0.5% for the Fucino fault, 49% for the El Asnam fault and 42% for the Skinos fault. So, the null Poisson hypothesis can be rejected with a confidence level of 99.5% for the Fucino fault, but it can be rejected only with a confidence level between 90% and 95% for the Irpinia fault, while it cannot be rejected for the other two cases. As discussed in the last section of this paper, whatever the scientific value of any prediction hypothesis, it should be considered effective only after evaluation of the balance between the costs and benefits introduced by its practical implementation.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: precursors ; earthquake forecast ; statistical tests ; paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 507563 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-11-04
    Description: The Gubbio Basin is a 22 km long, 4 km wide depression located within the North-Central Apennines fold-andthrust belt. The basin is bounded to the east by the Gubbio Fault, a W-dipping, normal fault dissecting a large Jurassic-Oligocene anticline. Although located along one of the main seismogenic zones of the Peninsula, both historical and instrumental is seismicity is limited with the only exception for the 29 April 1984, Ms 5.3 earthquake, which occurred about 10 km southwest of the basin. Most of the literature attributes this seismicity to the Gubbio Fault. New geomorphic and geologic investigations based on field and aerial photo surveys and DEM analyses provide new insights on the active faulting in the area and are used to infer potential seismogenic sources. Limited evidence of ongoing deformation along the surface expression of the Gubbio Fault was found, possibly because of low rates of deformation versus fast erosional processes. The western side of the basin appears to be controlled by an east-dipping normal fault, antithetic to the Gubbio Fault. Standard dislocation modeling was used to understand the role played by the Gubbio Fault and its antithetic. The Gubbio Fault was divided into a high-angle section above 3.5 km and a low-angle section between 3.5 and 6 km depth. Based on different tests we conclude that both sections of the Gubbio Fault as well as the antitethic fault contributed to the present setting of the basin. At present the antithetic fault appears to be the most effective in producing a geomorphic signature and controlling the basin width. The high-angle Gubbio Fault played a major role in the basin growth but now its activity rate appears minor. Because of the characteristics and location of the 1984 earthquake, the low-angle Gubbio Fault is assumed to be presently active and seismogenic. Based on the integration of geologic, geomorphic and seismological data we suggest that the low-angle Gubbio Fault is formed by two individual sources capable of M 5.3-5.9 earthquakes. The southern source ruptured in the 1984 earthquake while the northern source did not rupture recently nor historically.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: tectonic geomorphology ; normal fault ; seismogenic ; sources ; Umbria-Marche Apennines - 29 April 1984 Gubbio earthquake ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1438316 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-11-04
    Description: Based on the indicative modelling, the changes in Coulomb failure function (?CFS) suggest that the W-HV segment and the T-P segment could be stable in at least the future 300 years and 190 years respectively, for these periods should be needed to accumulate the stress released by the M 8.2 Wairarapa earthquake, assuming that there is no influence from other sources, the earthquake did not alter the failure threshold, and that failure is a fairly deterministic process. The results also show that the influence on the W-HV segment and T-P segment of the Wellington Fault caused by the 1855, M 8.2 Wairarapa earthquake is significant considering that the average fault rupture recurrence interval on the Wellington Fault is about 500-770 years. With our present understanding of the Wellington and Wairarapa faults, it can be concluded that the 1855 Wairarapa earthquake retarded earthquake occurrence on the W-HV segment and the T-P segment of the Wellington Fault. Thus the seismic hazard in the Wellington region may be over-estimated.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: Wellington region ; changes on Coulombfailure stress ; earthquake hazard ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 208211 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2020-02-24
    Description: An earthquake of Mw = 6.3 struck L Aquila town (central Italy) on 6 April 2009 rupturing an ~18-km-long SW-dipping normal fault. The aftershock area extended for a length of more than 35 km and included major aftershocks on 7 and 9 April and thousands of minor events. Surface faulting occurred along the SW-dipping Paganica fault with a continuous extent of ~2.5 km. Ruptures consist of open cracks and vertical dislocations or warps (0.1m maximum throw) with an orientation of N130°–140°. Small triggered slip and shaking effects also took place along nearby synthetic and antithetic normal faults. The observed limited extent and small surface displacement of the Paganica ruptures with respect to the height of the fault scarps and vertical throws of palaeo-earthquakes along faults in the area put the faulting associated with the L' Aquila earthquake in perspective with respect to the maximum expected magnitude and the regional seismic hazard.
    Description: Published
    Description: 43-51
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: surface faulting from moderate earthquake ; coseismic effects ; L'Aquila earthquake ; cemtral Italy ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-11-04
    Description: An analytical approach to estimate the relative contribution of the fluid pressure and tectonic stress in hydrothermal/ volcanic areas is proposed assuming a Coulomb criterion of failure. The analytical procedure requires the coefficient of internal friction, cohesion, rock density, and thickness of overburden to be known from geological data. In addition, the orientation of the principal stress axes and the stress ratio must be determined from the inversion of fault-slip or seismic data (focal mechanisms). At first, the stress magnitude is calculated assuming that faulting occurs in 'dry' conditions (fluid pressure=0). In a second step, the fluid pressure is introduced performing a grid search over the orientation of 1) fault planes that slip by shear failure or 2) cracks that open under different values of fluid pressure and calculating the consistency with the observed fault planes (i.e. strike and dip of faults, cracks, nodal planes from focal mechanisms). The analytical method is applied using fault-slip data from the Solfatara volcano (Campi Flegrei, Italy) and seismic data (focal mechanisms) from the Vesuvius volcano (Italy). In these areas, the fluid pressure required to activate faults (shear fractures) and cracks (open fractures) is calculated. At Solfatara, the ratio between the fluid pressure and the vertical stress ?is very low for faults ( ?=0.16) and relatively high for cracks ( ?=0.5). At Vesuvius, ?=0.6. Limits and uncertainties of the method are also discussed.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: hydrothermal fluids ; faults ; cracks ; fluid pressure ; volcanic/hydrothermal areas ; seismicity ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 909825 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-11-04
    Description: Paleoseismological analyses have been performed in the Central Apennines along faults showing geomorphological evidence of Late Quaternary activity and characterised by the absence of historical seismicity. Three trenches were made along the Mt. Vettore Fault, across a scarp on a Late Pleistocene-Holocene alluvial fan. The youngest displacement event (E1) occurred after 4155-3965 years BP and before the 6th-7th century A.D., a previous event (E2) occurred between 5940-5890/5795-5780 years BP and 4155-3965 years BP, while the oldest event (E3) occurred between 18.000-12.000 years BP and 5940-5890/5795-5780 years BP. One trench was excavated across the Laga Mts. Fault which gave evidence for two displacement events after 8320-8150 years BP. The minimum vertical slip rate estimated through the paleoseismological analysis of the Mt. Vettore Fault is 0.11-0.36 mm/yr, while the minimum slip rate along the Laga Mts. Fault is 0.12 mm/yr. The paleoseismologically inferred recurrence interval is not longer than 4690 years for the Mt. Vettore Fault and not longer than 7570 years for the Laga Mts. Fault, while the minimum elapsed times since the last activation are 1300 and 800 years for the two faults, respectively. The evaluation of the former elapsed time was based on paleoseismological data, while the estimation of the latter was based on the absence of historical earthquakes which may have been caused by the Laga Mts. Fault and on the completeness of the historical catalogues for the large magnitude events in the last eight centuries. Based on the length of the fault at the surface, earthquakes with M 6.5 and 6.6 may be expected from the activation of the Mt. Vettore and Laga Mts. faults, respectively.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: paleoseismology ; active fault ; Holocene ; Central Italy ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 764957 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-11-04
    Description: In this work we present a study of an alluvial fan system, which is affected by the Quaternary activity of the leftlateral, reverse Alhama de Murcia Fault (Betic Cordillera). Paleoseismic studies in this area yield data that can be compared and correlated with the morphologic and tectono-sedimentary evolution of the alluvial fan. The spatial arrangement of the sedimentary alluvial fan units near the fault zone, shown in trenches, is controlled by the recurrent reverse, left-lateral coseismic events. We analysed the morphology of the drainage network using a 1:5000 scale orthoimage to identify and measure horizontal deflections along the fault. The channel pattern analysis allowed us to estimate the average horizontal slip rate of the SAMF for the last 130 ka. This value is 0.21 mm/a, which is slightly higher than the range of values obtained by trenching analysis for the last 30 ka, (0.06 to 0.15 mm/yr). The interpretation of the stratigraphic sequence exposed along the trench walls constrained the occurrence of at least two surface faulting earthquakes during the last 30000 years. The most recent event happened after the El Saltador Creek dissected the alluvial fan. The penultimate event occurred while the alluvial fan was still active.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: paleoseismicity ; slow active faults ; fan morphology ; Alhama de Murcia Fault ; BeticCordillera ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1886248 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-11-04
    Description: The Po Plain is a low-relief area characterised by active shortening accommodated by blind thrust faulting. In this almost flat region depositional rates are similar to tectonic rates and deformation is seldom expressed by noticeable surface anticlines. We adopted a geomorphological approach based on the detailed analysis of the drainage network to identify the location of active thrust faults. A total of 36 anomalies represented by sudden river diversions and shifts in channel pattern were accurately mapped. After comparison with the location of subsurface buried anticlines and of historical seismicity, these anomalies could be related to a tectonic origin and included in a database. Their distribution highlights the activity of the buried outer thrust fronts of both the Southern Alps and the Northern Apennines. Among all the anomalies, we identified one related to the seismogenic source responsible for the 12 May 1802 earthquake (Me 5.7), which struck the Oglio River Valley near Soncino (Cremona). We propose that this earthquake was generated by an east-west trending, north-dipping, blind thrust fault that roots into the Alpine system. If this inference is correct, other faults along the Southern Alpine margin are potentially seismogenic.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: tectonic geomorphology ; drainage anomaly ; blind thrust ; Po Plain ; 1802 Oglio Valley earthquake ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 550623 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-11-04
    Description: The Gargano region (Southeastern Italy) was hit by a M = 6.8 earthquake and inundated by a subsequent tsunami in 1627. To better define the hazard in the region, we searched for evidence of this and prior earthquakes in the geologic record. We identified potential earthquake-related liquefaction features and tsunami deposits in the stratigraphic sequences of the marsh areas both north and south of the Gargano promontory. We recognized clear liquefaction features and possible tsunamigenic sands that can be related to the 1627 seismic event in irrigation ditch exposures and gouge cores along the Northern Gargano coast. In total, six potential tsunami sand deposits have been recognized in two areas located close to the northern and southern coasts of the Gargano promontory. However, ambiguous evidence comes from the paleontological analysis of these sands. Although fragments of marine shells have been found in the coarser portion of the sand samples, foraminifera and ostracods assemblages are typical of brackish water condition. Radiocarbon dating of three of these deposits from the Northern Gargano coast, near the town of Lesina, suggests an average recurrence interval of 1700 years for tsunami events in this area. Assuming that all the paleotsunamis are related to the same seismogenic source responsible for the 1627 earthquake, this average recurrence interval may be typical for that source. Radiocarbon dating of three sand layers observed on the southern coast, close to the city of Manfredonia, suggests that the average recurrence time for violent sea inundation there is about 1200 years.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: tsunami ; liquefaction ; Gargano ; 1627 earthquake ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 706238 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-11-04
    Description: The Luoshan Fault located at the northeastern margin of Tibet plateau strikes roughly N-S, and is composed of six left-stepping sections with a total length of 60 km. Much evidence suggests that the Luoshan Fault is a reverse right-lateral strike-slip fault. The largest right-lateral strike-slip displacement and the most abundant dextral offset phenomena are located along the central section. Based on the right-lateral strike-slip offsets of the oldest alluvial fan, and of a gully and on the average displacement of the same order of gullies, the minimum slip-rate has been 2.15 ± 0.2 mm/yr since Late Pleistocene. Many surface rupture phenomena, such as fault scarps with fresh free-face, ground fissures, displacements of very young gullies, imply that a recent earthquake occurred along this fault. Combining the historical catalogue and our results, we believe that the 1561 A.D. earthquake was produced by the Luoshan Fault. Three paleoearthquakes were determined by means of paleoseismic studies along the Luoshan Fault: they occurred after 8200 ± 600 years BP, between 3130 ± 240 years BP and 4150 ± ± 120 years C.BP, and before 2230 ± 170 years BP, respectively.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: northeastern margin of Tibet plateau ; paleoseismology ; slip-rate ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1084608 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-11-04
    Description: The Daqingshan Piedmont Fault (DPF) is one of the major active normal faults in the Hetao depression zone in the northern part of Ordos Block, North China. It extends in NEE direction along the Daqingshan piedmont zone in the eastern part of the depression, dipping to the south, for a length of 223 km. The fault formed in the Eocene and underwent strong movement during the Cenozoic time. Its vertical displacement amplitude has exceeded 2400 m since the Quaternary. The fault can be divided into 5 active segments. Paleoseismological studies were concentrated on its western part from Baotou to Tumdzuoqi whereas the Hohhot Segment to the east was scarcely studied. To fill this gap of knowlegde, the authors carried out in-depth study on the Daqingshan piedmont fault during recent years. Excavation of trenches at Kuisu, Ulanblang, and Bakouzi sites on the Hohhot Segment of the Daqingshan piedmont fault and study of geomorphic surfaces allow us to identify and date paleoearthquakes and to evaluate the completeness of paleoseismic activity history. This was done both for the individual sites and for the entire segment since the Late Quaternary using the «method for displacement confining» along the fault and «method for correlation between multiple trenches». In this paper we present the geological loggings of two trenches at Kuisu site, provide the evidence for 6 events since 19 ka BP and the cumulative displacement amount produced by them is around 7 m. But the cumulative displacement amount obtained from difference in heights of geomorphic surfaces is 5.??.5.5 m. Results of tests using the method of displacement confining show that the event sequence revealed at this site can be considered complete. The data supplemented with information obtained in the Ulanblang and Bakouzi trenches show that 7 paleoseismic events occurred on the Hohhot Fault Segment since 19 ka BP, i.e. they occurred at 18.75 ± 0.75 ka, 16.97 ± ± 0.96 ka, 14.65 ± 0.67 ka, 11.82 ± 0.69 ka, 9.45 ± 0.26 ka, 6.83 ± 0.26 ka, and 4.50 ± 0.23 ka BP, respectively, and the average recurrence interval is 2.375 ± 0.432 ka. These results basically reflects the history of paleoseismic activity on the fault segment in this period of time.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: Daqingshan piedmont fault (China) ; Hohhot Segment ; paleoearthquakes ; seismichistory ; completeness of paleoseismic record ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 647886 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2022-04-29
    Description: Questo lavoro è dedicato allo studio delle geometrie e dei ratei di deformazione di breve e medio termine delle strutture compressive attive facenti parte dei fronti esterni della Catena Sudalpina, nel settore dell’anticlinale del Montello. Il metodo adottato utilizza informazioni derivate dall’analisi di una linea geodetica di primo ordine dell’IGM, combinate con osservazioni geofisiche, geologiche e geomorfologiche di superficie e di sottosuolo. La linea geodetica presa in esame mostra lungo alcuni suoi segmenti dei movimenti verticali relativi, positivi rispetto ai segmenti adiacenti (maggiori sollevamenti). Questi segnali geodetici, ottenuti dal confronto delle quote dei capisaldi misurate durante due distinte campagne separate da un intervallo di tempo di circa 50 anni, avvengono in corripondenza dell’attraversamento di faglie cieche e sono stati quindi interpretati come dovuti all’attività di queste strutture sepolte. Per l’interpretazione, è stata costruita una sezione geologica che segue la traccia della linea di livellazione, ed è stato quindi modelizzato il segnale geodetico adottando un metodo diretto. Nel modello, le geometrie di partenza delle faglie sono state prese dalla sezione geologica, e sono state poi modificate per riprodurre il segnale geodetico. Una volta fissate le geometrie delle faglie, gli uplift rate sono stati convertiti in slip e shortening rate e comparati con: 1- i ratei di medio e lungo termine derivati dalle osservazioni geologiche e geomorfologiche per evidenziare eventuali cambiamenti nel tempo; e 2- con i tassi di convergenza GPS per studiare la partizione delle deformazione tra i diversi fronti. Infine sono state usate relazioni analitiche ed empiriche per stimare la massima magnitudo e i tempi di ricorrenza dei potenziali futuri terremoti.
    Description: Published
    Description: Udine
    Description: 3.2. Tettonica attiva
    Description: open
    Keywords: Montello Anticline ; Eastern Southalpine Chain ; slip rates ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Extended abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2024-05-27
    Description: Numerous newly-identified traces of active faults in the Himalayan foothill zone along the HFF around Chandigarh, in Pinjore Dun, along the piedmont zone of the Lower Siwalik hill front and within the Lower Tertiary hill range reveal the pattern of thrust and strike-slip faulting, striking parallel to the principal structural trend (NNW-SSE) of the orogenic belt. The active Chandigarh Fault, Pinjore Garden Fault and Barsar thrust have vertically dislocated, warped and backtilted fluvial and alluvial-fan surfaces made up of Late Pleistocene-Holocene sediments. West- and southwest-facing fault scarplets with heights ranging from 12 to 50 m along these faults suggest continued tectonic movement through Late Pleistocene to recent times. Gentle warping and backtilting of the terraces on the hanging wall sides of the faults indicate fault-bend folding. These active faults are the manifestation of north-dipping imbricated thrust faults branching out from the major fault systems like the Main Boundary Fault (MBF) and Himalayan Frontal Fault (HFF), probably merging down northward into a décollement. The Taksal Fault, striking NNW-SSE, shows prominent right-lateral movement marked by lateral offset of streams and younger Quaternary terraces and occupies a narrow deep linear valley along the fault trace. Right stepping along this fault has resulted in formation of a small pull-apart basin. Fault scarplets facing ENE and WSW are the manifestation of dip-slip movement. This fault is an example of slip-partitioning between the strike-slip and thrust faults, suggesting ongoing oblique convergence of the Indian plate and northward migration of a tectonic sliver. Slip rate along the Taksal Fault has been calculated as 2.8 mm/yr. Preliminary trench investigation at the base of the Chandigarh Fault Scarp has revealed total displacement of 3.5 m along a low angle thrust fault with variable dip of 20° to 46° due northeast, possibly the result of one large magnitude (Mw 7) prehistoric earthquake. Taking into consideration the height of the Pinjore surface (20 to 25 m), tentative age (8.9 ± 1.9 ka), displacement during one event and average angle of fault dip (25°) gives slip rate of about 6.3 ± 2 mm/yr, a rate of horizontal shortening of 5.8 ± 1.8 mm/yr and recurrence of faulting of 555 ± 118 years along the Himalayan Frontal Fault.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: active faults ; Northwestern Himalayan Front ; paleoearthquake ; thrust and right lateralstrike-slip faults ; slip-partitioning ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 959249 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...