ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-11-04
    Description: New stratigraphic evidence from the Cascadia margin demonstrates that 13 earthquakes ruptured the margin from Vancouver Island to at least the California border following the catastrophic eruption of Mount Mazama. These 13 events have occurred with an average repeat time of ?? 600 years since the first post-Mazama event ?? 7500 years ago. The youngest event ?? 300 years ago probably coincides with widespread evidence of coastal subsidence and tsunami inundation in buried marshes along the Cascadia coast. We can extend the Holocene record to at least 9850 years, during which 18 events correlate along the same region. The pattern of repeat times is consistent with the pattern observed at most (but not all) localities onshore, strengthening the contention that both were produced by plate-wide earthquakes. We also observe that the sequence of Holocene events in Cascadia may contain a repeating pattern, a tantalizing look at what may be the long-term behavior of a major fault system. Over the last ?? 7500 years, the pattern appears to have repeated at least three times, with the most recent A.D. 1700 event being the third of three events following a long interval of 845 years between events T4 and T5. This long interval is one that is also recognized in many of the coastal records, and may serve as an anchor point between the offshore and onshore records. Similar stratigraphic records are found in two piston cores and one box core from Noyo Channel, adjacent to the Northern San Andreas Fault, which show a cyclic record of turbidite beds, with thirty- one turbidite beds above a Holocene/.Pleistocene faunal «datum». Thus far, we have determined ages for 20 events including the uppermost 5 events from these cores. The uppermost event returns a «modern» age, which we interpret is likely the 1906 San Andreas earthquake. The penultimate event returns an intercept age of A.D. 1664 (2 ?? range 1505- 1822). The third event and fourth event are lumped together, as there is no hemipelagic sediment between them. The age of this event is A.D. 1524 (1445-1664), though we are not certain whether this event represents one event or two. The fifth event age is A.D. 1204 (1057-1319), and the sixth event age is A.D. 1049 (981-1188). These results are in relatively good agreement with the onshore work to date, which indicates an age for the penultimate event in the mid-1600 s, the most likely age for the third event of ?? 1500-1600, and a fourth event ?? 1300. We presently do not have the spatial sampling needed to test for synchroneity of events along the Northern San Andreas, and thus cannot determine with confidence that the observed turbidite record is earthquake generated. However, the good agreement in number of events between the onshore and offshore records suggests that, as in Cascadia, turbidite triggers other than earthquakes appear not to have added significantly to the turbidite record along the northernmost San Andreas margin during the last ?? 2000 years.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: paleoseismology ; earthquake ; submarine ; recurrence patterns ; submarine landslides ; turbid flows ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 3112068 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Pure and applied geophysics 157 (2000), S. 1189-1226 
    ISSN: 1420-9136
    Keywords: Key Words: Submarine, landslides, tsunami, subduction earthquakes, subduction erosion.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract —Using SeaBeam bathymetry and multichannel seismic reflection records we have identified three large submarine landslides on the southern Oregon Cascadia margin. The area enclosed by the three arcuate slide scarps is approximately 8000 km2, and involves an estimated 12,000–16,000 km3 of the accretionary wedge. The three arcuate slump escarpments are nearly coincident with the continental shelf edge on their landward margins, spanning the full width of the accretionary wedge. Debris from the slides is buried or partially buried beneath the abyssal plain, covering a subsurface area of at least 8000 km2. The three major slides, called the Heceta, Coos Basin and Blanco slides, display morphologic and structural features typical of submarine landslides. Bathymetry, sidescan sonar, and seismic reflection profiles reveal that regions of the continental slope enclosed by the scarps are chaotic, with poor penetration of seismic energy and numerous diffractions. These regions show little structural coherence, in strong contrast to the fold thrust belt tectonics of the adjacent northern Oregon margin. The bathymetric scarps correlate with listric detachment faults identified on reflection profiles that show large vertical separation and bathymetric relief. Reflection profiles on the adjacent abyssal plain image buried debris packages extending 20–35 km seaward of the base of the continental slope. In the case of the youngest slide, an intersection of slide debris and abyssal plain sediments, rather than a thrust fault, mark the base of slope. The age of the three major slides decreases from south to north, indicated by the progressive northward shallowing of buried debris packages, increasing sharpness of morphologic expression, and southward increase in post-slide reformation of the accretionary wedge. The ages of the events, derived from calculated sedimentation rates in overlying Pleistocene sediments, are approximately 110 ka, 450 ka, and 1210 ka. This series of slides traveled 25–70 km onto the abyssal plain in at least three probably catastrophic events, which may have been triggered by subduction earthquakes. The lack of internal structure in the slide packages, and the considerable distance traveled suggest catastrophic rather than incremental slip, although there could have been multiple events. The slides would have generated large tsunami in the Pacific basin, possibly larger than that generated by an earthquake alone. We have identified a potential future slide off southern Oregon that may be released in a subduction earthquake. The occurrence of the slides and subsequent subduction of the slide debris, along with evidence for margin subsidence implies that basal subduction erosion has occurred over at least the last 1 Ma. The massive failure of the southern Oregon slope may have been the result of the collision of a seamount province or aseismic ridge with the margin, suggested by the age progression of the slides and evidence for subducted basement highs. The lack of latitudinal offset between the oldest slide debris and the corresponding scarp on the continental slope implies that the forearc is translating northward at a substantial fraction of the margin-parallel convergence rate.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2007-12-19
    Description: Exceptional examples of restraining and releasing bend structures along major strike-slip fault zones are found in the California continental Borderland. Erosion in the deep sea is diminished, thereby preserving the morphology of active oblique fault deformation. Long-lived deposition of turbidites and other marine sediments preserve a high-resolution geological record of fault zone deformation and regional tectonic evolution. Two large restraining bends with varied structural styles are compared to derive a typical morphology of Borderland restraining bends. A 60-km-long, 15{degrees} left bend in the dextral San Clemente Fault creates two primary deformation zones. The southeastern uplift involves soft' turbidite sediments and is expressed as a broad asymmetrical ridge with right-stepping en echelon anticlines and local pull-apart basins at minor releasing stepovers along the fault. The northwest uplift involves more rigid sedimentary and possibly igneous or metamorphic basement rocks creating a steep-sided, narrow and more symmetrical pop-up. The restraining bend terminates in a releasing stepover basin at the NW end, but curves gently into a transtensional releasing bend to the SE. Seismic stratigraphy indicates that the uplift and transpression along this bend occurred within Quaternary times. The 80-km-long, 3040{degrees} left bend in the San Diego TroughCatalina fault zone creates a large pop-up structure that emerges to form Santa Catalina Island. This ridge of igneous and metamorphic basement rocks has steep flanks and a classic rhomboid' shape. For both major restraining bends, and most others in the Borderland, the uplift is asymmetrical, with the principal displacement zone lying along one flank of the pop-up. Faults within the pop-up structure are very steep dipping and subvertical for the principal displacement zone. In most cases, a Miocene basin has been structurally inverted by the transpression. Development of major restraining bends offshore of southern California appears to result from reactivation of major transform faults associated with Mid-Miocene oblique rifting during the evolution of the PacificNorth America plate boundary. Seismicity offshore of southern California demonstrates that deformation along these major strike-slip fault systems continues today.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-12-02
    Description: In order to investigate the possibility of a long-term paleoseismic history from offshore sedimentary records in Sumatra, we collected 144 deep-sea sediment cores in the trench and in lower slope piggyback basins of the Sumatra accretionary prism. We used multibeam bathymetry and seismic reflection data to develop an understanding of catchment basins, turbidity current pathways, and depositional styles, as well as to precisely locate our gravity cores, piston cores, Kasten cores, and multicores. We use detailed physical property data, including computed tomographic X-ray, gamma density, magnetic susceptibility, grain-size analysis, faunal analysis, and smear slides, to evaluate the turbidite stratigraphy and sedimentology at each site. We use radiocarbon age control for piggyback basin sites above the carbonate compensation depth, and use 210 Pb and 137 Cs to evaluate the timing of the most recent sedimentary deposits. Using well-log correlation methods and radiometric age control, we test for potential correlations between isolated sites in piggyback basins and the trench. We find evidence for very young surface turbidites along the northern Sumatra margin, most likely emplaced within the past few decades at the seafloor in both the 2004 and 2005 earthquake rupture zones, with no overlying hemipelagic sediment. Based on the young soupy deposits, lack of oxidation, and 210 Pb and 14 C age determinations, we interpret the uppermost turbidite in 21 cores within the 2004 rupture area to have been deposited within a few years of collection in 2007, and most likely as a result of the 2004 moment magnitude (M w ) ~9.2 earthquake. The likely 2004 turbidite has a distinctive stacked structure of three major fining-upward sequences observed at several basin and trench sites, similar to the pattern of moment release in the 2004 earthquake. We observe rapid die out of the 2004 and 2005 deposits with distance from the slip zones, from local sources of sediment supply, and in the segment boundary between the slip zones. Many individual turbidites show strong similarities between isolated sites, as well as having similar emplacement times. Based upon radiocarbon age control and lithostratigraphic correlations between isolated basin and trench core sites, we interpret that 43 turbidites can be linked spatially over a distance of ~230 km within the southern portion of the 2004 rupture zone. Sampling at deep-water sites isolated from terrestrial and shallow-water sediment sources, as well as potential storm or tsunami wave triggers, limits potential mechanisms for initiating turbidity currents to plate boundary, crustal, or slab earthquakes. Other potential triggers, such as tectonic oversteepening, random self-failures, gas hydrate destabilization, are unlikely to be correlative between any two isolated sites. The most probable explanation for the similarity of timing, turbidite sequences, and individual turbidite structure in isolated basin and trench stratigraphic sequences is a seismogenic origin. The mean emplacement time for turbidites (likely triggered by Great earthquakes, magnitude 〉 ~8) in the 2004 rupture region for the past 6.6 ± 0.14 k.y. is 160 yr for 43 turbidites. The ages of 8 of the 10 uppermost turbidite deposits, spanning the past ~1500 yr, are largely consistent with the terrestrial paleoseismic and/or tsunami records in Thailand, Sumatra, India, and the Andaman Islands, suggesting either coincidence or a common origin. The mean interseismic time from the turbidite record for this same period is 170 yr, comparable to the ~210 yr recurrence for regional tsunami. The turbidite record, at 180 yr (6 events), compares reasonably well to the average for all events on northern Simeulue of 220 yr, and is identical to the tsunami interval of 180 yr for the same time period (6 events). Of the 43 correlated turbidites in the 2004 earthquake region, 13 are well correlated in our cores along strike lengths of 150 km or greater, and satisfy criteria for robustness; 24 turbidites correlated along a shorter strike distance may represent other plate boundary earthquakes of shorter spatial extent and may include turbidite beds sourced from crustal and slab earthquakes.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-10-04
    Description: Maximum earthquake magnitude ( m x ) is a critical parameter in seismic hazard and risk analysis. However, some recent large earthquakes have shown that most of the existing methods for estimating m x are inadequate. Moreover, m x itself is ill-defined because its meaning largely depends on the context, and it usually cannot be inferred using existing data without associating it with a time interval. In this study, we use probable maximum earthquake magnitude within a time period of interest, m p ( T ), to replace m x . The term m p ( T ) contains not only the information of magnitude limit but also the occurrence rate of the extreme events. We estimate m p ( T ) for circum-Pacific subduction zones using tapered Gutenberg–Richter (TGR) distributions. The estimation of the two TGR parameters, β -value and corner magnitude ( m c ), is performed using the maximum-likelihood method with the constraint from tectonic moment rate. To populate the TGR, the rates of smaller earthquakes are needed. We apply the Whole Earth model, a high-resolution global estimate of the rate of m ≥5 earthquakes, to estimate these rates. The uncertainties of m p ( T ) are calculated using Monte-Carlo simulation. Our results show that most of the circum-Pacific subduction zones can generate m ≥8.5 earthquakes over a 250-year interval, m ≥8.8 earthquakes over a 500-year interval, and m ≥9.0 earthquakes over a 10,000-year interval. For the Cascadia subduction zone, we include the 10,000-year paleoseismic record based on turbidite studies to supplement the limited instrumental earthquake data. Our results show that over a 500-year period, m ≥8.8 earthquakes are expected in this zone; over a 1000-year period, m ≥9.0 earthquakes are expected; and over a 10,000-year period, m ≥9.3 earthquakes are expected.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-08-27
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-11-22
    Description: Goldfinger et al. (2012) interpreted a 10,000 year old sequence of deep sea turbidites at the Cascadia subduction zone (CSZ) as a record of clusters of plate-boundary great earthquakes separated by gaps of many hundreds of years. We performed statistical analyses on this inferred earthquake record to test the temporal clustering model and to calculate time-dependent recurrence intervals and probabilities. We used a Monte Carlo simulation to determine if the turbidite recurrence intervals follow an exponential distribution consistent with a Poisson (memoryless) process. The latter was rejected at a statistical significance level of 0.05. We performed a cluster analysis on 20 randomly simulated catalogs of 18 events (event T2 excluded), using ages with uncertainties from the turbidite dataset. Results indicate that 13 catalogs exhibit statistically significant clustering behavior, yielding a probability of clustering of 13/20 or 0.65. Most (70%) of the 20 catalogs contain two or three closed clusters (a sequence that contains the same or nearly the same number of events) and the current cluster T1–T5 appears consistently in all catalogs. Analysis of the 13 catalogs that manifest clustering indicates that the probability that at least one more event will occur in the current cluster is 0.82. Given that the current cluster may not be closed yet, the probabilities of an M  9 earthquake during the next 50 and 100 years were estimated to be 0.17 and 0.25, respectively. We also analyzed the sensitivity of results to including event T2, whose status as a full-length rupture event is in doubt. The inclusion of T2 did not change the probability of clustering behavior in the CSZ turbidite data, but did significantly reduce the probability that the current cluster would extend to one more event. Based on the statistical analysis, time-independent and time-dependent recurrence intervals were calculated.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Seismological Society of America (SSA)
    Publication Date: 2013-01-11
    Print ISSN: 0895-0695
    Electronic ISSN: 1938-2057
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-12-04
    Description: Characterizations of tsunami hazards along the Cascadia subduction zone hinge on uncertainties in megathrust rupture models used for simulating tsunami inundation. To explore these uncertainties, we constructed 15 megathrust earthquake scenarios using rupture models that supply the initial conditions for tsunami simulations at Bandon, Oregon. Tsunami inundation varies with the amount and distribution of fault slip assigned to rupture models, including models where slip is partitioned to a splay fault in the accretionary wedge and models that vary the updip limit of slip on a buried fault. Constraints on fault slip come from onshore and offshore paleoseismological evidence. We rank each rupture model using a logic tree that evaluates a model’s consistency with geological and geophysical data. The scenarios provide inputs to a hydrodynamic model, SELFE, used to simulate tsunami generation, propagation, and inundation on unstructured grids with 〈5–15 m resolution in coastal areas. Tsunami simulations delineate the likelihood that Cascadia tsunamis will exceed mapped inundation lines. Maximum wave elevations at the shoreline varied from ~4 m to 25 m for earthquakes with 9–44 m slip and M w 8.7–9.2. Simulated tsunami inundation agrees with sparse deposits left by the A.D. 1700 and older tsunamis. Tsunami simulations for large (22–30 m slip) and medium (14–19 m slip) splay fault scenarios encompass 80%–95% of all inundation scenarios and provide reasonable guidelines for land-use planning and coastal development. The maximum tsunami inundation simulated for the greatest splay fault scenario (36–44 m slip) can help to guide development of local tsunami evacuation zones.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-12-02
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...