ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (11)
  • 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry  (11)
  • Geological Society of America  (5)
  • Blackwell Publishing Ltd  (4)
  • Chinese Geoscience Union  (2)
  • Nature Publishing Group
Collection
  • Articles  (11)
Source
Publisher
Years
  • 1
    Publication Date: 2021-03-11
    Description: Two approaches to the challenging aim of forecasting impending eruptions are searching for empirical precursors and developing suitable interpretative models. Here we present high-resolution time series of 3He/4He ratios measured in gases emitted from peripheral vents around Mount Etna volcano (Italy), which revealed variations with strong correlations over both time and a broad spatial scale. The main eruptive episodes are preceded by increases in 3He/4He, making this ratio a unique tracer for monitoring volcanic activity. These features strongly reflect pressurization beneath the volcano due to deep magma influx. We propose a pioneering model that relates the changes in 3He/4He to the time-dependent outflow of volatiles from a magmatic chamber subjected to evolution of its internal pressure due to magma injection. At Mount Etna, the model makes it possible to estimate in near real time key parameters such as the rate of magma input and volume change in deep chamber preceding eruptions, and to compare them with geodetic estimations. This represents an unprecedented use of 3He/4He to obtain quantitative information on the physics of magmatic systems. Volcanoes showing changes of 3He/4He ratio in discharged gases due to unrest episodes are widespread in the world, and therefore we envisage extensive future applications of this approach.
    Description: Published
    Description: 499-502
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: volcanic gas geochemistry ; physical modeling ; helium isotopes ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-03
    Description: Several types of natural gas emissions (soil gas, low temperature fumaroles, gas bubbling in mud pools) were collected monthly on Mt. Etna volcano between July 2000 and July 2003 both from its summit and its flanks. Samples were analysed for the determination of the concentrations of CO2, CH4, He, H2, CO as well as the isotopic ratios of 13 14 C/ C of CO2 (δ13C) and He (R/Ra). The analysed gases were chemically divided into two groups: air-contaminated (from sites closer to the summit vents of Mt. Etna) and CO2 - rich. Among the latter, samples from the lower SW flank of the volcano showed high contents of biogenic thermogenic and/or microbial CH4. Isotopic shift in the δ13C values is caused by input of organic CO2 and/or by interaction between magmatic CO2 and shallow ground water as a function of water temperature and CO2 flux from depth. Based on a graphic method applied to δ13 TDIC C of some ground water, the inferred isotopic composition of the pristine magmatic gas at Mt. Etna is characterised by δ13C values ranging from -2 to -1 0 00 . During the period July 2000 - July 2003 significant variations were observed in many of the investigated parameters almost at all monitored sites. Seasonal influences were generally found to be negligible, with only a limited effect of air temperature changes on soil CO2 and ground temperature in only two of the air-contaminated sites. The largest chemical anomalies were observed in the air-contaminated sites, probably because of the strong buffering power of local ground water on gases released through the most peripheral areas where the CO2-rich sites are located. The anomalous changes observed during the study period can be explained in terms of progressive gas release from separate batches of magma that ascend towards the surface in a step-wise manner. Data relevant to the period following the 2002-03 eruption suggest that magma kept accumulating beneath the volcano, thus increasing the probability of a new large eruption at Mt. Etna.
    Description: Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Palermo
    Description: Published
    Description: 805-841
    Description: open
    Keywords: Mt. Etna ; Geochemistry ; Gases ; Eruptive activity ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 67393 bytes
    Format: text/plain
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: The geochemical monitoring carried out on fluids released in the Central Apennines (Umbria region) evidenced seismically-induced modifications of the physic-chemical parameters in all the released fluids, including some cold waters circulating in certain carbonate rocks that are exploited for drinking purposes. The results allowed us to recognize the presence of components of diverse origin that changed the chemical composition of the water. These components, potentially dangerous for human consumption, can be considered as being “secondary effects” on local aquifers, induced by crustal deformation. We would also stress the relationship between the circulating fluids and active tectonic structures, as we detected modifications in some springs that were apparently not located anywhere near the local faults. The temporal variations in the geochemical features of the investigated cold waters are related to the local faulting activity that occurs during seismogenesis. The geochemical monitoring that provided information on fault movements during the seismic crisis, is also able to give us information regarding faulting activity in its earlier stages.
    Description: Published
    Description: 709-729
    Description: 3.2. Tettonica attiva
    Description: N/A or not JCR
    Description: reserved
    Keywords: cold waters ; earthquakes ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Thermogenic hydrocarbons entirely deriving from the thermal degradation of organic matter usually exhibit methane to ethane plus propane ratios smaller than 100. We present hydrocarbon distribution data of continental hydrothermal gases, whose methane has been independently identifi ed to derive from the abiogenic reduction of CO2. We fi nd that excess amounts of methane with respect to thermogenic hydrocarbon distributions are characteristic for the investigated gases. A similar pattern is observed for well discharges whose temperatures are too high to support any microbially mediated methanogenesis. These findings strongly suggest that abiogenic methane production in continental-hydrothermal systems is a more widespread process than previously assumed. The maximum contribution of such emissions to the modern atmospheric CH4 budget is estimated at ~1%.
    Description: Published
    Description: 495–498
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: methane ; isotopic composition ; abiogenic hydrocarbons ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Despite the advance in our understanding of the carbon exchange between terrestrial ecosystems and the atmosphere, semiarid ecosystems have been poorly investigated and little is known about their role in the global carbon balance. We used eddy covariance measurements to determine the exchange of CO2 between a semiarid steppe and the atmosphere over 3 years. The vegetation is a perennial grassland of Stipa tenacissima L. located in the SE of Spain. We examined diurnal, seasonal and interannual variations in the net ecosystem carbon balance (NECB) in relation to biophysical variables. Cumulative NECB was a net source of 65.7, 143.6 and 92.1 g C mˉ2 yrˉ1 for the 3 years studied, respectively. We separated the year into two distinctive periods: dry period and growing season. The ecosystem was a net source of CO2 to the atmosphere, particularly during the dry period when large CO2 positive fluxes of up to 15 μmol mˉ2 sˉ1 were observed in concomitance with large wind speeds. Over the growing season, the ecosystem was a slight sink or neutral with maximum rates of -2.3 μmol mˉ2 sˉ1. Rainfall events caused large fluxes of CO2 to the atmosphere and determined the length of the growing season. In this season, photosynthetic photon flux density controlled day-time NECB just below 1000 μmol mˉ2 sˉ1. The analyses of the diurnal and seasonal data and preliminary geological and gas-geochemical evaluations, including C isotopic analyses, suggest that the CO2 released was not only biogenic but most likely included a component of geothermal origin, presumably related to deep fluids occurring in the area. These results highlight the importance of considering geological carbon sources, as well as the need to carefully interpret the results of eddy covariance partitioning techniques when applied in geologically active areas potentially affected by CO2-rich geofluid circulation.
    Description: Published
    Description: 539–554
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: reserved
    Keywords: alpha grass ; carbon sequestration ; ecosystem respiration ; eddy covariance ; geogas ; geothermal activity ; grasslands ; net ecosystem carbon balance ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Methane soil flux measurements have been made in 38 sites at the geothermal system of Sousaki (Greece) with the closed chamber method. Fluxes range from –47.6 to 29,150 mg m-2 d-1 and the diffuse CH4 output of the system has been estimated at 19 t a-1. Contemporaneous CO2 flux measurements showed a moderate positive correlation between CO2 and CH4 fluxes. Comparison of the CO2/CH4 soil flux ratios with the CO2/CH4 ratio of the gases of the main gas manifestations provided evidence for methanotrophic activity within the soil. Laboratory CH4 consumption experiments confirmed the presence of methanotrophic microorganisms in soil samples collected at Sousaki. Consumption was generally in the range from –4.9 to –38.9 pmolCH4 h-1 g-1 but could sometimes reach extremely high values (–33,000 pmolCH4 h-1 g-1.). These results are consistent with recent studies on other geothermal systems that revealed the existence of thermoacidophilic bacteria exerting methanotrophic activity in hot, acid soils, thereby reducing methane emissions to the atmosphere.
    Description: Published
    Description: 97–107
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: reserved
    Keywords: Sousaki ; accumulation chamber ; soil degassing ; hydrothermal systems ; methane output ; methanotrophic activity ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: For the fi rst time a physical model, constrained by monitoring data, is used to derive a quantitative estimate of the evolution in time of magmatic gases that enter a hydrothermal system of an active volcano. The site is Campi Flegrei (west of Naples, in Italy), a caldera that had a large ground infl ation in 1982–1984 followed by 20 yr of subsidence. More recently the behavior of the system has changed: the magmatic component of fumaroles has increased, swarms of earthquakes are more frequent, and the ground has started a general uplifting trend, indicating that the hydrothermal system undergoes repeated injections of magmatic fl uid. Physical simulations of the process show that total injected fl uid masses are the same order of magnitude as those emitted during small to medium size volcanic eruptions, and their cumulative curve highlights a current period of increasing activity. Gas emission studies coupled with physical modeling can be extremely effective in predicting magmatic evolution and eruptive activity at volcanoes.
    Description: Published
    Description: 943-946
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: restricted
    Keywords: Campi Flegrei caldera ; geochemical data ; physical simulations ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: The Apennines belt of Italy undergoes a northeast-trending extension at a rate of a few millimeters per year that generates moderate to large normal-faulting earthquakes. In this paper, we show that seismicity, large earthquakes, strong gas emission, and belt topography all correlate with a broad, low Vp anomaly in the uppermost mantle. We propose that a thermal/fl uid anomaly in the mantle, associated with sub-lithospheric mantle replacement after delamination of the Adria lithosphere, supports the topography of the belt and drives the extensional tectonics. The mantle anomaly is likely caused by deep fl uids coming from the dehydration of the material subducted during the Europe-Adria collision and the delamination of Adria. Beneath the belt, CO2-rich fl uids are accumulated and occasionally discharged during large normal faulting earthquakes. After the replacement of sub-lithospheric mantle, the temperature at the base of the crust increases causing crustal stretching, anatexis, and strong degassing.
    Description: Published
    Description: 715-718
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: restricted
    Keywords: mantle anomaly ; Continental delamination ; the Apennines ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: This thematic issue of Geofluids includes 11 papers representing the three main topics discussed in the 10th edition of the International Conference on Gas Geochemistry (ICGG-10): (i) gas in petroleum systems and seepage, (ii) gas in geothermal systems and volcanoes and (iii) gas, seismicity and geohazards. ICGG-10 was held in 2009 in Romania, a country extraordinarily rich in surface gas manifestations, that offers innumerable opportunities for innovative studies on gas geochemistry. We briefly describe the present knowledge on gases occurring both in petroliferous sedimentary basins and geothermal areas of Romania. The 11 contributions of this special issue, which include data from eight countries, are then summarised. Based on these papers and other works presented at the ICGG-10, we find that significant advances in analytical capabilities, data treating and interpretation have led to innovative insights into the origin, distribution and environmental impact of gases migrating to the Earth’s surface. It is increasingly clear, in particular, that gas geochemistry can be more effective for petroleum exploration, volcano-tectonic, geodynamic and environmental studies, if multiparametric studies are performed and the data are interpreted in the geological context.
    Description: Published
    Description: 457-462
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: restricted
    Keywords: geothermal gas ; international conference on gas geochemistry ; natural gas ; romania ; seeps ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: Natural gas seeps in the Alpine region are poorly investigated. However, they can provide useful information regarding the hydrocarbon potential of sedimentary Alpine units and related geofluid migration, typically controlled by pressurized gas accumulations and tectonics. A gas seep located near Giswil, in the Swiss Northern Alps, was investigated, for the first time, for molecular and isotopic gas composition, methane flux to the atmosphere, and gas flux variations over time. The analyses indicated that the gas was thermogenic (CH4 〉 96%; d13C1: )35.5& to )40.2&) and showed evidence of subsurface petroleum biodegradation (13C-enriched CO2, and very low C3+ concentrations). The source rock in the region is marine Type II kerogen, which is likely the same as that providing thermogenic gas in the nearby Wilen shallow well, close to Lake Sarnen. However, the lack of d13CCO2 and d13C3 data for that well prevented us from determining whether the Wilen and Giswil seeps are fed by the same reservoir and seepage system. Gas fluxes from the Giswil seep, measured using a closedchamber system, were significant and mainly from two major vents. However, a substantial gas exhalation from the soil occurs diffusely in an area of at least 115 m2, leading to a total CH4 output conservatively estimated to be at least 16 tonnes per year. Gas flux variations, monitored over a 1-month period by a special tent and flowmeter, showed not only daily meteorological oscillations, but also an intrinsic ‘pulsation’ with periods of enhanced flux that lasted 2–6 h each, occurring every few days. The pulses are likely related to episodes of gas pressure build-up and discharge along the seepage system. However, to date, no relationship to seismicity in the active Sarnen strike-slip fault system has been established.
    Description: Published
    Description: 476-485
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: restricted
    Keywords: Alps ; isotopes ; methane ; organic geochemistry ; seeps ; Switzerland ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...