ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2021-01-11
    Beschreibung: The Alto Tiberina normal fault (ATF) in central Italy is a 50-km-long crustal structure that dips at a low angle (15–20◦). Events on the fault plane are about 10 times less frequent than those located in its shallower syn- and antithetic hanging-wall splays. To enhance ATF catalog and achieve a better understanding of the degree of coupling in the fault system, we apply a template matching technique in the 2010–2014 time window.We augment by a factor 5 the detections and decrease the completeness magnitude to negative values. Contrary to what previously observed on ATF, we highlight intermittent seismic activity and long-lasting clusters interacting with sequences on the shallower splays. One of these episodes of prolonged seismic activity, detected at the end of 2013 on a 30-km-long ATF segment, suggest the ATF active role during an aseismic transient unraveled by geodetic data.
    Beschreibung: Published
    Beschreibung: e2020GL089039
    Beschreibung: 2T. Deformazione crostale attiva
    Beschreibung: JCR Journal
    Schlagwort(e): 04.06. Seismology
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2021-05-12
    Beschreibung: Speleoseismological research carried out in the Central Apennines (Italy) contributed to understanding the behavior of active normal faults that are potentially able to generate Mw 6.5–7 earthquakes documented by paleoseismology and by historical and instrumental seismology. Radiometric (U‐Th, AMS‐14C, and bulk‐14C) dating of predeformation and postdeformation layers from collapsed speleothems found in Cola Cave indicates that at least three speleoseismic events occurred in the cave during the last ~12.5 ka and were ostensibly caused by seismic slip on one or more of the active faults located in the region surrounding the cave. We modeled the collapse of a tall (173 cm high) stalagmite to find a causative association of this event with one among the potential seismogenic sources. We defined the uniform hazard spectrum (UHS) for each seismogenic source at the site, and we used the calculated spectra in a deterministic approach to study the behavior of the speleothem, through a numerical finite element modeling (FEM). Although our analysis suggests the “Liri” fault as the most likely source responsible for the ground shaking recorded in the cave, the “Fucino” fault system, responsible for a Mw 7 earthquake in 1915, cannot be excluded as a potential source of speleoseismic damage. Results of this work provide new constraints on the seismotectonic history of this sector of Central Apennines and highlight the performance of integrated speleoseismological, seismic hazard, and numerical studies.
    Beschreibung: Published
    Beschreibung: e2020TC006289
    Beschreibung: 6T. Studi di pericolosità sismica e da maremoto
    Beschreibung: JCR Journal
    Schlagwort(e): Speleoseismology ; Central Apennines ; seismic hazard ; finite element modeling ; 04.04. Geology ; 04.06. Seismology
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2020-10-16
    Beschreibung: The temporal evolution of effusion rate is the main controlling factor of lava spreading and emplacement conditions. Therefore, it represents the most relevant parameter for characterizing the dynamics of effusive eruptions and thus for assessing the volcanic hazard associated with this type of volcanism. Since the effusion rate curves can provide important insights into the properties of the magma feeding system, several efforts have been performed for their classification and interpretation. Here, a recently published numerical model is employed for studying the effects of magma source and feeding dike properties on the main characteristics (e.g., duration, erupted mass, and effusion rate trend) of small‐volume effusive eruptions, in the absence of syn‐eruptive magma injection from deeper storages. We show that the total erupted mass is mainly controlled by magma reservoir conditions (i.e., dimensions and overpressure) prior to the eruption, whereas conduit processes along with reservoir properties can significantly affect mean effusion rate, and thus, they dramatically influence eruption duration. Simulations reproduce a wide variety of effusion rate trends, whose occurrence is controlled by the complex competition between conduit enlargement and overpressure decrease due to magma withdrawal. These effusion rate curves were classified in four groups, which were associated with the different types described in the literature. Results agree with the traditional explanation of effusion rate curves and provide new insights for interpreting them, highlighting the importance of magma reservoir size, initial overpressure, and initial width of the feeding dike in controlling the nature of the resulting effusion rate curve.
    Beschreibung: Published
    Beschreibung: e2019JB01930
    Beschreibung: 5V. Processi eruttivi e post-eruttivi
    Beschreibung: JCR Journal
    Schlagwort(e): effusive eruption ; basaltic eruptions ; numerical modeling ; 04.08. Volcanology
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2020-10-16
    Beschreibung: Kinetic energy models, also called kinetic models, are simple tools able to provide a fast estimate of the inundation area of pyroclastic density currents (PDCs). They are based on the calculation of the PDC front kinetic energy as a function of the distance from a source point. On a three‐dimensional topography, the PDC runout distance is estimated by comparing the flow kinetic energy with the potential energy associated with the topographic obstacles encountered by the PDC. Since kinetic models do not consider the occurrence of channelization processes, the modeled inundation areas can be significantly different from those observed in real deposits. To address this point, we present a new strategy that allows improving kinetic models by considering flow channelization processes, and consists in the inclusion of secondary source points in the expected channelization zones, adopting a tree branch‐like structure. This strategy is based on the redistribution of a key physical variable, such as the flow energy or mass depending on the considered kinetic model, and requires the adoption of appropriate equations for setting the characteristics of the secondary sources. Two models were modified by applying this strategy: the energy cone and the box model. We tested these branching models by comparing their results with those derived from their traditional formulations and from a two‐dimensional depth‐averaged model, considering two specific volcanoes (Chaitén and Citlaltépetl). Thereby, we show the capability of this strategy of improving the accuracy of kinetic models and considering flow channelization processes without including additional, unconstrained input parameters.
    Beschreibung: Published
    Beschreibung: e2019JB019271
    Beschreibung: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Beschreibung: JCR Journal
    Schlagwort(e): Pyroclastic Density Currents ; Numerical Modeling ; 04.08. Volcanology
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2021-01-07
    Beschreibung: Radon (222Rn) activity in air was measured for about 6 months at the summit of Mt. Etna Central Crater (Sicily) by integrative radon dosimetry at two different heights above ground level (5 cm and 1 m). This technique for air radon monitoring proved operational in the harsh volcanic environment of Mt. Etna summit with a 94% recovery rate of dosimeters. In the southeast sector exposed to the main gas plume, mean radon activity in free air (height 1 m) is significantly higher than the local background and the ground level activity (height 5 cm). The results strongly suggest that the plume is enriched in radon by ≈550 Bq/m3, which has never been evidenced before. Radon activities also reflect soil degassing occurring in the proximity of the crater, with increased ground level activities in zones of enhanced soil fracturing and degassing. Radon measurements also revealed a hot spot in front of the Voragine vent with extraordinary high levels of air activities (26 kBq/m3 at ground level and 8 kBq/m3 in free air). The temporal variation of radon activity was investigated by replacing a few stations half way through the exposure period. The only significant increase was associated with the site located under the main gas plume and correlated with eruptive unrest within the crater. Finally, air radon levels higher than the recommended threshold of 300 Bq/m3 were detected in several zones on the rim and could generate a nonnegligible radiologic dose for workers on the volcano.
    Beschreibung: Published
    Beschreibung: e2019JB019149
    Beschreibung: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Beschreibung: JCR Journal
    Schlagwort(e): 04.08. Volcanology
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2021-01-05
    Beschreibung: In December 2018, Etna volcano experienced one of the largest episodes of unrest since the installation of geophysical monitoring networks in 1970. The unrest culminated in a short eruption with a small volume of lava erupted, a significant seismic crisis and deformation of the entire volcanic edifice of magnitude never recorded before at Mount Etna. Here we describe the evolution of the 2018 eruptive cycle from the analysis of seismic and geodetic data collected in the months preceding, during, and following the intrusion. We model the space‐time evolution of high‐rate deformation data starting from the active source previously identified from deformation data and the propagation of seismicity in a 3‐D velocity model. The intrusion model suggests emplacement of two dikes: a smaller dike located beneath the eruptive fissure and a second, deeper dike between 1 and 5 kmbelow sea level that opened ~2 m. The rise and eruption of magma from the shallower dike did not interrupt the pressurization of a long‐lasting deeper reservoir (~6 km) that induced continuous inflation and intense deformation of the eastern flank. Shortly after the intrusion, on 26 December 2018, aML4.8 earthquake occurred near Pisano, destroying buildings and roads in two villages. We propose a time‐dependent intrusion model that supports the hypothesis of the inflation inducing flank deformation and that this process has been active since September 2018.
    Beschreibung: Published
    Beschreibung: e2020GC009218
    Beschreibung: 2V. Struttura e sistema di alimentazione dei vulcani
    Beschreibung: JCR Journal
    Schlagwort(e): 2018 Mount Etna Eruption, time‐dependent intrusion model, modelling of high‐rate deformations ; 04.08. Volcanology ; 04.03. Geodesy ; 04.06. Seismology
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2021-06-16
    Beschreibung: Numerical modeling of tephra dispersal and deposition is essential for evaluation of volcanic hazards. Many models consider reasonable physical approximations in order to reduce computational times, but this may introduce a certain degree of uncertainty in the simulation outputs. The important step of uncertainty quantification is dealt in this paper with respect to a coupled version of a plume model (PLUME‐MoM) and a tephra dispersal model (HYSPLIT). The performances of this model are evaluated through simulations of four past eruptions of different magnitudes and styles from three Andean volcanoes, and the uncertainty is quantified by evaluating the differences between modeled and observed data of plume height (at different time steps above the vent) as well as mass loading and grain size at given stratigraphic sections. Different meteorological data sets were also tested and had a sensible influence on the model outputs. Other results highlight that the model tends to underestimate plume heights while overestimating mass loading values, especially for higher‐magnitude eruptions. Moreover, the advective part of HYSPLIT seems to work more efficiently than the diffusive part. Finally, though the coupled PLUME‐MoM/HYSPLIT model generally is less efficient in reproducing deposit grain sizes, we propose that it may be used for hazard map production for higher‐magnitude eruptions (sub‐Plinian or Plinian) for what concern mass loading.
    Beschreibung: This research was financed by the French government IDEX‐ISITE initiative 16‐IDEX‐0001 (CAP 20‐25), the Institute de Recherche pour le Développement (IRD) in the context of the Laboratoire Mixte International “Séismes et Volcans dans les Andes du Nord” (SVAN), and the Centre National de la Recherche Scientifique (CNRS) Tellus programme.
    Beschreibung: Published
    Beschreibung: e2019JB018390
    Beschreibung: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Beschreibung: JCR Journal
    Schlagwort(e): Tephra deposit ; 04.08. Volcanology
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2021-12-14
    Beschreibung: The Italian earthquake waveform data are collected here in a dataset suited for machine learning analysis (ML) applications. The dataset consists of nearly 1.2 million three-component (3C) waveform traces from about 50 000 earthquakes and more than 130 000 noise 3C waveform traces, for a total of about 43 000 h of data and an average of 21 3C traces provided per event. The earthquake list is based on the Italian Seismic Bulletin (http://terremoti.ingv.it/bsi, last access: 15 February 2020​​​​​​​) of the Istituto Nazionale di Geofisica e Vulcanologia between January 2005 and January 2020, and it includes events in the magnitude range between 0.0 and 6.5. The waveform data have been recorded primarily by the Italian National Seismic Network (network code IV) and include both weak- (HH, EH channels) and strong-motion (HN channels) recordings. All the waveform traces have a length of 120 s, are sampled at 100 Hz, and are provided both in counts and ground motion physical units after deconvolution of the instrument transfer functions. The waveform dataset is accompanied by metadata consisting of more than 100 parameters providing comprehensive information on the earthquake source, the recording stations, the trace features, and other derived quantities. This rich set of metadata allows the users to target the data selection for their own purposes. Much of these metadata can be used as labels in ML analysis or for other studies. The dataset, assembled in HDF5 format, is available at http://doi.org/10.13127/instance (Michelini et al., 2021).
    Beschreibung: Published
    Beschreibung: 5509–5544
    Beschreibung: 4T. Sismicità dell'Italia
    Beschreibung: JCR Journal
    Schlagwort(e): 04.06. Seismology
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2023-11-16
    Beschreibung: We analyze a fully reprocessed data set of ~9,000 seismic events recorded in the western Alpine region during the past 30 yr, in order to understand how convergence between Africa and Eurasia is presently accommodated at the transition between the opposite‐dipping Alpine and Apenninic slabs. We confirm that seismicity in the Internal Zone of the Western Alps is clustered along two different arcs (Briançonnais and Piedmont arcs), clearly outlined by events in the 0–12 km depth range. The Piedmont Arc is best outlined by events in the 12–30 km depth range, forming a narrow belt that matches the shape and location of the Ivrea gravity anomaly. In the Internal Zone, σ3, is oblique to the orogen trend. Although the mountain range is spreading gravitationally at a shallow level, spreading occurs intermittently with other earthquakes that are more directly related to plate interactions. Strike‐slip solutions are predominant for events of magnitude Ml 〉 4, and reverse solutions are dominant along the Piedmont Arc for events of magnitude Ml 〈 4. Nodal planes have dominant NNW‐SSE and ENE‐WSW orientations that are common to major faults mapped in the study area. Integration with available tectonic and geodynamic constraints indicates that lithology distribution in the subduction wedge, orientation of major faults within and outside the subduction zone, and the exhumation of mantle rocks at shallow depth concurrently determine a complex seismotectonic scenario that may be expected in other subduction zones worldwide.
    Beschreibung: Published
    Beschreibung: e2020TC006086
    Beschreibung: 1T. Struttura della Terra
    Beschreibung: JCR Journal
    Schlagwort(e): Seismotectonics ; Adria-Europa plate boundary ; opposite-dipping slabs ; exhumed mantle wedge ; tectonic inheritance ; 04.06. Seismology
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...