ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques  (5)
  • 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis  (3)
  • Wiley  (5)
  • Molecular Diversity Preservation International  (3)
  • American Institute of Physics
  • Public Library of Science
Collection
Years
  • 1
    Publication Date: 2017-04-04
    Description: A series of computer microtomography experiments are reported which were performed by using a third-generation synchrotron radiation source on volcanic rocks from various active hazardous volcanoes in Italy and other volcanic areas in the world. The applied technique allowed the internal structure of the investigated material to be accurately imaged at the micrometer scale and three-dimensional views of the investigated samples to be produced as well as three-dimensional quantitative measurements of textural features. Thegeometryof thevesicle (gas-filledvoid) network in volcanic products of both basaltic and trachytic compositions were particularly focused on, as vesicle textures are directly linked to the dynamics of volcano degassing. This investigation provided novel insights into modes of gas exsolution, transport and loss in magmas that were not recognized in previous studies using solely conventional two- dimensional imaging techniques. The results of this study are important to understanding the behaviour of volcanoes and can be combined with other geosciences disciplines to forecast their future activity.
    Description: In press
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: JCR Journal
    Description: reserved
    Keywords: high-resolution three-dimensional imaging ; X-ray computed microtomography ; volcanic eruptions ; volcanic rock textures ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: We present the first application of a time reverse location method in a volcanic setting, for a family of long-period (LP) events recorded on Mt Etna. Results are compared with locations determined using a full moment tensor grid search inversion and cross-correlation method. From 2008 June 18 to July 3, 50 broad-band seismic stations were deployed on Mt Etna, Italy, in close proximity to the summit. Two families of LP events were detected with dominant spectral peaks around 0.9 Hz. The large number of stations close to the summit allowed us to locate all events in both families using a time reversal location method. The method involves taking the seismic signal, reversing it in time, and using it as a seismic source in a numerical seismic wave simulator where the reversed signals propagate through the numerical model, interfere constructively and destructively, and focus on the original source location. The source location is the computational cell with the largest displacement magnitude at the time of maximum energy current density inside the grid. Before we located the two LP families we first applied the method to two synthetic data sets and found a good fit between the time reverse location and true synthetic location for a known velocity model. The time reverse location results of the two families show a shallow seismic region close to the summit in agreement with the locations using a moment tensor full waveform inversion method and a cross-correlation location method.
    Description: Published
    Description: 452-462
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Volcano seismology ; Computational seismology ; Wave propagation ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: In this study the attenuation mechanism of seismic wave energy in north central Italy is estimated using low-magnitude earthquake local data recorded at six stations managed by INGV. Most of the analysed events are located along the Alpine chain in the zone of Iseo and Garda lakes, while a minor part in the Po valley. The zone investigated is characterized by the occurrence of significantly intense earthquakes (magnitude up to 6.6) the most recent occurred in 2004 close to the city of Sal`o on the coast of the Garda lake (Mw = 5.0). Due to the high population density and presence of industrial activity the investigated area is characterized by a high seismic risk. First, the ordinary Multiple Lapse Time Window Analysis (MLTWA) method is applied in the assumption of uniformvelocity and scattering and the couple of B0, the seismic albedo and Le−1, the extinction length inverse (corresponding to the total attenuation coefficient) is calculated in the frequency bands of 1.5, 3, 6 and 12 Hz. To retrieve more realistic estimates, the obtained values of B0 and Le−1 are corrected taking into account the effects of a depth-dependent earth model, consisting of an earth structure characterized by a transparent upper mantle and a heterogeneous crust. We find that the corrected intrinsic and scattering attenuation parameters (which are proportional to the inverse of the intrinsic/scattering quality factors, QI−1 and Qs−1) are strongly frequency dependent, with a prevalence of scattering attenuation over the intrinsic dissipation. The corrected and uncorrected values of total Q are in agreement with the total Q values obtained with different approaches for the same area.
    Description: Published
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: Seismic Attenuation ; Coda Waves ; Wave Scattering and Diffraction ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Different procedures were used to analyze a comprehensive time series of nighttime thermal infrared images acquired from October 2006 to June 2013 by a permanent station at Pisciarelli (Campi Flegrei, Italy). The methodologies were aimed at the detection and quantification of possible spatiotemporal changes in the ground-surface thermal features of an area affected by diffuse degassing. Long-term infrared time series images were processed without taking into account atmospheric conditions and emissivity estimations. The data obtained were compared with the trends of independent geophysical and geochemical parameters, which suggested that long-term temporal variations of the surface maximum temperatures were governed by the dynamics of the deeper hydrothermal system. Analogously, the dynamics of the shallow hydrothermal system are likely to control the short-period thermal oscillations that overlie the long-term thermal signals. The map of the yearly rates of temperature change shows temperature increases clustered in the thermal anomalous area of the infrared images, without evidence of modifications to the extension of the anomaly or of growth of new areas with significant thermal emission. This suggests that in the present state, the heat transfer is mainly due to hot gas emission through preexisting fractures and vents. Our data indicate that the comprehensive picture of the spatiotemporal evolution of the thermal features of the hydrothermal sites obtained by long-term infrared monitoring can provide useful information toward refining physical and conceptual models, as well as improving surveillance of active volcanoes.
    Description: The TIR monitoring system was partially funded by the 2000–2006 National Operating Programme and by the Italian Civil Protection Department in the framework of the 2004–2006 agreement with the Istituto Nazionale di Geofisica e Vulcanologia.
    Description: Published
    Description: 812–826
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: JCR Journal
    Description: restricted
    Keywords: Thermal Infrared Monitoring ; Campi Flegrei ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: We present the first application of a time reverse location method in a volcanic setting, for a family of long-period (LP) events recorded on Mt Etna. Results are compared with locations determined using a full moment tensor grid search inversion and cross-correlation method. From 2008 June 18 to July 3, 50 broad-band seismic stations were deployed on Mt Etna, Italy, in close proximity to the summit. Two families of LP events were detected with dominant spectral peaks around 0.9 Hz. The large number of stations close to the summit allowed us to locate all events in both families using a time reversal location method. The method involves taking the seismic signal, reversing it in time, and using it as a seismic source in a numerical seismic wave simulator where the reversed signals propagate through the numerical model, interfere constructively and destructively, and focus on the original source location. The source location is the computational cell with the largest displacement magnitude at the time of maximum energy current density inside the grid. Before we located the two LP families we first applied the method to two synthetic data sets and found a good fit between the time reverse location and true synthetic location for a known velocity model. The time reverse location results of the two families show a shallow seismic region close to the summit in agreement with the locations using a moment tensor full waveform inversion method and a cross-correlation location method.
    Description: In press
    Description: (11)
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Volcano seismology ; Computational seismology ; Wave propagation ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: During volcanic eruptions, measurements of the rate at which magma is erupted underpin hazard assessments. For eruptions dominated by the effusion of lava, estimates are often made using satellite data; here, in a case study at Mount Etna (Sicily), we make the first measurements based on terrestrial laser scanning (TLS), and we also include explosive products. During the study period (17–21 July 2012), regular Strombolian explosions were occurring within the Bocca Nuova crater, producing a ~50 m-high scoria cone and a small lava flow field. TLS surveys over multi-day intervals determined a mean cone growth rate (effusive and explosive products) of ~0.24 m3·s−1. Differences between 0.3-m resolution DEMs acquired at 10-minute intervals captured the evolution of a breakout lava flow lobe advancing at 0.01–0.03 m3·s−1. Partial occlusion within the crater prevented similar measurement of the main flow, but integrating TLS data with time-lapse imagery enabled lava viscosity (7.4 × 105 Pa·s) to be derived from surface velocities and, hence, a flux of 0.11 m3·s−1 to be calculated. Total dense rock equivalent magma discharge estimates are ~0.1–0.2 m3·s−1 over the measurement period and suggest that simultaneous estimates from satellite data are somewhat overestimated. Our results support the use of integrated TLS and time-lapse photography for ground-truthing space-based measurements and highlight the value of interactive image analysis when automated approaches, such as particle image velocimetry (PIV), fail.
    Description: Published
    Description: 14967 - 14987
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: open
    Keywords: lava flow; scoria cone; effusion rate; terrestrial laser scanning; time-lapse photography; Mt. Etna ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: In order to improve the observation capability in one of the most active volcanic areas in the world, Mt. Etna, we developed a processing method to use the surveillance cameras for a quasi real-time mapping of syn-eruptive processes. Following an evaluation of the current performance of the Etna permanent ground NEtwork of Thermal and Visible Sensors (Etna_NETVIS), its possible implementation and optimization was investigated to determine the locations of additional observation sites to be rapidly set up during emergencies. A tool was then devised to process time series of ground-acquired images and extract a coherent multi-temporal dataset of georeferenced map. The processed datasets can be used to extract 2D features such as evolution maps of active lava flows. The tool was validated on ad-hoc test fields and then adopted to map the evolution of two recent lava flows. The achievable accuracy (about three times the original pixel size) and the short processing time makes the tool suitable for rapidly assessing lava flow evolutions, especially in the case of recurrent eruptions, such as those of the 2011–2015 Etna activity. The tool can be used both in standard monitoring activities and during emergency phases (eventually improving the present network with additional mobile stations) when it is mandatory to carry out a quasi-real-time mapping to support civil protection actions. The developed tool could be integrated in the control room of the Osservatorio Etneo, thus enabling the Etna_NETVIS for mapping purposes and not only for video surveillance.
    Description: Published
    Description: 192
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: JCR Journal
    Description: open
    Keywords: volcano monitoring ; lava flow mapping ; surveillance camera ; hazard assessment ; geo spatial dataset ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: The 2002-2003 Stromboli eruption triggered the failure of part of the Sciara del Fuoco slope, which generated a tsunami that struck the island and the northern coastline of Sicily. The Sciara del Fuoco is a very steep slope where all lava flows from the craters' emplacement; most lateral eruptions usually take place from fissures propagating in this sector of the volcano. The eruption went on to produce a lava field that filled the area affected by the landslide. This in turn led to further instability, renewing the threat of another slope failure and a potentially related tsunami. This work describes a new joint approach, combining surveying data and aerial image correlometry methods, to study the motion of this unstable slope. The combination has the advantage of very precise surveying measurements, which can be considered the ground truth to constrain the very-high-resolution aerial photogrammetric data, thereby obtaining highly detailed and accurate ground deformation maps. The joint use of the two methods can be very useful to obtain a more complete image of the deformation field for monitoring dangerous and/or rather inaccessible places. The proposed combined methodology improves our ability to study and assess hazardous processes associated with significant ground deformation.
    Description: This Research has been supported by the Spanish Ministry of Economy and Competitiveness research projects AYA2010-17448 and ESP2013-47780-557 C2-1-R, and the EU 7th FP MED-SUV project (contract 308665). It is a contribution to the Moncloa Campus of International Excellence
    Description: Published
    Description: 463
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: JCR Journal
    Description: open
    Keywords: surveying ; data integration ; aerial photogrammetry ; monitoring ; flank instability ; sector collapse ; landslide ; tsunami ; volcanoes ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...