ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous  (43)
  • 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry  (35)
  • viscosity
  • Elsevier Science Limited  (73)
  • MISCELLANEA INGV  (3)
  • American Institute of Physics
Collection
Years
  • 1
    Publication Date: 2020-10-29
    Description: Turrialba volcano lies in the southern sector of the Central American Volcanic Front (CAVF) in Costa Rica. The geochemistry of major and trace elements, and Sr and Nd isotopes of a selected suite of volcanic rocks ranging in composition from basaltic andesite to dacite and belonging to the last 10 ka of activity of Turrialba volcano is described, together with the He-, Ne-, and Ar-isotope compositions of fluid inclusions hosted in olivine and pyroxene crystals. Most of the variability in the rock chemistry is consistentwith typical trends of fractional crystallization, but there is an outlying group of andesites that displays an adakite-like composition (with a consistent depletion in high-field-strength elements and a marked enrichment in Sr) and low 3He/4He ratios (7.0–7.2 Ra). The trace-element composition of these rocks is typical of subduction-related magmas influenced by an OIB-like component at the source associated with the subduction of the Galapagos seamounts. The 87Sr/86Sr (0.703612–0.703678) and 143Nd/144Nd (0.512960–0.512984) ratios of the bulk rocks vary within narrowranges, and are among the least-radiogenic isotope signatures of the CAVF volcanoes. The 3He/4He ratios measured in fluid inclusions hosted in olivine crystals (up to 8.1 Ra) are among the highest for the CAVF, and indicate that radiogenic 4He from fluids derived fromthe subducting slab contribute negligibly to the mantle wedge. The difference in He isotopes between most of studied rocks and those showing adakite-like features reasonably reflects two distinct components in the local mantle: (1) a MORB-like component, characterized by the highest He-isotope ratios (7.8–8.1 Ra), and (2) an OIB-like component, characterized by lower He-isotope ratios (7.0–7.2 Ra), coming from the subduction of the Galapagos seamounts. An overview at the regional scale indicates that high He-isotope ratios are peculiar to the two extreme sectors of the CAVF (Costa Rica to the south and Guatemala to the north), whereas in the central sector (Nicaragua) the magma source is probably contaminated by slab fluids. For the past few years Turrialba volcano has been in a volcanic unrest phase that has included a series of explosions, the most recent of which occurred between October 2014 and May 2015. The volcano is subject to an ongoing safety alert due to the possibility of a magmatic eruption. One of the crucial questions to be addressed is the kind of eruption that can be expected, and hence what type of magma is likely to be involved. The high 3He/4He ratios (7.8–8.0 Ra) measured during 2011 at high-temperature fumaroles of Turrialba craters are comparable to those measured in fluid inclusions of basaltic andesites that erupted in 1864–1866, suggesting that the magma currently feeding the shallow plumbing system has similar geochemical characteristics to the most recently erupted magma.
    Description: Published
    Description: 319-335
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Turrialba ; 3He/4He ratio ; Fluid inclusions ; Adakite ; MORB mantle ; OIB mantle ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistry ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-11-20
    Description: In this paperwe trace the impact of the 1669 eruption and the 1693 earthquakes in eastern Sicily, their effects on the people living in the Etna region and, more particularly, in the city of Catania and its hinterland. The former event was the largest historic eruption of Etna, having a flow field with an area of ca. 40 km2 and a maximum flow length of ca. 17 km, whereas the latter – occurring only 24 years later – killed between 11,000 and 20,000 of Catania’s estimated 20–27,000 inhabitants, plus many more in smaller settlements. Using a combination of field-based research, contemporary accounts and archival sources, the authors are able to drawa number of conclusions. First, the 1669 eruption, although it did not kill or injure, was economically the most devastating of historical eruptions. Although it affected a limited area, inundation by lava meant that landwas effectively sterilized for centuries and, in a pre-industrial agriculturally-based economy, recovery could not occur quicklywithout outside assistance from the State. Indeed some of the worst affected municipalities (i.e. Comuni) were only able to support populations that were much reduced in size. Secondly, much of the damage caused to buildings by volcanic earthquakes was effectively masked, becausemost of the settlements affectedwere quickly covered by lava flows. The vulnerability to volcanic earthquakes of traditionally constructed buildings has, however, remained a serious example of un-ameliorated risk exposure through to the present day. A third conclusion is that the 1693 earthquakes, although more serious with respect to the number of people and the area they affected in terms of mortality, morbidity and their immediate economic impact, saw a rapid and sustained recovery. Thiswas due in part to the fact that, in contrast to lava flows, an earthquake does not sterilize land, but more significant was the reduction in population numberswhich served both to release and concentrate funds for investment in recovery. By the close of the eighteenth century Cataniawas knownthroughout Europe for the quality of its townscape and buildings, many of which were constructed in the then fashionable (and expensive) baroque style. Finally, the 1669 and 1693 disasters were seized on by the authorities as opportunities to plan new and re-build old settlementswith improved infrastructure to facilitate economic growth. By the nineteenth centurymany of the lessons had been largely forgotten and there were many examples of: poor seismic design of individual buildings; and the location of newresidential and commercial areas that placed more people at greater risk fromfuture extreme events. Indeed it is only recently have new regulations been enacted to prevent the construction of buildings in the vicinity of active faults and to control development in other hazardous zones.
    Description: Published
    Description: 25-40
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: JCR Journal
    Description: restricted
    Keywords: Etna, 1669 eruption, 1693 earthquake, Resilience ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-12-21
    Description: Explosive events, lava-fountains and effusions frequently characterize eruptive activity at Etna. Consequently, the town of Catania and many local municipalities are potentially exposed to ash fallout and lava flows. Besides volcanic hazard, earthquakes and landslides affect this volcanic region as well. The Task 5.1 of the European project "MED-SUV'' (Grant Agreement n°. 308665) deals with the observation of these threatening phenomena from space and ground and their characterization and understanding. The Task encompasses six subtasks, which focus on and analyze the aforementioned hazards in terms of their characteristics, duration and spatial dimension: • Test cases for significant eruptive events have been defined by the subtask 5.1.1. The time span from 2005 to 2011 was chosen for its wealth of eruptive episodes and their well-documented evolution; • The mapping of eruptive products from satellite data will allow us the improvement of the interpretation and modeling of the mechanisms of cone-forming and lava flow emplacement. This topic is developed in the subtask 5.1.2; • Multidisciplinary experiments are planned in the subtask 5.1.3, and will be carried out at the North­ East Crater in July 2014; • Another important deliverable is given by tools of data mining proposed by the subtask 5.1.4. These tools will be available for the analysis of parameters of whatever nature (e.g., geochemical, geophysical), providing they are processed in numerical format; • The subtask 5.1.5 provides a characterization of the volcanic plume and eruptive products, with an integrated analysis of atmospheric, satellite and ground-based measurements, which play an important role in ash-cloud dispersal models; • The sub 5.1.6 focuses on landslide susceptibility analysis and zoning. The goal will be to highlight the regional distribution of potentially unstable slopes based on a detailed study of the factors responsible for landslides.
    Description: Published
    Description: Nicolosi (Catania), Italy
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: open
    Keywords: Etna ; volcanic activity ; threatening phenomena ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-12-17
    Description: The Agnano–Monte Spina tephra AMST , dated at 4100 years BP by Arr Ar and C AMS techniques, is the product of the highest-magnitude eruption in the Campi Flegrei caldera CFc. during its last epoch of activity 4800–3800 years BP.. The sequence alternates magmatic and phreatomagmatic pyroclastic-fallout, -flow and -surge beds and bedsets. Two main pumice-fallout deposits with variable easterly-to-northeasterly dispersal axes are about 10 cm thick at 42 km from the vent area. High particle concentration pyroclastic currents were confined to the caldera depression; lower concentration flows overtopped the morphological boundary of the caldera and traveled at least 15 km over the surrounding plain. The unit is subdivided into six members, named A through F in stratigraphic sequence, based upon their sedimentological characteristics. Isopachs and isopleths maps suggest a vent location in the Agnano plain. A volcano-tectonic collapse begun during the course of the eruption, took place along the faults of the northeastern sector of the resurgent block within the CFc, and generated the Agnano plain. The early erupted trachytic magma had a homogeneous alkali–trachytic composition, whereas later-erupted magma shows small-scale hetereogeneities. Trace elements and Sr-isotope compositions, indicate that two isotopically distinct magmas, one alkali–trachytic and the other trachytic, were tapped and partially mixed during the eruption. The small volume 1.2 km3 DRE. of erupted magma and the structural position of the vent suggest that the eruption was fed by a dyke intruded along a normal fault in the sector of the resurgent block under a tensional stress regime. q1999 Elsevier Science B.V. All rights reserved
    Description: Published
    Description: 269–301
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: JCR Journal
    Description: restricted
    Keywords: Agnano–Monte Spina tephra ; Campi Flegrei caldera ; magma ; pyroclastic-fallout; pumice ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-03-01
    Description: Strombolian activity is common in low-viscosity volcanism. It is characterised by quasi-periodic, short-lived explosions, which, whilst typically weak, may vary greatly in magnitude. The current paradigm for a strombolian volcanic eruption postulates a large gas bubble (slug) bursting explosively after ascending a conduit filled with low-viscosity magma. However, recent studies of pyroclast textures suggest the formation of a region of cooler, degassed, more-viscous magma at the top of the conduit is a common feature of strombolian eruptions. Following the hypothesis that such a rheological impedance could act as a ‘viscous plug’, which modifies and complicates gas escape processes, we conduct the first experimental investigation of this scenario. We find that: 1) the presence of a viscous plug enhances slug burst vigour; 2) experiments that include a viscous plug reproduce, and offer an explanation for, key phenomena observed in natural strombolian eruptions; 3) the presence and extent of the plug must be considered for the interpretation of infrasonic measurements of strombolian eruptions. Our scaled analogue experiments show that, as the gas slug expands on ascent, it forces the underlying low-viscosity liquid into the plug, creating a low-viscosity channel within a high-viscosity annulus. The slug's diameter and ascent rate change as it enters the channel, generating instabilities and increasing slug overpressure. When the slug reaches the surface, a more energetic burst process is observed than would be the case for a slug rising through the low-viscosity liquid alone. Fluid-dynamic instabilities cause low and high viscosity magma analogues to intermingle, and cause the burst to become pulsatory. The observed phenomena are reproduced by numerical fluid dynamic simulations at the volcanic scale, and provide a plausible explanation for pulsations, and the ejection of mingled pyroclasts, observed at Stromboli and elsewhere.
    Description: European Union’s Seventh Framework Programme (FP7/2007–2013) project NEMOH, REA grant agreement No. 289976
    Description: Published
    Description: 210-218
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: analogue modeling ; strombolian explosions ; plugged vents ; volcano acoustic ; volcano infrasonic ; slug bursting ; Taylor bubble ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-03-05
    Description: In summer 2013 a toxic and polluting gas blowout (19 tonnes day−1 CO2, 95 kg day−1 CH4) occurred from two shallow boreholes drilled at only 50 m from the International Airport of Rome (Italy), in the town of Fiumicino. Another gas blowout occurred in the same period from a borehole located offshore, 2 km away, also generating sea-water acidification; it lasted only a couple of days. Onshore, CO2was also diffusing fromholes within the soil, particularly toward the airport, generating a soil flux up to 1.8 tonnes day−1. In 3.5 months ~1500 tonnes of CO2 and 5.4 tonnes of CH4 were emitted in the atmosphere. Temporal monitoring of gas geochemistry indicates that in this area a mixing occurs between shallow and pressurized gas pockets, CO2-dominated, but with different chemical (i.e., He/CH4 ratio) and isotopic (3He/4He, δ13C-δDCH4) characteristics. Numerical simulation of CO2 dispersion in the atmosphere showed that dangerous air CO2 concentrations, up to lethal values, were only found near the vents at a height of 0.2 m. Fiumicino is a high blowout risk area, as CO2 rising through deep reaching faults pressurizes the shallowaquifer contained in gravels confined underneath shales of the Tiber delta deposits. The Fiumicino blowout is a typical example of dangerous phenomenon that may occur in urban context lying nearby active or recent volcanoes and requires quick response on hazard assessment by scientists to be addressed to civil protection and administrators.
    Description: Published
    Description: 54-65
    Description: 4V. Vulcani e ambiente
    Description: JCR Journal
    Description: restricted
    Keywords: Endogenous gas blowout from shallow wells ; Chemical and isotopic composition of gas and water ; Viscous flux and diffuse soil gas flux measurements ; Simulation andmonitoring of air CO2 dispersion ; Hazard assessment ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-06-22
    Description: The rocks of Alban Hills and Monti Sabatini volcanoes (Central Italy) and their associated epiclastic deposits have been extensively used as building material in ancient Rome from about VIIIth century BCE to IVth century CE. However, the identification of the source areas of these rocks is difficult due to the lack of an integrated stratigraphic and geochemical analysis of the relationships between the two volcanic districts, and to the alteration affecting the primary products as consequence of weathering and pedogenetic processes. Here, a comprehensive, upgraded stratigraphic and geochronological review of the two volcanic districts, corroborated by new geochronological data for several eruptive units and altered deposits is presented, coupled to a complete geochemical background, achieved by means of newly determined major and trace element analyses for all the main eruptive units. A study of the alteration processes of the primary products is also presented, and the age of the main weathering and pedogenetic phases, associated to Quaternary climatic changes, are also investigated. The results are integrated with those from literature in order to construct discriminant diagrams based on selected trace elements, and allow us to characterize the primary and altered volcanic deposits in the Rome area, distinguish products of different volcanic districts, discuss the effects of different weathering processes on the mobility of some elements, and provide a reference frame for the provenance of the volcanic materials employed in ancient Roman masonry. The interdisciplinary data set and results presented here provide groundwork for volcanological, climate, pedological and archaeological provenance studies.
    Description: Published
    Description: 115–136
    Description: JCR Journal
    Description: restricted
    Keywords: Quaternary volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-06-15
    Description: We investigated the geochemical features of the fluids circulating over the Amik Basin (SE Turkey–Syria border), which is crossed by the Northern extension of theDSF (Dead Sea Fault) and represents the boundary area of three tectonic plates (Anatolian, Arabian and African plates). We collected 34 water samples (thermal and cold from natural springs and boreholes) as well as 8 gas samples (bubbling and gas seepage) besides the gases dissolved in the sampled waters. The results show that the dissolved gas phase is a mixture of shallow (atmospheric) and deep components either of mantle and crustal origin. Coherently the sampled waters are variable mixtures of shallow and deep ground waters, the latter being characterised by higher salinity and longer residence times. The deep groundwaters (fromboreholes deeper than 1000 m)have a CH4-dominated dissolved gas phase related to the presence of hydrocarbon reservoirs. The very unique tectonic setting of the area includes the presence of an ophiolitic block outcropping in the westernmost area on the African Plate, as well as basalts located to the North and East on the Arabic Plate. The diffuse presence of CO2-enriched gases, although diluted by the huge groundwater circulation, testifies a regional degassing activity. Fluids circulating over the ophiolitic block are marked by H2-dominated gases with abiogenic methane and high-pH waters. The measured 3He/4He isotopic ratios display contributions from both crustal and mantle-derived sources over both sides of the DSF. Although the serpentinization process is generally independent from mantle-type contribution, the recorded helium isotopic ratios highlight variable contents of mantle-derived fluids. Due to the absence of recent volcanism over the western side of the basin (African Plate), we argue that CO2-rich volatiles carrying mantle-type helium and enriched in heavy carbon, are degassed by deep-rooted regional faults rather than from volcanic sources.
    Description: Published
    Description: 23–39
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Dead Sea Fault ; Hydrogeochemistry ; Gas geochemistry ; He isotopes ; C isotopes ; Ophiolites ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.02. Carbon cycling ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-07-13
    Description: We present the results of an electric resistivity tomography (ERT) survey, combined with mappings of diffuse carbon dioxide flux, ground temperature and self-potential (SP) at Solfatara, the most active crater of Phlegrean Fields. Solfatara is characterized by an intense carbon dioxide degassing, fumarole activity, and ground deformation. This ensemble of methods is applied to image the hydrothermal system of Solfatara, to understand the geometry of the fluid circulation, and to define the extension of the hydrothermal plume at a high enough resolution for a quantitative modeling. ERT inversion results show Solfatara as a globally conductive structure, with resistivity in the range 1–200 Ω m. Broad negative anomaly of self-potential in the inner part of Solfatara with a minimum in the area of Bocca Grande suggests a significant downward flow of condensing liquid water. Comparison between spatial variations of resistivity and gas flux indicates that resistivity changes at depth are related to gas saturation and fluid temperature. These variations delineate two plume structures: a liquid-dominated conductive plume below Fangaia mud-pool and a gas-dominated plume below Bocca Grande fumarole. The geometry of the Fangaia liquid-saturated plume is also imaged by a high resolution 3-D resistivity model. In order to estimate the permeability, we propose a 2-D axis-symmetric numerical model coupling Richards equation for fluid flow in conditions of partial saturation with the resistivity calculation as function of saturation only. Alternatively, we apply the Dupuit equation to estimate the permeability of the shallow layer. Using these two approaches we obtain the permeability of the shallow layer below Fangaia which ranges between (2–4) × 10− 14 m2.
    Description: Published
    Description: 172-182
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Hydrothermal System ; Carbon dioxide flux ; Gas saturation ; Solfatara ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-01-27
    Description: We describe a new type of secondary rootless phreatomagmatic explosions observed at active lava flows at volcanoes Klyuchevskoy (Russia) and Etna (Italy). The explosions occurred at considerable (up to 5 km) distances from primary volcanic vents, generally at steep (15–35°) slopes, and in places where incandescent basaltic or basaltic-andesitic lava propagated over ice/water-saturated substrate. The explosions produced high (up to 7 km) vertical ash/steam-laden clouds as well as pyroclastic flows that traveled up to 2 km downslope. Individual lobes of the pyroclastic flow deposits were up to 2 m thick, had steep lateral margins, and were composed of angular to subrounded bomb-size clasts in a poorly sorted ash–lapilli matrix. Character of the juvenile rock clasts in the pyroclastic flows (poorly vesiculated with chilled and fractured cauliflower outer surfaces) indicated their origin by explosive fragmentation of lava due to contact with external water. Non-juvenile rocks derived from the substrate of the lava flows comprised up to 75% in some of the pyroclastic flow deposits. We suggest a model where gradual heating of a water-saturated substrate under the advancing lava flow elevates pore pressure and thus reduces basal friction (in the case of frozen substrate water is initially formed by thawing of the substrate along the contact with lava). On steep slope this leads to gravitational instability and sliding of a part of the active lava flow and water-saturated substrate. The sliding lava and substrate disintegrate and intermix, triggering explosive “fuel–coolant” type interaction that produces large volume of fine-grained clastic material. Relatively cold steam-laden cloud of the phreatomagmatic explosion has limited capacity to transport upward the produced clastic material, thus part of it descends downslope in the form of pyroclastic flow. Similar explosive events were described for active lava flows of Llaima (Chile), Pavlof (Alaska), and Hekla (Iceland) indicating that this type of explosions and related hazard is common at snow/ice-clad volcanoes and sometimes happens also on fluid-saturated hydrothermally altered slopes.
    Description: Published
    Description: 60–72
    Description: JCR Journal
    Description: restricted
    Keywords: lava flow; pyroclastic flow; secondary explosion; phreatomagmatic explosion; Klyuchevskoy; Etna ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...