ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions  (28)
  • 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology
  • Geothermics
  • American Geophysical Union  (33)
  • Springer-Verlag  (18)
  • Nature Publishing Group
Sammlung
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2020-12-14
    Beschreibung: Stromboli volcano is famous in the scientific literature for its persistent state of activity, which began about 1500 years ago and consists of continuous degassing and mild intermittent explosions (normal Strombolian activity). Rare lava emissions and sporadic more violent explosive episodes (paroxysms) also occur. Since its formation, the present-day activity has been dominated by the emission of two basaltic magmas, differing chiefly in their crystal and volatile contents, whose characteristics have remained constant until now. The normal Strombolian activity and lava effusions are fed by a crystal-rich, degassed magma, stored within the uppermost part of the plumbing system, whereas highly vesicular, crystal-poor light-colored pumices are produced during paroxysms testifying to the ascent of volatile-rich magma batches from deeper portions of the magmatic system. Mineralogical, geochemical, and isotopic data, together with data on the volatile contents of magmas, are presented here with the aim of discussing (1) the relationships between the different magma batches erupted at Stromboli, (2) the mechanisms of their crystallization and transfer, (3) the plumbing system and triggering mechanisms of Strombolian eruptions.
    Beschreibung: Unpublished
    Beschreibung: 20
    Beschreibung: 3.5. Geologia e storia dei sistemi vulcanici
    Beschreibung: 4.3. TTC - Scenari di pericolosità vulcanica
    Beschreibung: reserved
    Schlagwort(e): Stromboli volcano ; Basaltic explosive activity ; Basaltic pumice ; Plumbing system ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: book chapter
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2020-12-14
    Beschreibung: Explosive volcanic eruptions are defined as the violent ejection of gas and hot fragments from a vent in the Earth's crust. Knowledge of ejection velocity is crucial for understanding and modeling relevant physical processes of an eruption, and yet direct measurements are still a difficult task with largely variable results. Here we apply pioneering high-speed imaging to measure the ejection velocity of pyroclasts from Strombolian explosive eruptions with an unparalleled temporal resolution. Measured supersonic velocities, up to 405 m/s, are twice higher than previously reported for such eruptions. Individual Strombolian explosions include multiple, sub-second-lasting ejection pulses characterized by an exponential decay of velocity. When fitted with an empirical model from shock-tube experiments literature, this decay allows constraining the length of the pressurized gas pockets responsible for the ejection pulses. These results directly impact eruption modeling and related hazard assessment, as well as the interpretation of geophysical signals from monitoring networks.
    Beschreibung: INGV-DPC “V2” and “Paroxysm”, FIRB-MIUR “Research and Development of New Technologies for Protection and Defense of Territory from Natural Risks”, and FP7-PEOPLE-IEF-2008 – 235328 Projects
    Beschreibung: Published
    Beschreibung: L02301
    Beschreibung: 3V. Dinamiche e scenari eruttivi
    Beschreibung: JCR Journal
    Beschreibung: open
    Schlagwort(e): strombolian ; ejection velocity ; explosive eruption ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2020-12-14
    Beschreibung: We describe the eruptive activity of the Pleistocene composite Baccano maar crater in the Sabatini Volcanic Complex (Central Italy) combining stratigraphy, grain size/componentry and rare earth element and Yttrium (REY) composition of its eruptive products with the stratigraphy and geothermal data derived from deep wells drilled on the Baccano structural high. The main lithological characteristics of the basal Baccano maar pyroclastic deposit, composed of more than 60% wt of non-thermometamorphosed lithic clasts from the sedimentary basement, show that the first eruption was magmatic-hydrothermal in nature. The lithology of the sedimentary lithic clasts indicates that the fragmentation level was at a depth of −1,000 to −1,200 m, with fragment depth verified by deep well stratigraphy. The 15% wt juvenile non-vesicular glass components suggest that magma played a minor role in powering the eruption. Assuming that the high-salinity hot hydrothermal fluids (365〈T〈410°C and P∼25 MPa), hosted in the highly permeable and confined aquifer below the Baccano maar are representative of those at the time of the eruption, we propose that hydrofracturing would have triggered the eruption caused by overpressure at the top of the geothermal aquifer. REY analysis performed on pyroclastic fragments and basement rocks suggest that partial dissolution of the deeper limestones (〉−1,400 m) by the aggressive hydrothermal fluids enriched in acid components (HF, HCl, and H2SO4) may have contributed to increased CO2 partial pressure that helped to drive the hydrofracturing. This could have caused rapid vapour separation and pressure drop, allowing the almost simultaneous breaking of the aquifer cover and brecciation of the calcareous units down to −1,000 to −1,200 m depth. The relative abundance of calcareous lithics in the basal part of the first Baccano eruptive unit, representing about the upper 200 m of stratigraphy below the top of the Baccano structural high, reveals the descent of the piezometric surface during the eruption. Combining deep well information and maar product stratigraphy, using also REY data from maar pyroclastic fragments and the basement rocks we draw an interpretative model for the Baccano maar forming eruption, concluding that a) magmatic-hydrothermal eruptions may originate deeper than previously thought, and b) hydrothermal fluids circulating in limestone aquifers may play an important role in triggering such eruptions.
    Beschreibung: Published
    Beschreibung: 899-915
    Beschreibung: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Hydrothermal eruptions ; Hydromagmatism ; Explosion depth ; REY ; Hydrothermal fluids ; Baccano maar ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    facet.materialart.
    Unbekannt
    Springer-Verlag
    Publikationsdatum: 2017-04-04
    Beschreibung: The July-August 2001 eruption of Mt. Etna stimulated widespread public and media interest, caused significant damage to tourist facilities, and for several days threatened the town of Nicolosi on the S flank of the volcano. Seven eruptive fissures were active, five on the S flank between 3050 and 2100 m altitude, and two on the NE flank between 3080 and 2600 m elevation. All produced lava flows over various periods during the eruption, the most voluminous of which reached a length of 6.9 km. Mineralogically the 2001 lavas fall into two distinct groups, indicating that magma was supplied through two different and largely independent pathways, one extending laterally from the central conduit system through radial fissures, the other being a vertically ascending eccentric dike. Furthermore one of the eccentric vents, at 2570 m elevation, was the site of vigorous phreatomagmatic activity as the dike cut through a shallow aquifer, both during the intial and closing stages of the eruption. For six days the magma column feeding this vent was more or less effectively sealed from the aquifer, permitting powerful explosive and effusive magmatic activity. While the eruption was characterized by a highly dynamic evolution, complex interactions between some of the eruptive fissures, and changing eruptive styles, its total volume (~25 x 106 m3 of lava and 5-10 x 106 m3 of pyroclastics) was relatively small in comparison with other recent eruptions of Etna. Effusion rates were calculated on a daily basis and reached peaks of 14-16 m3 s-1 while the average effusion rate at all fissures was about 11 m3 s-1, which is not exceptionally high. The eruption showed a number of peculiar features, but none of these (except the contemporaneous lateral and eccentric activity) represented a significant deviation from Etna's eruptive behavior in the long term. However, the 2001 eruption could be but the first in a series of flank eruptions, some of which might be more voluminous and hazardous. Placed in a long-term context, the eruption confirms a distinct trend, initiated during the past 50 years, toward higher production rates and more frequent eruptions, which might bring Etna back to similar levels of activity as during the early to mid 17th century.
    Beschreibung: Published
    Beschreibung: 461-476
    Beschreibung: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Beschreibung: 3.5. Geologia e storia dei sistemi vulcanici
    Beschreibung: 3.6. Fisica del vulcanismo
    Beschreibung: 4.3. TTC - Scenari di pericolosità vulcanica
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Mt. Etna ; 2001 eruption ; Lava flow-field evolution ; Central-lateral vs. eccentric activity ; Phreatomagmatism ; Eruption dynamics ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2017-04-04
    Beschreibung: The soil CO2 flux on Mt. Etna as recorded by the ETNAGAS network (an automatic system for measuring soil CO2 flux and meteorological parameters) started to increase strongly about 5 months prior to the onset of the 2004–2005 eruption and decreased a few months before the end of the eruption. Time delays in the occurrences of anomalies in soil CO2 flux at different sites in the geochemical network constrain the relationship between soil CO2 flux distributions and the tectonic framework of Etna volcano. The anomalies observed before the 2004–2005 eruption support the intrusion of new undegassed magma into the upper feeding system of the volcano (〈20 km below sea level). Magma subsequently rose slowly in the volcano conduits, thereby triggering the onset of the 2004–2005 eruption. The time delays in the occurrences of anomalies in combination with spectral analysis indicate the importance of tectonic and volcanotectonic structures in driving the ascent of deep gases within the crust. Moreover, greatest amplitude pulsations of the low-frequency components of the CO2 flux signals were correlated with the paroxystic activities of the 2004–2005 eruption. This study confirms that CO2 flux variation is a useful indicator for volcanic activity in the surveillance of the Mt. Etna and similar basaltic volcanoes.
    Beschreibung: Dipartimento Protezione Civile Ministero degli Interni
    Beschreibung: Published
    Beschreibung: B09206
    Beschreibung: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): CO2 flux ; Continuous monitoring of soil CO2 flux ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2017-04-04
    Beschreibung: Geological surveys, tephrostratigraphic study, and 40Ar/39Ar age determinations have allowed us to chronologically constrain the geological evolution of the lower NW flank of Etna volcano and to reconstruct the eruptive style of the Mt Barca flank eruption. This peripheral sector of the Mt Etna edifice, corresponding to the upper Simeto valley, was invaded by the Ellittico volcano lava flows between 41 and 29 ka ago when the Mt Barca eruption occurred. The vent of this flank eruption is located at about 15 km away from the summit craters, close to the town of Bronte. The Mt Barca eruption was characterized by a vigorous explosive activity that produced pyroclastic deposits dispersed eastward and minor effusive activity with the emission of a 1.1-km-long lava flow. Explosive activity was characterized by a phreatomagmatic phase followed by a magmatic one. The geological setting of this peripheral sector of the volcano favors the interaction between the rising magma and the shallow groundwater hosted in the volcanic pile resting on the impermeable sedimentary basement. This process produced phreatomagmatic activity in the first phase of the eruption, forming a pyroclastic fall deposit made of high-density, poorly vesicular scoria lapilli and lithic clasts. Conversely, during the second phase, a typical strombolian fall deposit formed. In terms of hazard assessment, the possible occurrence of this type of highly explosive flank eruption, at lower elevation in the densely inhabited areas, increases the volcanic risk in the Etnean region and widens the already known hazard scenario.
    Beschreibung: Published
    Beschreibung: 79-94
    Beschreibung: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Etna volcano ; Unconformity ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2012-02-03
    Beschreibung: Application of light detection and ranging (LIDAR) technology in volcanology has 7 developed rapidly over the past few years, being extremely useful for the generation 8 of high‐spatial‐resolution digital elevation models and for mapping eruption products. 9 However, LIDAR can also be used to yield detailed information about the dynamics of 10 lava movement, emplacement processes occuring across an active lava flow field, and the 11 volumes involved. Here we present the results of a multitemporal airborne LIDAR survey 12 flown to acquire data for an active flow field separated by time intervals ranging from 13 15 min to 25 h. Overflights were carried out over 2 d during the 2006 eruption of Mt. Etna, 14 Italy, coincident with lava emission from three ephemeral vent zones to feed lava flow in 15 six channels. In total 53 LIDAR images were collected, allowing us to track the volumetric 16 evolution of the entire flow field with temporal resolutions as low as ∼15 min and at a 17 spatial resolution of 〈1 m. This, together with accurate correction for systematic errors, 18 finely tuned DEM‐to‐DEM coregistration and an accurate residual error assessment, 19 permitted the quantification of the volumetric changes occuring across the flow field. We 20 record a characteristic flow emplacement mode, whereby flow front advance and channel 21 construction is fed by a series of volume pulses from the master vent. Volume pulses 22 have a characteristic morphology represented by a wave that moves down the channel 23 modifying existing channel‐levee constructs across the proximal‐medial zone and building 24 new ones in the distal zone. Our high‐resolution multitemporal LIDAR‐derived DEMs 25 allow calculation of the time‐averaged discharge rates associated with such a pulsed flow 26 emplacement regime, with errors under 1% for daily averaged values.
    Beschreibung: This work was partially funded by the Italian 930 Dipartimento della Protezione Civile in the frame of the 2007–2009 Agree- 931 ment with Istituto Nazionale di Geofisica e Vulcanologia–INGV. A.F. 932 benefited from the MIUR‐FIRB project “Piattaforma di ricerca multi‐disci- 933 plinare su terremoti e vulcani (AIRPLANE)” n. RBPR05B2ZJ. S.T. 934 benefited from the project FIRB “Sviluppo di nuove tecnologie per la prote- 935 zione e difesa del territorio dai rischi naturali (FUMO)” funded by the Italian 936 Ministero dell’Istruzione, dell’Università e della Ricerca.
    Beschreibung: Published
    Beschreibung: B11203
    Beschreibung: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Beschreibung: 1.10. TTC - Telerilevamento
    Beschreibung: 3.6. Fisica del vulcanismo
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): LIDAR ; lava flow ; Etna ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2017-04-04
    Beschreibung: Shallow slab devolatilization is not only witnessed through fluid expulsion at accretionary prisms, but is also evidenced by active serpentinite seamounts in the shallow fore-arc region of the Mariana convergent margin. Ocean Drilling Program (ODP) Leg 195 recovered serpentinized peridotites that present a unique opportunity to study the products of shallow level exchanges between the upper mantle and slab-derived fluids. Similar to samples recovered during ODP Leg 125, the protoliths of these fore-arc serpentinized peridotites are mantle harzburgites that have suffered large volume melt extraction (up to 25%) prior to interactions with fluids released from the downgoing Pacific Plate. Samples recovered from both ODP legs 125 and 195 show U-shaped rare earth element (REE) patterns and very low REE abundances (0.001–0.1 chondrites). Relative to global depleted mantle values these rocks typically have 1–2 orders of magnitude lower high field strength elements, REE, Th, and U contents. Interestingly, all fore-arc rocks thus far examined show extreme enrichments of fluid mobile elements (FME: B, As, Cs, Sb, Li). Because the elemental and B, Li, and Sr isotope systematics in these fore-arc serpentinites point to nonseawater-related processes, studies of elemental excesses and anomalous isotopic signatures allow assessment of how much of the subducted inventory is lost during the initial subduction process between 10 and 40 km. On the basis of similar but substantial enrichments of FME in the Mariana fore-arc samples recovered at ODP legs 125 and 195, we report large slab inventory depletions of B ( 75%), Cs ( 25%), As ( 15%), Li ( 15%), and Sb ( 8%); surprisingly low (generally less than 2%) depletions of Rb, Ba, Pb, U, Sr; and no depletions in REE and the high field strength elements (HFSE). Such slab-metasomatized mantle wedge materials may be dragged to depths of arc magma generation, as proposed by Tatsumi (1986) and Straub and Layne (2002) and thus represent an unexplored class of mantle material, different in its origins, physical properties and geochemical fingerprint from mantle rocks traditionally used in modeling a wide range of subduction zone processes.
    Beschreibung: Published
    Beschreibung: B09205
    Beschreibung: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Shallow slab fluid ; Mariana arc-basin ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistry
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2017-04-04
    Beschreibung: Most flank eruptions within a central stratovolcano are triggered by lateral draining of magma from its central conduit, and only few eruptions appear to be independent of the central conduit. In order to better highlight the dynamics of flank eruptions in a central stratovolcano, we review the eruptive history of Etna over the last 100 years. In particular, we take into consideration the Mount Etna eruption in 2001, which showed both summit activity and a flank eruption interpreted to be independent from the summit system. The eruption started with the emplacement of a ~N-S trending peripheral dike, responsible for the extrusion of 75% of the total volume of the erupted products. The rest of the magma was extruded through the summit conduit system (SE crater), feeding two radial dikes. The distribution of the seismicity and structures related to the propagation of the peripheral dike and volumetric considerations on the erupted magmas exclude a shallow connection between the summit and the peripheral magmatic systems during the eruption. Even though the summit and the peripheral magmatic systems were independent at shallow depths (〈3 km b.s.l.), petro-chemical data suggest that a common magma rising from depth fed the two systems. This deep connection resulted in the extrusion of residual magma from the summit system and of new magma from the peripheral system. Gravitational stresses predominate at the surface, controlling the emplacement of the dikes radiating from the summit; conversely, regional tectonics, possibly related to N-S trending structures, remains the most likely factor to have controlled at depth the rise of magma feeding the peripheral eruption.
    Beschreibung: Published
    Beschreibung: 517-529
    Beschreibung: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Beschreibung: 3.2. Tettonica attiva
    Beschreibung: 3.5. Geologia e storia dei sistemi vulcanici
    Beschreibung: 3.6. Fisica del vulcanismo
    Beschreibung: 4.3. TTC - Scenari di pericolosità vulcanica
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Central volcanoes ; Summit and flank eruptions ; Dikes ; Tectonics ; Volcano load ; Mount Etna ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2017-04-04
    Beschreibung: Volcanoes deform as a consequence of the rise and storage of magma; once magma reaches a critical pressure, an eruption occurs. However, how the edifice deformation relates to its eruptive behavior is poorly known. Here, we produce a joint interpretation of spaceborne InSAR deformation measurements and volcanic activity at Mt. Etna (Italy), between 1992 and 2006. We distinguish two volcano-tectonic behaviors. Between 1993 and 2000, Etna inflated with a starting deformation rate of 1 cm yr 1 that progressively reduced with time, nearly vanishing between 1998 and 2000; moreover, low-eruptive rate summit eruptions occurred, punctuated by lava fountains. Between 2001 and 2005, Etna deflated, feeding higher-eruptive rate flank eruptions, along with large displacements of the entire East-flank. These two behaviors, we suggest, result from the higher rate of magma stored between 1993 and June 2001, which triggered the emplacement of the dike responsible for the 2001 and 2002–2003 eruptions. Our results clearly show that the joint interpretation of volcano deformation and stored magma rates may be crucial in identifying impending volcanic eruptions.
    Beschreibung: This work was partly funded by INGV and the Italian DPC and was supported by ASI, the Preview Project and CRdC-AMRA. DPC-INGV Flank project providing the funds for the publication fees.
    Beschreibung: Published
    Beschreibung: L02309
    Beschreibung: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Beschreibung: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Beschreibung: 1.10. TTC - Telerilevamento
    Beschreibung: 3.6. Fisica del vulcanismo
    Beschreibung: 4.3. TTC - Scenari di pericolosità vulcanica
    Beschreibung: 4.5. Degassamento naturale
    Beschreibung: JCR Journal
    Beschreibung: partially_open
    Schlagwort(e): deformation ; eruptions ; Mt. Etna ; eruptive cycle ; InSAR ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...