ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04.08. Volcanology  (8)
  • 04.02. Exploration geophysics  (3)
  • Wiley  (8)
  • EGU  (3)
  • American Chemical Society
Collection
  • 1
    Publication Date: 2021-03-09
    Description: Mixed‐mode fluid‐filled cracks represent a common means of fluid transport within the Earth's crust. They often show complex propagation paths which may be due to interaction with crustal heterogeneities or heterogeneous crustal stress. Previous experimental and numerical studies focus on the interplay between fluid over-pressure and external stress but neglect the effect of other crack parameters. In this study, we address the role of crack length on the propagation paths in the presence of an external heterogeneous stress field. We make use of numerical simulations of magmatic dike and hydrofracture propagation, carried out using a two‐dimensional boundary element model, and analogue experiments of air‐filled crack propagation into a transparent gelatin block. We use a 3‐D finite element model to compute the stress field acting within the gelatin block and perform a quantitative comparison between 2‐D numerical simulations and experiments. We show that, given the same ratio between external stress and fluid pressure, longer fluid‐filled cracks are less sensitive to the background stress, and we quantify this effect on fluid‐filled crack paths. Combining the magnitude of the external stress, the fluid pressure, and the crack length, we define a new parameter, which characterizes two end member scenarios for the propagation path of a fluid‐filled fracture. Our results have important implications for volcanological studies which aim to address the problem of complex trajectories of magmatic dikes (i.e., to forecast scenarios of new vents opening at volcanoes) but also have implications for studies that address the growth and propagation of natural and induced hydrofractures.
    Description: Published
    Description: 2064–2081
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Keywords: Magmatic dykes ; hydrofractures ; Numerical symulations ; Analogue experiments ; 04.08. Volcanology ; 05.05. Mathematical geophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-10-13
    Description: Magma transfer in an open-conduit volcano is a complex process that is still open to debate and not entirely understood. For this reason, a multidisciplinary monitoring of active volcanoes is not only welcome, but also necessary for a correct comprehension of how volcanoes work. Mt. Etna is probably one of the best test sites for doing this, because of the large multidisciplinary monitoring network setup by the Osservatorio Etneo of Istituto Nazionale di Geofisica e Vulcanologia (INGV-OE), the high frequency of eruptions and the relatively easy access to most of its surface. We present new data on integrated monitoring of volcanic tremor, plume sulphur dioxide (SO2) flux and soil hydrogen (H2) and carbon dioxide (CO2) concentration from Mt. Etna. The RMS amplitude of volcanic tremor was measured by seismic stations at various distances from the summit craters, plume SO2 flux was measured from nine stations around the volcano and soil gases were measured in a station located in a low-temperature (T ∼ 85 °C) fumarole field on the upper north side of the volcano. During our monitoring period, we observed clear and marked anomalous changes in all parameters, with a nice temporal sequence that started with a soil CO2 and SO2 flux increase, followed a few days later by a soil H2 spike-like increase and finally with sharp spike-like increases in RMS amplitude (about 24 h after the onset of the anomaly in H2) at all seismic stations. After the initial spikes, all parameters returned more or less slowly to their background levels. Geochemical data, however, showed persistence of slight anomalous degassing for some more weeks, even in the apparent absence of RMS amplitude triggers. This suggests that the conditions of slight instability in the degassing magma column inside the volcano conduits lasted for a long period, probably until return to some sort of balance with the “normal” pressure conditions. The RMS amplitude increase accompanied the onset of strong Strombolian activity at the Northeast Crater, one of the four summit craters of Mt. Etna, which continued during the following period of moderate geochemical anomalies. This suggests a cause-effect relationship between the anomalies observed in all parameters and magma migration inside the central conduits of the volcano. Volcanic tremor is a well-established key parameter in the assessment of the probability of eruptive activity at Etna and it is actually used as a basis for a multistation system for detection of volcanic anomalies that has been developed by INGV-OE at Etna. Adding the information provided by our geochemical parameters gave us more solid support to this system, helping us understand better the mechanisms of magma migration inside of an active, open-conduit basaltic volcano.
    Description: Published
    Description: online (due to Covid pandemic)
    Description: 4V. Processi pre-eruttivi
    Keywords: integrated monitoring ; soil gases ; plume SO2 ; volcanic tremor ; magma transfer ; Etna ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-06-14
    Description: Southwestern Sicily is an area of infrequent seismic activity; however, some studies carried out in the archaeological Selinunte site suggest that, between the fourth century BC and the early Middle Ages, probably at least two earthquakes strucked this area with enough energy to damage and cause the collapse and kinematics of much of the architecture of Selinunte. Take into account that, in 2008, a noninvasive archaeological prospection and traditional data gathering methods along the Acropolis north fortifications were carried out. Following these first studies, after about 10 years, a new geophysical campaign was carried out. This second campaign benefited from the application of modern technologies for the acquisition and processing of the point cloud data on the northern part of the Acropolis, like terrestrial laser scanning and unmanned aerial vehicle photogrammetry. In this paper, we present the application of these techniques and a strategy for their integration for the 3D modelling of buildings and cultural heritages. We show how the integration of data acquired independently by these two techniques is an added value able to overcome the intrinsic limits of the individual techniques. The application to Selinunte's Acropolis allowed it to highlight and measure with high accuracy fractures, dislocation, inclinations of walls, depressions of some areas and other interesting observations, which may be important starting points for future investigations.
    Description: Published
    Description: 153-165
    Description: 2IT. Laboratori analitici e sperimentali
    Description: JCR Journal
    Keywords: 3D reconstruction ; archaeological survey ; digital elevation model ; Selinunte Archaeological Park ; terrestrial laser scanning ; unmanned aerial vehicle photogrammetry ; 05.04. Instrumentation and techniques of general interest ; 04.02. Exploration geophysics ; 05.02. Data dissemination ; 05.06. Methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-07-14
    Description: Archaeological exavations,undertaken since 2004 for the construction of the new Naples subway
    Description: Published
    Description: 542-557
    Description: 1V. Storia eruttiva
    Description: JCR Journal
    Keywords: A.D.79 eruption ; compositional data analysis ; geoarchaeology ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-07-08
    Description: The response of continental forelands to subduction and collision is a widely investigated topic in geodynamics. The deformation occurring within a foreland shared by two opposite‐verging chains, however, is uncommon and poorly understood. The Apulia Swell in the southern end of the Adria microplate (Africa‐Europe plate boundary, central Mediterranean Sea) represents one of these cases, as it is the common foreland of the SW verging Albanides‐Hellenides and the NE verging Southern Apennines merging into the SSE verging Calabrian Arc. We investigated the internal deformation of the Apulia Swell using multiscale geophysical data: multichannel seismic profiles recording up to 12‐s two‐way time (TWT) for a consistent image of the upper crust; high‐resolution multichannel seismic profiles, high‐resolution multibeam bathymetry, and CHIRP profiles acquired by R/V OGS Explora to constrain the Quaternary geological record. The results of our analyses characterize the geometry of the South Apulia Fault System (SAFS), a 100‐km‐long and 12‐km‐wide structure attesting an extensional (and possibly transtensional) response of the foreland to the two contractional fronts. The SAFS consists of two NW‐SE right‐stepping master faults and several secondary structures. The SAFS activity spans from the Early Pleistocene through the Holocene, as testified by the bathymetric and high‐resolution seismic data, with long‐term slip rates in the range of 0.2–0.4 mm/yr. Considering the position within an area with few or none other active faults in the surroundings, the dimension, and the activity rates, the SAFS can be a candidate causative fault of the 20 February 1743, M 6.7, earthquake.
    Description: Italian Ministry for Education, University, and Research (MIUR), Premiale 2014 D. M. 291 03/05/2016.
    Description: Published
    Description: e2020TC006116
    Description: 2T. Deformazione crostale attiva
    Description: 2TR. Ricostruzione e modellazione della struttura crostale
    Description: JCR Journal
    Keywords: active tectonics ; apulia ; south apulia fault system ; 1743 earthquake ; marine geology ; stable continental region ; ionian sea ; active faults ; subsurface geology ; seismic interpretation ; 04.04. Geology ; 04.07. Tectonophysics ; 04.02. Exploration geophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-03-26
    Description: Some researchers view radon emissions as a precursor to earthquakes, especially those of high magnitude [e.g., Wang et al., 2014; Lombardi and Voltattorni, 2010], but the debate in the scientific community about the applicability of the gas to surveillance systems remains open. Yet radon “works” at Italy’s Mount Etna, one of the world’s most active volcanoes, although not specifically as a precursor to earthquakes. In a broader sense, this naturally radioactive gas from the decay of uranium in the soil, which has been analyzed at Etna in the past few years, acts as a tracer of eruptive activity and also, in some cases, of seismic–tectonic phenomena. To deepen the understanding of tectonic and eruptive phenomena at Etna, scientists analyzed radon escaping from the ground and compared those data with measurements gathered continuously by instrumental networks on the volcano. Here Etna is a boon to scientists—it’s traced by roads, making it easy to access for scientific observation. Dense monitoring networks, managed by the Istituto Nazionale di Geofisica e Vulcanologia, Catania–Osservatorio Etneo (INGV-OE), have been continuously observing the volcano for more than 40 years. This continuous dense monitoring made the volcano the perfect open-air laboratory for deciphering how eruptive activity may influence radon emissions.
    Description: This work was supported by the Mediterranean Supersite Volcanoes (MED-SUV) project, which has received funding from the European Union’s Seventh Framework Programme for research, technological development, and demonstration under grant agreement 308665.
    Description: Published
    Description: 7
    Description: 4V. Processi pre-eruttivi
    Description: N/A or not JCR
    Keywords: Radon ; seismic activity ; Etna ; volcanic activity ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-01-11
    Description: Mt Etna has made headlines over the last weeks and months with spectacular eruptions, some of them highly explosive. This type of paroxysmal eruptive behaviour is characteristic of Etna’s activity over the past few decades and so it is no surprise that Etna is among the most active volcanoes worldwide. Etna is well-known for its extraordinary geology and due to its repeated eruptive activity it provides a continuous supply of new scientific opportunities to understand the inner workings of large basaltic volcanic systems. In addition to its scientific value, Etna is also a world famous tourist attraction and has been listed as a UNESCO World Heritage site in 2013 for its geological and cultural value and not least for its fine agricultural products. Etna’s status as an iconic volcano is not a recent phenomenon; in fact, Etna has been a literary fixture for at least 3000 years, giving rise to many ancient myths and legends that mark it as a special place, deserving of human respect. From the ancient eruptions to the latest events in February–April 2021, people try to explain and understand the processes that occur within and beneath the volcano. In this article, we briefly summarize the recent eruptive activity of Etna as well as the ancient myths and legends that surround this volcano, from the underground forge of Hephaestus to the adventures of Odysseus, all the way to the benefits and dangers the volcano provides to those living on its flanks today.
    Description: Published
    Description: 141-149
    Description: 2TM. Divulgazione Scientifica
    Description: N/A or not JCR
    Keywords: Etna, mythology, 2021 paroxysms, economy ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-10
    Description: Pyroclastic avalanches are a type of granular flow generated at active volcanoes by different mechanisms, including the collapse of steep pyroclastic deposits (e.g., scoria and ash cones), fountaining during moderately explosive eruptions, and crumbling and gravitational collapse of lava domes. They represent end-members of gravity-driven pyroclastic flows characterized by relatively small volumes (less than about 1 Mm3) and relatively thin (1–10 m) layers at high particle concentration (10–50 vol %), manifesting strong topographic control. The simulation of their dynamics and mapping of their hazards pose several different problems to researchers and practitioners, mostly due to the complex and still poorly understood rheology of the polydisperse granular mixture and to the interaction with the complex natural three-dimensional topography, which often causes rapid rheological changes. In this paper, we present IMEX_SfloW2D, a depth-averaged flow model describing the granular mixture as a single-phase granular fluid. The model is formulated in absolute Cartesian coordinates (whereby the fluid flow equations are integrated along the direction of gravity) and can be solved over a topography described by a digital elevation model. The numerical discretization and solution algorithms are formulated to allow for a robust description of wet–dry conditions (thus allowing us to accurately track the front propagation) and an implicit solution to the nonlinear friction terms. Owing to these features, the model is able to reproduce steady solutions, such as the triggering and stopping phases of the flow, without the need for empirical conditions. Benchmark cases are discussed to verify the numerical code implementation and to demonstrate the main features of the new model. A preliminary application to the simulation of the 11 February pyroclastic avalanche at the Etna volcano (Italy) is finally presented. In the present formulation, a simple semi-empirical friction model (Voellmy–Salm rheology) is implemented. However, the modular structure of the code facilitates the implementation of more specific and calibrated rheological models for pyroclastic avalanches.
    Description: Italian Department of Civil Protection, INGV-DPC agreement B2 2016, task D1
    Description: Published
    Description: 581-595
    Description: 5V. Dinamica dei processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: Pyroclastic avalanches ; shallow water ; 04.08. Volcanology ; 05.05. Mathematical geophysics ; 05.01. Computational geophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-06-22
    Description: Silicic calderas are volcanic systems whose unrest evolution is more unpredictable than other volcano types because they often do not culminate in an eruption. Their complex structure strongly influences the post-collapse volcano-tectonic evolution, usually coupling volcanism and ground deformation. Among such volcanoes, the Campi Flegrei caldera (southern Italy) is one of the most studied. Significant long- and short-term ground deformations characterize this restless volcano. Several studies performed on the marinecontinental succession exposed in the central sector of the Campi Flegrei caldera provided a reconstruction of ground deformation during the last 15 kyr. However, considering that over one-third of the caldera is presently submerged beneath the Pozzuoli Gulf, a comprehensive stratigraphic on-land-offshore framework is still lacking. This study aims at reconstructing the offshore succession through analysis of high-resolution single and multichannel reflection seismic profiles and correlates the resulting seismic stratigraphic framework with the stratigraphy reconstructed on-land. Results provide new clues on the causative relations between the intra-caldera marine and volcaniclastic sedimentation and the alternating phases of marine transgressions and regressions originated by the interplay between ground deformation and sea-level rise. The volcano-tectonic reconstruction, provided in this work, connects the major caldera floor movements to the large Plinian eruptions of Pomici Principali (12 ka) and Agnano Monte Spina (4.55 ka), with the onset of the first post-caldera doming at ~10.5 ka. We emphasize that ground deformation is usually coupled with volcanic activity, which shows a self-similar pattern, regardless of its scale. Thus, characterizing the long-term deformation history becomes of particular interest and relevance for hazard assessment and definition of future unrest scenarios.
    Description: Published
    Description: 855-882
    Description: 1V. Storia eruttiva
    Description: JCR Journal
    Keywords: offshore stratigraphy ; seismic units ; La Starza succession ; volcanism, ; 04.08. Volcanology ; 04.04. Geology ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-01-29
    Description: Recent advances in underwater and airborne robotic systems and ocean technologies have opened new perspectives in marine geology and its applications in the context of coastal and marine economic activities, whose sustainable development is increasingly acknowledged as a pillar for the new blue economy. BridgET (Bridging the gap between the land and the sea in a virtual Environment for innovative Teaching and community involvement in the science of climate change-induced marine and coastal geohazard) is an EU ERASMUS+ project designed to develop innovative and inclusive teaching methods to address a growing demand for strategic skills and scientific expertise in the field of 3D geological mapping of coastal environments. Seamless integration of the wide variety of multisource and multiscale onshore, nearshore and offshore geospatial data is indeed one of the main areas for improvement in the implementation of efficient management practices in coastal regions, where climate change, rising sea level, and geohazards are considerable environmental issues. BridgET involves a partnership consisting of six European universities with outstanding expertise in the study of geological hazards, and climate impacts in marine and coastal areas (i.e., University of Milano-Bicocca, Italy, Arctic University of Tromsø/CAGE - Norway, National and Kapodistrian University of Athens - Greece, Kiel University, Germany, University of Liege – Belgium, and the University of Malta), two Italian research institutes (INGV and INAF) and a German company (Orthodrone GmvH) specialized in UAS-based LiDAR and photogrammetry data acquisition services and analyses. Project implementation relies on delivering learning and teaching activities through dedicated summer schools for MSc students by efficiently combining the partner’s expertise. Schools focus on giving students a hands-on experience with the variety of methods and procedures adopted in geospatial data acquisition and processing, including the use of drones (Uncrewed Aerial System – UAS), acoustic remote sensing techniques and underwater robotic systems, together with the progress made by computer visions and digital image analysis by using Artificial Intelligence (AI). Students are also introduced to the opportunity to easily examine multiple viewing angles of the seabed and coastal 3D surfaces by using immersive and nonimmersive Virtual Reality (VR), to bring them closer to a more straightforward observation of geomorphological data and geological phenomena. The first Summer School was held in Santorini between the 3rd and 14th of October, 2022. It was attended by 26 students coming from 13 different countries. Teaching and learning activities included several classrooms, fieldwork, laboratory sessions, and seven seminars and cultural visits dealing with transversal topics, allowing students to approach an integrated understanding of human interaction with physical processes from social and economic perspectives. In this presentation, we give examples of course content used to allow students to develop a deeper understanding of theoretical and practical knowledge of climate-induced coastal and marine geohazards. Participants' opinions on the quality of the offered learning/training activities of the Erasmus+ BridgET Santorini Summer School (collected through a dedicated questionnaire) will also be presented. Erasmus+ BridgET Team: Varvara Antoniou, Fabio Luca Bonali, Clara Drummer, Theynushya Esalingam, Luca Fallati, Susanna Falsaperla, Felix Gross, Hans-Balder havenith, Juri Klusak, Sebastian Krastel, Iver Martens, Aaron Micallef, Paraskevi Nomikou, Giuliana Panieri, Danilo Reitano, Julian Teege, Alessandro Tibaldi, Andrea Giulia Varzi, Fabio Vitello, Othonas Vlasopoulos
    Description: Published
    Description: Vienna (Austria)
    Description: OSA4: Ambiente marino, fascia costiera ed Oceanografia operativa
    Keywords: marine geosciences ; education ; Europe ; 04.02. Exploration geophysics ; 05.03. Educational, History of Science, Public Issues ; 05.04. Instrumentation and techniques of general interest
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...