ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (38)
  • Carbon cycle  (20)
  • 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy  (18)
  • American Geophysical Union  (38)
  • American Chemical Society
Collection
  • Articles  (38)
Source
  • 1
    Publication Date: 2021-04-07
    Description: The flow of ground water in a buried permeable paleochannel can be observed at the ground surface through its self-potential signature. We apply this method to delineate the Saint-Ferréol paleo-channel of the Rhone River located in Camargue, in the South East of France. Negative potentials, 30 mV (reference taken outside the paleochannel),are associated with ground water flow in this major sand-filled channel (500 m wide). Electrical resistivity is primarily controls by the salinity of the pore water. Electrical resistivity tomography and in situ sampling show the salinity of the water inside the paleo-channel is ten times smaller by comparison with the pore water of the surrounding sediments. Combining electrical resistivity surveys, self-potential data, and a minimum of drilling information, a 3-D reconstruction of the architecture of the paleo-channel is obtained showing the usefulness of this methodology for geomorphological reconstructions in this type of coastal environment.
    Description: - Observatoire de Recherche en Environnement (ORE)
    Description: Published
    Description: L07401
    Description: partially_open
    Keywords: Self-potential ; electrical resistivity tomography ; hydrogeology ; tomography ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 03. Hydrosphere::03.02. Hydrology::03.02.02. Hydrological processes: interaction, transport, dynamics ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methods ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 05. General::05.02. Data dissemination::05.02.04. Hydrogeological data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 503 bytes
    Format: 226125 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-10-26
    Description: This paper presents a velocity model of the Italian (central Mediterranean) lithosphere in unprecedented detail. The model is derived by inverting a set of 166,000 Pg and Pn seismic wave arrival times, restricted to the highest-quality data available. The tomographic images reveal the geometry of the subduction-collision system between the European, Adriatic, and Tyrrhenian plates, over a larger volume and with finer resolution than previous studies. We find two arcs of low-Vp anomalies running along the Alps and the Apennines, describing the collision zones of underthrusting continental lithospheres. Our results suggest that in the Apennines, a significant portion of the crust has been subducted below the mountain belt. From the velocity model we can also infer thermal softening of the crustal wedge above the subducting Adriatic plate. In the Tyrrhenian back-arc region, strong and extensive low-Vp anomalies depict upwelling asthenospheric material. The tomographic images also allow us to trace the boundary between the Adriatic and the Tyrrhenian plates at Moho depth, revealing some tears in the Adriatic-Ionian subducting lithosphere. The complex lithospheric structure described by this study is the result of a long evolution; the heterogeneities of continental margins, lithospheric underthrusting, and plate indentation have led to subduction variations, slab tears, and asthenospheric upwelling at the present day. The high-resolution model provided here greatly improves our understanding of the central Mediterranean’s structural puzzle. The results of this study can also shed light on the evolution of other regions experiencing both oceanic and continental subduction.
    Description: Published
    Description: B05305
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: open
    Keywords: lithosphere ; crust ; italy ; plates ; subduction ; europe ; seismicity ; adria ; tyrrhenian ; boundary ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-07-14
    Description: From 25 November to 2 December 2006, the first active seismic tomography experiment at Stromboli volcano was carried out with the cooperation of four Italian research institutions. Researchers on board the R/V Urania of the Italian National Council of Research (CNR), which was equipped with a battery of four 210- cubic- inch generated injection air guns (GI guns), fired more than 1500 offshore shots along profiles and rings around the volcano.
    Description: DPC/INGV agreement 2004-2006
    Description: Published
    Description: 269-270
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.6. Fisica del vulcanismo
    Description: N/A or not JCR
    Description: reserved
    Keywords: Stromboli ; seismic tomography ; air-gun ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-02-03
    Description: A high resolution P-wave image of Mt. Vesuvius edifice has been derived from simultaneous inversion of travel times and hypocentral parameters of local earthquakes, land based shots and small aperture array data. The results give detailsdownto300 – 500m.Therelocatedlocalseismicity appears to extend down to 5 km below the central crater, distributed in a major cluster, centered at 3 km below the central crater and in a minor group, with diffuse hypocenters inside the volcanic edifice. The two clusters are separated by an anomalously high Vp region at around 1 km depth. A zone with high Vp/Vs in the upper layers is interpreted as produced by the presence of intense fluid circulation. The highest energy quakes (up to M = 3.6) are located in the deeper cluster, in a high P-wave velocity zone. Our results favor an interpretation in terms of absence of shallow magma reservoirs.
    Description: Published
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: Velocity Tomography ; Mt. Vesuvius ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: High-resolution 3-D P and S-wave velocity models of a central sector of the Apennines (Central Italy) are computed by inverting first arrival times from an aftershock sequence (September–December, 1997) following the Mw 5.7 and Mw 6.0 Umbria-Marche earthquakes that occurred on September 26, 1997. The high quality of the data set, especially for the S-wave, allows us to compute 3-D variations in Vp, Vp/Vs and Vp · Vs. The anomalies can be interpreted as lateral changes in rock type and fracturing, which control fluid diffusion and variation in pore pressure. This is in agreement with a poro-elastic view that can be inferred from the spatio-temporal evolution of the seismic sequence.
    Description: Published
    Description: 61-4
    Description: open
    Keywords: Physical properties of rocks ; Seismicity and seismotectonics ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 246845 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Teleseismic traveltime data, recorded by temporary ocean bottom seismographs deployed in Tyrrhenian Sea around the Aeolian Islands (Tyrrhenian Deep-sea Experiment (TYDE)), have been used for the first time in Italy to refine the 3-D model for the deep P wave velocity structure of the southern Tyrrhenian subduction zone. The arrival times of 35 teleseisms have been combined with those recorded by the Italian National Network. In order to obtain a more complete azimuthal coverage of teleseismic rays, 80 events recorded by land stations from 1990 to 2002 have been included in the data set. In total, 2904 P and 314 PKPdf phases, 1300 recorded by ocean bottom instruments, have been collected. The upper mantle structure is reconstructed down to 500 km by a nonlinear inversion of the relative residuals computed with respect to the reference 1-D velocity model ak135. The obtained tomographic model has a higher resolution than those previously published thanks to the recordings of TYDE seafloor stations. Tomographic results confirm the presence of the Tyrrhenian slab imaged as a high-velocity body extending from the uppermost mantle down to the bottom velocity model with dip 70–75 NW. The model better defines the geometry of the seismogenic part of the slab. Its lateral extension is about 200 km in the depth interval 150–300 km, where most of the deep seismicity is concentrated. At uppermost mantle depths the fast structure has smaller lateral dimensions (about 100 km). The inversion also points out a wide well-resolved low-velocity zone completely surrounding the steeply dipping fast structure from the lower crust down to about 300 km. This feature suggests the presence of a threedimensional circulation of asthenospheric flow around the Ionian slab caused by retreat and roll-back of the slab. Our results are in agreement with recent laboratory experiments, mantle anisotropy studies, geochemical and isotopic analyses, and modeling based on residual topography.
    Description: Published
    Description: B03311
    Description: 3.1. Fisica dei terremoti
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: P-wave teleseismic tomography ; ocean bottom seismometers and hydrophones (OBS/Hs) ; southern Tyrrhenian subduction zone ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 968888 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: We present a new P wave and S wave velocity model for the upper crust beneath Long Valley Caldera obtained using local earthquake tomography and receiver function analysis. We computed the tomographic model using both a graded inversion scheme and a traditional approach. We complement the tomographic Vp model with a teleseismic receiver function model based on data from broadband seismic stations (MLAC and MKV) located on the SE and SW margins of the resurgent dome inside the caldera. The inversions resolve (1) a shallow, high‐velocity P wave anomaly associated with the structural uplift of a resurgent dome; (2) an elongated, WNW striking low‐velocity anomaly (8%–10 % reduction in Vp) at a depth of 6 km (4 km below mean sea level) beneath the southern section of the resurgent dome; and (3) a broad, low‐velocity volume (∼5% reduction in Vp and as much as 40% reduction in Vs) in the depth interval 8–14 km (6–12 km below mean sea level) beneath the central section of the caldera. The two low‐velocity volumes partially overlap the geodetically inferred inflation sources that drove uplift of the resurgent dome associated with caldera unrest between 1980 and 2000, and they likely reflect the ascent path for magma or magmatic fluids into the upper crust beneath the caldera.
    Description: Published
    Description: B12314
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: Seismic Tomography ; Long Valley Caldera ; Receiver Function ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: We present results from the first crustal seismic tomography for the southern Tyrrhenian area, which includes ocean bottom seismometer (OBS) data and a bathymetry correction. This area comprises Mt. Etna, the Aeolian Islands, and many volcanic seamounts, including the Marsili Seamount. The seismicity distribution in the area depends on the complex interaction between tectonics and volcanism. The 3-D velocity model presented in this study is obtained by the inversion of P wave arrival times from crustal earthquakes. We integrate travel time data recorded by an OBS network (Tyrrhenian Deep Sea Experiment), the SN-1 seafloor observatory, and the land network. Our model shows a high correlation between the P wave anomaly distribution and seismic and volcanic structures. Two main low-velocity anomalies underlie the central Aeolian Islands and Mt. Etna. The two volumes, which are related to the well-known active volcanism, are separated and located at different depths. This finding, in agreement with structural, petrography, and GPS data from literature, confirms the independence of the two systems. The strongest negative anomaly is found below Mt. Etna at the base of the crust, and we associate it with the deep feeding system of the volcano. We infer that most of the seismicity is generated in brittle rock volumes that are affected by the action of hot fluids under high pressure due to the active volcanism in the area. Lateral changes of velocity are related to a transition from the western to the central Aeolian Islands and to the passage from continental crust to the Tyrrhenian oceanic uppermost mantle.
    Description: Published
    Description: 3703–3719
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: open
    Keywords: ocean bottom seismometers ; southern Tyrrhenian Sea ; seismic tomography ; Aeolian Islands ; Etna ; oceanic continental crust ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: We present a 3-D P wave velocity model of the crust and shallowest mantle under the Italian region, that includes a revised Moho depth map, obtained by regional seismic travel time tomography. We invert 191,850 Pn and Pg wave arrival times from 6850 earthquakes that occurred within the region from 1988 to 2007, recorded by 264 permanent seismic stations. We adopt a high-resolution linear B-spline model representation, with 0.1􏰂 horizontal and 2 km vertical grid spacing, and an accurate finite-difference forward calculation scheme. Our nonlinear iterative inversion process uses the recent European reference 3-D crustal model EPcrust as a priori information. Our resulting model shows two arcs of relatively low velocity in the crust running along both the Alps and the Apennines, underlying the collision belts between plates. Beneath the Western Alps we detect the presence of the Ivrea body, denoted by a strong high P wave velocity anomaly. We also map the Moho discontinuity resulting from the inversion, imaged as the relatively sharp transition between crust and mantle, where P wave velocity steps up to values larger than 8 km/s. This simple condition yields an image quite in agreement with previous studies that use explicit representations for the discontinuity. We find a complex lithospheric structure characterized by shallower Moho close by the Tyrrhenian Sea, intermediate depth along the Adriatic coast, and deepest Moho under the two mountain belts.
    Description: Published
    Description: 69-88
    Description: 1T. Geodinamica e interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: seismic tomography ; body waves ; computational seismology ; Moho topography ; Italy ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-05-23
    Description: SPAC method applied to data from a small aperture seismic array on Mt. Vesuvius gives the shallow velocity model.
    Description: Published
    Description: 481-484
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: Array analysis ; shallow structure ; SPAC method ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...