ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Southern Ocean  (15)
  • Dissolved organic carbon
  • Flow-through
  • John Wiley & Sons  (16)
  • American Chemical Society  (2)
  • American Chemical Society (ACS)
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 118 (2013): 2052–2066, doi:10.1002/jgrc.20144.
    Description: This study considered cross-frontal exchange as a possible mechanism for the observed along-front freshening and cooling between the 27.0 and 27.3 kg m − 3 isopycnals north of the Subantarctic Front (SAF) in the southeast Pacific Ocean. This isopycnal range, which includes the densest Subantarctic Mode Water (SAMW) formed in this region, is mostly below the mixed layer, and so experiences little direct air-sea forcing. Data from two cruises in the southeast Pacific were examined for evidence of cross-frontal exchange; numerous eddies and intrusions containing Polar Frontal Zone (PFZ) water were observed north of the SAF, as well as a fresh surface layer during the summer cruise that was likely due to Ekman transport. These features penetrated north of the SAF, even though the potential vorticity structure of the SAF should have acted as a barrier to exchange. An optimum multiparameter (OMP) analysis incorporating a range of observed properties was used to estimate the cumulative cross-frontal exchange. The OMP analysis revealed an along-front increase in PFZ water fractional content in the region north of the SAF between the 27.1 and 27.3 kg m − 3 isopycnals; the increase was approximately 0.13 for every 15° of longitude. Between the 27.0 and 27.1 kg m − 3 isopycnals, the increase was approximately 0.15 for every 15° of longitude. A simple bulk calculation revealed that this magnitude of cross-frontal exchange could have caused the downstream evolution of SAMW temperature and salinity properties observed by Argo profiling floats.
    Description: NSF Ocean Sciences grant OCE-0327544 supported L.D.T., T.K.C., and J.H. and funded the two research cruises; NSF Ocean Sciences grant OCE-0850869 funded part of the analysis. BMS’s contribution to this work was undertaken as part of the Australian Climate Change Science Program, funded jointly by the Department of Climate Change and CSIRO.
    Description: 2013-10-23
    Keywords: Subantarctic Mode Water ; Southern Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 40 (2013): 1557–1561, doi:10.1002/grl.50219.
    Description: In the past two decades, a number of studies have been carried out in the Southern Ocean to look at export production using drifting sediment traps and thorium-234 based measurements, which allows us to reexamine the validity of using the existing relationships between production, export efficiency, and temperature to derive satellite-based carbon export estimates in this region. Comparisons of in situ export rates with modeled rates indicate a two to fourfold overestimation of export production by existing models. Comprehensive analysis of in situ data indicates two major reasons for this difference: (i) in situ data indicate a trend of decreasing export efficiency with increasing production which is contrary to existing export models and (ii) the export efficiencies appear to be less sensitive to temperature in this region compared to the global estimates used in the existing models. The most important implication of these observations is that the simplest models of export, which predict increase in carbon flux with increasing surface productivity, may require additional parameters, different weighing of existing parameters, or separate algorithms for different oceanic regimes.
    Description: This work was supported by NASA award number NNX08AB48G.
    Description: 2013-10-23
    Keywords: Biological pump ; Southern Ocean ; Carbon export
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: text/plain
    Format: application/pdf
    Format: application/msword
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 121 (2016): 6635–6649, doi:10.1002/2016JC011714.
    Description: We investigate the role of mesoscale eddies in modulating air-sea CO2 flux and associated biogeochemical fields in Drake Passage using in situ observations and an eddy-resolving numerical model. Both observations and model show a negative correlation between temperature and partial pressure of CO2 (pCO2) anomalies at the sea surface in austral summer, indicating that warm/cold anticyclonic/cyclonic eddies take up more/less CO2. In austral winter, in contrast, relationships are reversed: warm/cold anticyclonic/cyclonic eddies are characterized by a positive/negative pCO2 anomaly and more/less CO2 outgassing. It is argued that DIC-driven effects on pCO2 are greater than temperature effects in austral summer, leading to a negative correlation. In austral winter, however, the reverse is true. An eddy-centric analysis of the model solution reveals that nitrate and iron respond differently to the same vertical mixing: vertical mixing has a greater impact on iron because its normalized vertical gradient at the base of the surface mixed layer is an order of magnitude greater than that of nitrate.
    Description: NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center Grant Number: SMD-15-5752; NSF MOBY project Grant Numbers: (OCE-1048926), OCE-1259388, PLR-1341647, AOAS-0944761, and AOAS-066975; NOAA Climate Program Office Grant Number: (NA12OAR4310058)
    Description: 2017-03-10
    Keywords: CO2 flux ; Mesoscale eddy ; Southern Ocean ; Vertical mixing ; Nutrient fluxes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 31 (2017): 922–940, doi:10.1002/2016GB005615.
    Description: A coupled global numerical simulation (conducted with the Community Earth System Model) is used in conjunction with satellite remote sensing observations to examine the role of top-down (grazing pressure) and bottom-up (light, nutrients) controls on marine phytoplankton bloom dynamics in the Southern Ocean. Phytoplankton seasonal phenology is evaluated in the context of the recently proposed “disturbance-recovery” hypothesis relative to more traditional, exclusively “bottom-up” frameworks. All blooms occur when phytoplankton division rates exceed loss rates to permit sustained net population growth; however, the nature of this decoupling period varies regionally in Community Earth System Model. Regional case studies illustrate how unique pathways allow blooms to emerge despite very poor division rates or very strong grazing rates. In the Subantarctic, southeast Pacific small spring blooms initiate early cooccurring with deep mixing and low division rates, consistent with the disturbance-recovery hypothesis. Similar systematics are present in the Subantarctic, southwest Atlantic during the spring but are eclipsed by a subsequent, larger summer bloom that is coincident with shallow mixing and the annual maximum in division rates, consistent with a bottom-up, light limited framework. In the model simulation, increased iron stress prevents a similar summer bloom in the southeast Pacific. In the simulated Antarctic zone (70°S–65°S) seasonal sea ice acts as a dominant phytoplankton-zooplankton decoupling agent, triggering a delayed but substantial bloom as ice recedes. Satellite ocean color remote sensing and ocean physical reanalysis products do not precisely match model-predicted phenology, but observed patterns do indicate regional variability in mechanism across the Atlantic and Pacific.
    Description: NDSEG Graduate Fellowship; National Aeronautics and Space Administration Ocean Biology and Biogeochemistry Program Grant Number: NNX14L86G; NSF Poloar Programs Award Grant Number: 1440435; National Aeronautics and Space Administration Grant Number: NNX14AL86G; NDSEG; National Science Foundation Grant Number: 1440435
    Description: 2017-11-30
    Keywords: Southern Ocean ; Phytoplankton ; Bloom phenology ; Top-down controls ; Bottom-up controls ; Modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 45 (2018): 5002-5010, doi:10.1029/2017GL076909.
    Description: The Ocean Observatories Initiative air‐sea flux mooring deployed at 54.08°S, 89.67°W, in the southeast Pacific sector of the Southern Ocean, is the farthest south long‐term open ocean flux mooring ever deployed. Mooring observations (February 2015 to August 2017) provide the first in situ quantification of annual net air‐sea heat exchange from one of the prime Subantarctic Mode Water formation regions. Episodic turbulent heat loss events (reaching a daily mean net flux of −294 W/m2) generally occur when northeastward winds bring relatively cold, dry air to the mooring location, leading to large air‐sea temperature and humidity differences. Wintertime heat loss events promote deep mixed layer formation that lead to Subantarctic Mode Water formation. However, these processes have strong interannual variability; a higher frequency of 2 σ and 3 σ turbulent heat loss events in winter 2015 led to deep mixed layers (〉300 m), which were nonexistent in winter 2016.
    Description: NSF Grant Number: PLR-1425989; NSF Grant Number: OCE-1357072; NSF Grant Number: OCE-1658001; UK Natural Environment Research Council; ORCHESTRA Grant Number: NE/N018095/1
    Description: 2018-11-11
    Keywords: Southern Ocean ; Mixed layer ; Subantarctic Mode Water ; Air‐sea heat flux ; Mooring ; Interannual variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 45 (2018): 5011-5019, doi:10.1029/2017GL076246.
    Description: The Antarctic Circumpolar Current has highly energetic mesoscale phenomena, but their impacts on phytoplankton biomass, productivity, and biogeochemical cycling are not understood well. We analyze satellite observations and an eddy‐rich ocean model to show that they drive chlorophyll anomalies of opposite sign in winter versus summer. In winter, deeper mixed layers in positive sea surface height (SSH) anomalies reduce light availability, leading to anomalously low chlorophyll concentrations. In summer with abundant light, however, positive SSH anomalies show elevated chlorophyll concentration due to higher iron level, and an iron budget analysis reveals that anomalously strong vertical mixing enhances iron supply to the mixed layer. Features with negative SSH anomalies exhibit the opposite tendencies: higher chlorophyll concentration in winter and lower in summer. Our results suggest that mesoscale modulation of iron supply, light availability, and vertical mixing plays an important role in causing systematic variations in primary productivity over the seasonal cycle.
    Description: 2018-11-17
    Keywords: Mesoscale eddy ; Vertical mixing ; Chlorophyll ; Southern Ocean ; Iron ; Light
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Biogeosciences 118 (2013): 385–399, doi:10.1002/jgrg.20032.
    Description: The sea-air biological O2 flux assessed from measurements of surface O2 supersaturation in excess of Ar supersaturation (“O2 bioflux”) is increasingly being used to constrain net community production (NCP) in the upper ocean mixed layer. In making these calculations, one generally assumes that NCP is at steady state, mixed layer depth is constant, and there is no O2 exchange across the base of the mixed layer. The object of this paper is to evaluate the magnitude of errors introduced by violations of these assumptions. Therefore, we examine the differences between the sea-air biological O2 flux and NCP in the Southern Ocean mixed layer as calculated using two ocean biogeochemistry general circulation models. In this approach, NCP is considered a known entity in the prognostic model, whereas O2 bioflux is estimated using the model-predicted O2/Ar ratio to compute the mixed layer biological O2 saturation and the gas transfer velocity to calculate flux. We find that the simulated biological O2 flux gives an accurate picture of the regional-scale patterns and trends in model NCP. However, on local scales, violations of the assumptions behind the O2/Ar method lead to significant, non-uniform differences between model NCP and biological O2 flux. These errors arise from two main sources. First, venting of biological O2 to the atmosphere can be misaligned from NCP in both time and space. Second, vertical fluxes of oxygen across the base of the mixed layer complicate the relationship between NCP and the biological O2 flux. Our calculations show that low values of O2 bioflux correctly register that NCP is also low (〈10 mmol m−2 day−1), but fractional errors are large when rates are this low. Values between 10 and 40 mmol m−2 day−1 in areas with intermediate mixed layer depths of 30 to 50 m have the smallest absolute and relative errors. Areas with O2 bioflux higher than 30 mmol m−2 day−1 and mixed layers deeper than 40 m tend to underestimate NCP by up to 20 mmol m−2 day−1. Excluding time periods when mixed layer biological O2 is undersaturated, O2 bioflux underestimates time-averaged NCP by 5%–15%. If these time periods are included, O2 bioflux underestimates mixed layer NCP by 20%–35% in the Southern Ocean. The higher error estimate is relevant if one wants to estimate seasonal NCP since a significant amount of biological production takes place when mixed layer biological O2 is undersaturated.
    Description: This work was supported in part by funding from the National Aeronautic and Space Administration (NASA NNX08AF12G) and National Science Foundation (NSF OPP-0823101).
    Keywords: Biological production ; Southern Ocean ; O2/Ar ; Modeling ; Oxygen ; GCM
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 120 (2015): 1065–1078, doi:10.1002/2014JC010292.
    Description: The role of mesoscale eddies in the uptake of anthropogenic chlorofluorocarbon-11 (CFC-11) gas is investigated with a 1/20° eddy-resolving numerical ocean model of a region of the Southern Ocean. With a relatively fast air-sea equilibrium time scale (about a month), the air-sea CFC-11 flux quickly responds to the changes in the mixed layer CFC-11 partial pressure (pCFC-11). At the mesoscale, significant correlations are observed between pCFC-11 anomaly, anomalies in sea surface temperature (SST), net heat flux, and mixed layer depth. An eddy-centric analysis of the simulated CFC-11 field suggests that anticyclonic warm-core eddies generate negative pCFC-11 anomalies and cyclonic cold-core eddies generate positive anomalies of pCFC-11. Surface pCFC-11 is modulated by mixed layer dynamics in addition to CFC-11 air-sea fluxes. A negative cross correlation between mixed layer depth and surface pCFC-11 anomalies is linked to higher CFC-11 uptake in anticyclones and lower CFC-11 uptake in cyclones, especially in winter. An almost exact asymmetry in the air-sea CFC-11 flux between cyclones and anticyclones is found.
    Description: We gratefully acknowledge NSF support of the MOBY project (grant OCE-1048926 to MIT and OCE-1048897 to WHOI). In addition, P.G. and D.J.M. thank NASA for partial support of this work through grant NNX13AE47G.
    Description: 2015-08-23
    Keywords: Mesoscale eddies ; Chlorofluorocarbon-11 ; Air-sea flux ; Southern Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 42 (2015): 3450–3457, doi:10.1002/2015GL063216.
    Description: The impact of a mesoscale eddy on the magnitude and spatial distribution of diapycnal ocean mixing is investigated using a set of hydrographic and microstructure measurements collected in the Southern Ocean. These data sampled a baroclinic, middepth eddy formed during the disintegration of a deep boundary current. Turbulent dissipation is suppressed within the eddy but is elevated by up to an order of magnitude along the upper and lower eddy boundaries. A ray tracing approximation is employed as a heuristic device to elucidate how the internal wave field evolves in the ambient velocity and stratification conditions accompanying the eddy. These calculations are consistent with the observations, suggesting reflection of internal wave energy from the eddy center and enhanced breaking through critical layer processes along the eddy boundaries. These results have important implications for understanding where and how internal wave energy is dissipated in the presence of energetic deep geostrophic flows.
    Description: Natural Environment Research Council (NERC). Grant Numbers: NE/E007058/1, NE/E005667/1; U.S. National Science Foundation. Grant Numbers: OCE-1231803, OCE-0927583, OCE-1030309; NERC
    Description: 2015-11-07
    Keywords: Mixing ; Eddy ; Turbulent dissipation ; Internal waves ; Southern Ocean ; Ray tracing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Global Biogeochemical Cycles 30 (2016): 1124–1144, doi:10.1002/2016GB005414.
    Description: The Great Calcite Belt (GCB) is a region of elevated surface reflectance in the Southern Ocean (SO) covering ~16% of the global ocean and is thought to result from elevated, seasonal concentrations of coccolithophores. Here we describe field observations and experiments from two cruises that crossed the GCB in the Atlantic and Indian sectors of the SO. We confirm the presence of coccolithophores, their coccoliths, and associated optical scattering, located primarily in the region of the subtropical, Agulhas, and Subantarctic frontal regions. Coccolithophore-rich regions were typically associated with high-velocity frontal regions with higher seawater partial pressures of CO2 (pCO2) than the atmosphere, sufficient to reverse the direction of gas exchange to a CO2 source. There was no calcium carbonate (CaCO3) enhancement of particulate organic carbon (POC) export, but there were increased POC transfer efficiencies in high-flux particulate inorganic carbon regions. Contemporaneous observations are synthesized with results of trace-metal incubation experiments, 234Th-based flux estimates, and remotely sensed observations to generate a mandala that summarizes our understanding about the factors that regulate the location of the GCB.
    Description: National Science Foundation Grant Numbers: OCE-0961660, OCE-0728582, OCE-0961414, OCE-0960880; National Aeronautical and Space Administration Grant Numbers: NNX11AO72G, NNX11AL93G, NNX14AQ41G, NNX14AQ43A, NNX14AL92G, NNX14AM77G
    Keywords: Coccolithophores ; Trace metals ; Carbonate chemistry ; Southern Ocean ; Subantarctic Front ; Subtropical Front
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...