ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases  (14)
  • 01. Atmosphere::01.01. Atmosphere::01.01.08. Instruments and techniques
  • Elsevier Science Limited  (17)
  • Akadémiai Kiadò  (1)
  • American Association for the Advancement of Science
  • American Chemical Society
  • American Institute of Physics
Collection
Keywords
Publisher
  • 1
    Publication Date: 2021-01-27
    Description: In this work we report new data on He abundances and isotope ratios (3He/4He) from gas associated to some thermal and CO2-rich mineral waters in N-Portugal. Collected gas samples are mainly CO2-dominant except two sites where gas is N2-rich. All the sampling sites are characterized by exceptionally high helium contents with 3He/4He ratios, corrected for air contamination, varying considerably from 0.09 to 2.68 Ra. In all sites, the 3He/4He ratios are higher than that typical for stable continental areas thus indicating a variable but not-negligible (up to 30%) contribution of mantle-derived primordial He. In all the CO2-rich waters, CO2/3He ratios and 13CCO2 are comparable with mantle values, thus suggesting a magmatic origin also for CO2. On the contrary, in the N2-rich waters He is mainly radiogenic, and CO2 is organic in origin. Since no recent volcanic activity is observed in NW Iberia, high 3He/4He values could be due, at least, to three processes: a) releasing of gas from the local upper mantle through deep extensional fault systems; b) releasing of magmatic volatiles from crustal reservoir(s) formed during past volcanic activity; c) degassing of a subsurface emplaced magma body. Mantle He flux in N-Portugal has been estimated to be up to 3 orders of magnitude higher than that typical for stable continental areas, thus suggesting, in this area, the presence of a tensional tectonic regime. This implies that mantle gases could migrate upward probably through inherited tectonic structures reactivated by neotectonic activity. The third possible scenario seems to be less plausible since seismic surveys carried out in NW Iberian did not find any significant evidence of mantle intrusion in the crust. The observed spatial variability in mantle-derived contribution could reflect the geometry of the granitic plutons in this area, thus supporting the hypotheses of an upper mantle degassing. Alternatively, it could be the result of a lateral migration of magmatic volatiles stored in a crustal reservoir.
    Description: Published
    Description: Budapest, Hungary
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: open
    Keywords: Helium isotopes ; NW Iberian peninsula ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.07. Radioactivity and isotopes ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-03-01
    Description: Between 1994 and 1995, gas samples from fumaroles and thermal waters were collected on Ischia Island. The chemical composition of the shallow and deep natural hydrothermal fluids discharged is related to the main hydrological and lithological characteristics of the rock formations present in the reservoir. A biphase reservoir (liquid 1 gas) is identified, where the dominant liquid has a temperature of about 2808C. On the basis of d 13CTDC values it was possible to hypothesize a deep source characterised by carbon isotopic values varying from 0 to 23d‰. These values are noticeably more positive with respect to those attributed to magmatic CO2 d13CCO2 ranging from 25 to 28d ‰), thus suggesting a magmatic source modified by crustal contamination. This hypothesis is supported by the carbon isotopic composition of CO2 in sampled gases, which varied from 0 to 25d‰. The inferred isotopic value of carbon of magmatic CO2 would then be about 22d‰. The observed differences in C isotopic composition between fumarolic and magmatic gases would be caused by kinetic and/or equilibrium fractionation processes. These processes would cause a fractionation of d 13C of deep CO2 towards more negative values (down to 25‰). Actually, CO2 removal or addition processes caused by the interaction between deep gases and shallow hydrothermal waters are likely to be responsible for the different chemical and isotopic compositions of gaseous emissions. For these reasons, and on the basis of the homogeneity of geothermometric values, the existence of a single, large reservoir that feeds all of the fluids discharged at Ischia Island can be hypothesised. Based on acquired data, a new geochemical model of the geothermal system of Ischia Island is proposed.
    Description: Published
    Description: 151-178
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: gas thermometers; water geothermometer; dissolved gases; geothermal system; Ischia Island ; 03. Hydrosphere::03.02. Hydrology::03.02.02. Hydrological processes: interaction, transport, dynamics ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-06-15
    Description: We investigated the geochemical features of the fluids circulating over the Amik Basin (SE Turkey–Syria border), which is crossed by the Northern extension of theDSF (Dead Sea Fault) and represents the boundary area of three tectonic plates (Anatolian, Arabian and African plates). We collected 34 water samples (thermal and cold from natural springs and boreholes) as well as 8 gas samples (bubbling and gas seepage) besides the gases dissolved in the sampled waters. The results show that the dissolved gas phase is a mixture of shallow (atmospheric) and deep components either of mantle and crustal origin. Coherently the sampled waters are variable mixtures of shallow and deep ground waters, the latter being characterised by higher salinity and longer residence times. The deep groundwaters (fromboreholes deeper than 1000 m)have a CH4-dominated dissolved gas phase related to the presence of hydrocarbon reservoirs. The very unique tectonic setting of the area includes the presence of an ophiolitic block outcropping in the westernmost area on the African Plate, as well as basalts located to the North and East on the Arabic Plate. The diffuse presence of CO2-enriched gases, although diluted by the huge groundwater circulation, testifies a regional degassing activity. Fluids circulating over the ophiolitic block are marked by H2-dominated gases with abiogenic methane and high-pH waters. The measured 3He/4He isotopic ratios display contributions from both crustal and mantle-derived sources over both sides of the DSF. Although the serpentinization process is generally independent from mantle-type contribution, the recorded helium isotopic ratios highlight variable contents of mantle-derived fluids. Due to the absence of recent volcanism over the western side of the basin (African Plate), we argue that CO2-rich volatiles carrying mantle-type helium and enriched in heavy carbon, are degassed by deep-rooted regional faults rather than from volcanic sources.
    Description: Published
    Description: 23–39
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Dead Sea Fault ; Hydrogeochemistry ; Gas geochemistry ; He isotopes ; C isotopes ; Ophiolites ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.02. Carbon cycling ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science
    Publication Date: 2017-04-04
    Description: BREVIA
    Description: Current emission inventories require an additional "unknown" source to balance the global atmospheric budgets of ethane (C2H6). Here, we provide evidence that a substantial part of the missing source can be attributed to natural gas seepage from petroliferous, geothermal, and volcanic areas. Such geologic sources also inject propane (C3H8) into the atmosphere. The analysis of a large data set of methane (CH4), ethane, and propane concentrations in surface gas emissions of 238 sites from different geographic and geologic areas, coupled with published estimates of geomethane emissions, suggests that Earth's degassing accounts for at least 17% and 10% of total ethane and propane emissions, respectively.
    Description: Published
    Description: 478
    Description: 3.8. Geofisica per l'ambiente
    Description: JCR Journal
    Description: reserved
    Keywords: Ethane ; Propane ; Geologic emissions ; Seepage ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Volcanic emissions were studied at Mount Etna (Italy) by using moss-bags technique. Mosses were exposed around the volcano at different distances from the active vents to evaluate the impact of volcanic emissions in the atmosphere. Morphology and mineralogy of volcanic particulate intercepted by mosses were investigated using scanning electron microscopy (SEM) equipped with energy dispersive spectrometer (EDS). Particles emitted during passive degassing activity from the two active vents, Bocca Nuova and North East Crater (BNC and NEC), were identified as silicates, sulfates and halide compounds. In addition to volcanic particles, we found evidences also of geogenic, anthropogenic and marine spray input. The study has shown the robustness of this active biomonitoring technique to collect particles, very useful in active volcanic areas characterized by continuous degassing and often not easily accessible to apply conventional sampling techniques.
    Description: Published
    Description: 1456–1464
    Description: 4V. Vulcani e ambiente
    Description: JCR Journal
    Description: restricted
    Keywords: Volcanic aerosols ; Plume ; Passive degassing ; Sphagnum ; Sulphate ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 01. Atmosphere::01.01. Atmosphere::01.01.08. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-02-24
    Description: We present a coupled fluid-dynamic and electromagnetic model for volcanic ash plumes. In a forward approach, the model is able to simulate the plume dynamics from prescribed input flow conditions and generate the corresponding synthetic thermal infrared (TIR) image, allowing a comparison with field-based observations. An inversion procedure is then developed to retrieve vent conditions from TIR images, and to independently estimate the mass eruption rate. The adopted fluid-dynamic model is based on a one-dimensional, stationary description of a self-similar turbulent plume, for which an asymptotic analytical solution is obtained. The electromagnetic emission/absorption model is based on Schwarzschild's equation and on Mie's theory for disperse particles, and we assume that particles are coarser than the radiation wavelength (about 10 μm) and that scattering is negligible. In the inversion procedure, model parameter space is sampled to find the optimal set of input conditions which minimizes the difference between the experimental and the synthetic image. Application of the inversion procedure to an ash plume at Santiaguito (Santa Maria volcano, Guatemala) has allowed us to retrieve the main plume input parameters, namely mass flow rate, initial radius, velocity, temperature, gas mass ratio, entrainment coefficient and their related uncertainty. Moreover, by coupling with the electromagnetic model we have been able to obtain a reliable estimate of the equivalent Sauter diameter of the total particle size distribution. The presented method is general and, in principle, can be applied to the spatial distribution of particle concentration and temperature obtained by any fluid-dynamic model, either integral or multidimensional, stationary or time-dependent, single or multiphase. The method discussed here is fast and robust, thus indicating potential for applications to real-time estimation of ash mass flux and particle size distribution, which is crucial for model-based forecasts of the volcanic ash dispersal process.
    Description: Published
    Description: 129–147
    Description: 3V. Dinamiche e scenari eruttivi
    Description: 4V. Vulcani e ambiente
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: JCR Journal
    Description: restricted
    Keywords: Volcanic ash plume ; Volcanic ash plume ; Thermal camera ; Inversion ; Mass flow ; Particle size ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 01. Atmosphere::01.01. Atmosphere::01.01.08. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.01. Data processing ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods ; 05. General::05.01. Computational geophysics::05.01.04. Statistical analysis ; 05. General::05.05. Mathematical geophysics::05.05.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: A geochemical survey, in shallow aquifers and soils, has been carried out to evaluate the feasibility of natural gas (CH4) storage in a deep saline aquifer at Rivara (MO), Northern Italy. This paper discusses the areal distribution of CO2 and CH4 fluxes and CO2, CH4, Rn, He, H2 concentrations both in soils and shallow aquifers above the proposed storage reservoir. The distribution of pathfinder elements such as 222Rn, He and H2 has been studied in order to identify potential faults and/or fractures related to preferential migration pathways and the possible interactions between the reservoir and surface. A geochemical and isotopic characterization of the ground waters circulating in the first 200 m has allowed to investigation of (i) the origin of the circulating fluids, (ii) the gas–water–rock interaction processes, (iii) the amount of dissolved gases and/or their saturation status. In the first 200 m, the presence of CH4-rich reducing waters are probably related to organic matter (peat) bearing strata which generate shallowderived CH4, as elsewhere in the Po Plain. On the basis of isotopic analysis, no hints of thermogenic CH4 gas leakage from a deeper reservoir have been shown. The d13C(CO2) both in ground waters and free gases suggests a prevalent shallow origin of CO2 (i.e. organic and/or soil-derived). The acquisition of preinjection data is strategic for the natural gas storage development project and as a baseline for future monitoring during the gas injection/withdrawing period. Such a geochemical approach is considered as a methodological reference model for future CO2/CH4 storage projects.
    Description: Published
    Description: 3-22
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: restricted
    Keywords: natural gas storage ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: Shallow submarine gas vents in Levante Bay, Vulcano Island (Italy), emit around 3.6t CO2 per day providing a natural laboratory for the study of biogeochemical processes related to seabed CO2 leaks and ocean acidification. The main physico-chemical parameters (T, pH and Eh) were measured at more than 70 stations with 40 seawater samples were collected for chemical analyses. The main gas vent area had high concentrations of dissolved hydrothermal gases, low pH and negative redox values all of which returned to normal seawater values at distances of about 400 m from the main vents. Much of the bay around the vents is corrosive to calcium carbonate; the north shore has a gradient in seawater carbonate chemistry that is well suited to studies of the effects of long-term increases in CO2 levels. This shoreline lacks toxic compounds (such as H2S) and has a gradient in carbonate saturation states.
    Description: Published
    Description: 485–494
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: restricted
    Keywords: ocean acidification ; carbon capture and storage ; marine geochemistry ; carbonate saturation state ; volcanic vents ; carbon dioxide ; 03. Hydrosphere::03.04. Chemical and biological::03.04.01. Biogeochemical cycles ; 03. Hydrosphere::03.04. Chemical and biological::03.04.02. Carbon cycling ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.04. Ecosystems ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: Active biomonitoring using moss-bags was applied to an active volcanic environment for the first time. Bioaccumulation originating from atmospheric deposition was evaluated by exposing mixtures of washed and air-dried mosses (Sphagnum species) at 24 sites on Mt. Etna volcano (Italy). Concentrations of major and a large suite of trace elements were analysed by inductively coupled mass and optical spectrometry (ICP-MS and ICP-OES) after total acid digestion. Of the 49 elements analysed those which closely reflect summit volcanic emissions were S, Tl, Bi, Se, Cd, As, Cu, B, Na, Fe, Al. Enrichment factors and cluster analysis allowed clear distinction between volcanogenic, geogenic and anthropogenic inputs that affect the local atmospheric deposition. This study demonstrates that active biomonitoring with moss-bags is a suitable and robust technique for implementing inexpensive monitoring in scarcely accessible and harsh volcanic environments, giving time-averaged quantitative results of the local exposure to volcanic emissions. This task is especially important in the study area because the summit area of Mt. Etna is visited by nearly one hundred thousand tourists each year who are exposed to potentially harmful volcanic emissions.
    Description: Published
    Description: 1447–1455
    Description: 4V. Vulcani e ambiente
    Description: JCR Journal
    Description: restricted
    Keywords: Volcanoes ; Bioaccumulators ; Enrichment factors ; Environmental impact ; Atmospheric deposition ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 01. Atmosphere::01.01. Atmosphere::01.01.08. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: Soil–gas measurements of different gas species were performed in two distinct areas of the Corinth Gulf Rift (Greece): the Aigion-Neos Erineos-Lambiri (ANEL) fault zone and the Rion-Patras fault zone. Both zones lie in one of the most seismically active areas of the Euro-Mediterranean region, where a fast-opening continental rift is located. In particular, the geochemical investigations were focused on fault segments and fracture systems previously inferred by geomorphological, lithological and structural studies. In this work the applicability of soil–gas geochemistry surveys for the exploration of buried/hidden faults was tested by using various statistical methods. Moreover, a comprehensive geostatistical treatment of the collected data provided new insights into the control exerted by active structures on deep-seated gas migration towards the surface. In both investigated areas, the highest 222Rn and CO2 concentration peaks correspond with zones where the interaction among fracture and fault segments was inferred by structural and morphological methods. This indicates a clear correlation between the shape and orientation of the anomalies and the different attitude and kinematic behavior of the faults recognized in the two areas. Furthermore, obtained results show that gases migrate preferentially through zones of brittle deformation by advective processes, as suggested by the relatively high rate of migration needed to obtain anomalies of short-lived 222Rn in the soil pores
    Description: Published
    Description: 86-100
    Description: 5A. Energia e georisorse
    Description: JCR Journal
    Description: restricted
    Keywords: gas geochemistry ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...