ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk  (5)
  • Forest ecology
  • Agu  (3)
  • Nature Publishing Group  (3)
Collection
Years
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 6 (2016): 21728, doi:10.1038/srep21728
    Description: Most Atlantic hurricanes form in the Main Development Region between 9°N to 20°N along the northern edge of the Intertropical Convergence Zone (ITCZ). Previous research has suggested that meridional shifts in the ITCZ position on geologic timescales can modulate hurricane activity, but continuous and long-term storm records are needed from multiple sites to assess this hypothesis. Here we present a 3000 year record of intense hurricane strikes in the northern Bahamas (Abaco Island) based on overwash deposits in a coastal sinkhole, which indicates that the ITCZ has likely helped modulate intense hurricane strikes on the western North Atlantic margin on millennial to centennial-scales. The new reconstruction closely matches a previous reconstruction from Puerto Rico, and documents a period of elevated intense hurricane activity on the western North Atlantic margin from 2500 to 1000 years ago when paleo precipitation proxies suggest that the ITCZ occupied a more northern position. Considering that anthropogenic warming is predicted to be focused in the northern hemisphere in the coming century, these results provide a prehistoric analog that an attendant northern ITCZ shift in the future may again return the western North Atlantic margin to an active hurricane interval.
    Description: This research was supported by NSF Awards: OCE-1519578, OCE-1356708, BCS-1118340.
    Keywords: Climate-change impacts ; Forest ecology ; Ocean sciences ; Palaeoclimate
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: In this paper, we describe the 1809 eruption of Mt. Etna, Italy, which represents one historical rare case in which it is possible to observe details of the internal structure of the feeder system. This is possible thanks to the presence of two large pit craters located in the middle of the eruptive fracture field that allow studying a section of the shallow feeder system. Along the walls of one of these craters, we analysed well-exposed cross sections of the uppermost 15–20 m of the feeder system and related volcanic products. Here, we describe the structure, morphology and lithology of this portion of the 1809 feeder system, including the host rock which conditioned the propagation of the dyke, and compare the results with other recent eruptions. Finally, we propose the dynamic model of the magma behaviour inside a laterally-propagating feeder dyke, demonstrating how this dynamic triggered important changes in the eruptive style (from effusive/Strombolian to phreatomagmatic) during the same eruption. Our results are also useful for hazard assessment related to the development of flank eruptions, potentially the most hazardous type of eruption from basaltic volcanoes in densely urbanized areas, such as Mt. Etna.
    Description: Published
    Description: 1-11
    Description: 2T. Tettonica attiva
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 3V. Dinamiche e scenari eruttivi
    Description: 4V. Vulcani e ambiente
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: N/A or not JCR
    Description: open
    Keywords: feeder dyke ; basaltic volcanoes ; flank eruptions ; Etna ; volcanic hazards ; sill ; volcanic rift ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: In recent decades, geophysical investigations have detected wide magma reservoirs beneath quiescent calderas. However, the discovery of partially melted horizons inside the crust is not sufficient to put constraints on capability of reservoirs to supply cataclysmic eruptions, which strictly depends on the chemical-physical properties of magmas (composition, viscosity, gas content etc.), and thus on their differentiation histories. In this study, by using geochemical, isotopic and textural records of rocks erupted from the high-risk Campi Flegrei caldera, we show that the alkaline magmas have evolved toward a critical state of explosive behaviour over a time span shorter than the repose time of most volcanic systems and that these magmas have risen rapidly toward the surface. Moreover, similar results on the depth and timescale of magma storage were previously obtained for the neighbouring Somma-Vesuvius volcano. This consistency suggests that there might be a unique long-lived magma pool beneath the whole Neapolitan area.
    Description: Published
    Description: article 712
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: N/A or not JCR
    Description: open
    Keywords: magma ; campi flegrei caldera ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: The statistical modeling of the time-size distribution of volcanic eruptions is a fundamental tool to understand better the physics of the eruptive process, and to make reliable forecasts [Newhall and Hoblitt, 2002; Connor et al., 2003; Marzocchi et al., 2004a; Sparks and Aspinall, 2004]. Eruption forecasting is commonly associated to different timescales (short-, intermediate-, and long-term; see definition by Newhall and Hoblitt [2002]). Regardless of the time frame, the statistical modeling of the past behavior of a volcano is a key ingredient for quantitative forecasting (usually, but not necessarily, over long time intervals) when the volcano has an almost stationary state (for instance, it is dormant). In this case, monitoring data are not particularly informative of the future evolution of the system, at least until the volcano becomes restless and/or changes its stationary state. Hereinafter, the terms ‘‘eruption forecasting’’ and ‘‘volcanic hazard’’ refer to this stationary case. [3] The main difficulties in providing a general model of eruptive activity are linked to the existence of different types of volcanic activity, to the paucity of eruptive data for most volcanoes, and to the intrinsic complexity of eruptive processes. As a consequence, most of the past papers devoted to this issue are focused on single (or very few) volcanoes [e.g., Wickman, 1976; Klein, 1982; Burt et al., 1994; Bebbington and Lai, 1996; Marzocchi, 1996; Connor et al., 2003; Gusev et al., 2003; Sandri et al., 2005] where detailed eruptive catalogs exist. This approach limits the generality of the results. We cannot know if the behavior of the volcano analyzed represents a generic feature of a specific type of volcanism, or if it is peculiar of the volcano itself. Under this perspective, part of the different statistical distributions found by analyzing single eruptive catalogs can be explained by the existence of some peculiarities in volcanic activity. [4] One way to overcome this drawback, which we use here, is to perform a common analysis on data from several volcanoes. In particular, we test the Poisson hypothesis in the time domain, and the reliability of time-size distributions such as the time predictable model and size predictable model. The results obtained are then used to build a quantitative model of the statistical time-size distribution for some classes of volcanic activities that can be used for volcanic hazard assessment.
    Description: Published
    Description: B04204
    Description: JCR Journal
    Description: reserved
    Keywords: quantitative model ; eruptions ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Knowledge of past precursor patterns is crucial for the correct interpretation of monitoring data and reliable volcano forecasting. In the case of Vesuvius, one of the world’s riskiest volcanoes, very little information is available about unrest signals following long periods of quiescence. The translation and analysis of three Latin treatises written from eye-witnesses immediately after the A.D. 1631 subplinian eruption allowed us to reconstruct the sequence of precursors. The progression in the signals was remarkably clear starting at least two to three weeks before the event. Widespread gas emission from the ground coupled with deformation was followed by an increase in seismic activity in the eight days before the eruption. Seismicity escalated both in frequency and intensity in the night before the eruption, heralding the opening of fissures on the volcanic cone. The details of phenomena occurring in the medium-term (months before the eruption) are difficult to evaluate, though it is worth noticing that no major tectonic earthquakes were felt in the area of the volcano. Civil protection preparedness plans should be organized in order to complete the evacuation of people in a time span significantly shorter than the duration of expected short-term precursors.
    Description: Published
    Description: L18317
    Description: JCR Journal
    Description: reserved
    Keywords: Vesuvius ; A. D. 1631 ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Numerical simulation of pyroclastic density currents has developed significantly in recent years and is increasingly applied to volcanological research. Results from physical modeling are commonly taken into account in volcanic hazard assessment and in the definition of hazard mitigation strategies. In this work, we modeled pyroclastic density currents in the Phlegrean Fields caldera, where flows propagating along the flat ground could be confined by the old crater rims that separate downtown Naples from the caldera. The different eruptive scenarios (mass eruption rates, magma compositions, and water contents) were based on available knowledge of this volcanic system, and appropriate vent conditions were calculated for each scenario. Simulations were performed along different topographic profiles to evaluate the effects of topographic barriers on flow propagation. Simulations highlighted interesting features associated with the presence of obstacles such as the development of backflows. Complex interaction between outward moving fronts and backflows can affect flow propagation; if backflows reach the vent, they can even interfere with fountain dynamics and induce a more collapsing behavior. Results show that in the case of large events ( 108 kg/s), obstacles affect flow propagation by reducing flow velocity and hence dynamic pressure in distal regions, but they cannot stop the advancement of flows. Deadly conditions (in terms of temperature and ash concentration) characterize the entire region invaded by pyroclastic flows. In the case of small events (2.5 107 kg/s), flows are confined by distal topographic barriers which provide valuable protection to the region beyond.
    Description: Published
    Description: Q11003
    Description: JCR Journal
    Description: reserved
    Keywords: Phlegrean Fields ; multiphase flow ; pyroclastic flows ; dynamic pressure ; volcanic hazard ; caldera ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...