ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 05. General::05.02. Data dissemination::05.02.02. Seismological data  (3)
  • 04. Solid Earth::04.02. Exploration geophysics::04.02.03. Heat flow  (2)
  • 04. Solid Earth::04.04. Geology::04.04.04. Marine geology
  • Agu  (6)
  • American Institute of Physics
  • Molecular Diversity Preservation International
Collection
Keywords
Years
  • 1
    Publication Date: 2024-05-09
    Description: Time-invariant, long-range, and short-range forecasting models were fitted to the earthquake catalogue of Greece for magnitudes 4.0 and greater to optimize their ability to forecast events of magnitude 6.0 and greater in the period 1966–1980. The models considered were stationary spatially uniform and spatially varying Poisson models, a long-range forecasting model based on the precursory scale increase phenomenon with every earthquake regarded as a precursor according to scale, and epidemic type short-range forecasting models with spatially uniform and spatially varying spontaneous seismicity. Each of the models was then applied to the catalogue for 1981–2002, and their forecasting performance was compared using the log likelihood statistic. The long-range forecasting model performed substantially better than the time-invariant models, and the short-range forecasting models performed substantially better again. The results show that the information value to be gained from modeling temporal and spatial variation of earthquake occurrence rate, at both long and short range, is much greater than can be gained from modeling spatial variation alone.
    Description: Published
    Description: B09304
    Description: JCR Journal
    Description: reserved
    Keywords: earthquake catalogue ; Greece ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 05. General::05.02. Data dissemination::05.02.02. Seismological data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: We investigate the dynamic traction evolution during the spontaneous propagation of a 3-D earthquake rupture governed by slip-weakening or rate- and state-dependent constitutive laws and accounting for thermal pressurization effects. The analytical solutions as well as temperature and pore pressure evolutions are discussed in the companion paper by Bizzarri and Cocco. Our numerical experiments reveal that frictional heating and thermal pressurization modify traction evolution. The breakdown stress drop, the characteristic slip-weakening distance, and the fracture energy depend on the slipping zone thickness (2w) and hydraulic diffusivity (w). Thermally activated pore pressure changes caused by frictional heating yield temporal variations of the effective normal stress acting on the fault plane. In the framework of rate- and state-dependent friction, these thermal perturbations modify both the effective normal stress and the friction coefficient. Breakdown stress drop, slip-weakening distance, and specific fracture energy (J/m2) increase for decreasing values of hydraulic diffusivity and slipping zone thickness. We propose scaling relations to evaluate the effect of w and w on these physical parameters. We have also investigated the effects of choosing different evolution laws for the state variable. We have performed simulations accounting for the porosity evolution during the breakdown time. Our results point out that thermal pressurization modifies the shape of the slip-weakening curves. For particular configurations, the traction versus slip curves display a gradual and continuous weakening for increasing slip: in these cases, the definitions of a minimum residual stress and the slip-weakening distance become meaningless.
    Description: Published
    Description: B05304
    Description: JCR Journal
    Description: reserved
    Keywords: thermal pressurization ; 04. Solid Earth::04.01. Earth Interior::04.01.05. Rheology ; 04. Solid Earth::04.02. Exploration geophysics::04.02.03. Heat flow ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: More than 700 waveforms produced by 51 shallow earthquakes and recorded at regional distances (250-1400 km) by the Italian seismic network have been analyzed to characterize the amplitude and frequency contents of the crustal and uppermost mantle shear waves Lg and Sn, respectively. The crustal phase Lg efficiently propagates through the relatively stable Adriatic continental crust, while it is not observed along propagation paths crossing major physiographic features, like the Apennine chain and the basinal domain of the Tyrrhenian and Ionian Seas. Similar to Lg, efficient Sn propagation is observed in the uppermost mantle beneath the Po plain and the Adriatic Sea. Efficient Sn transmission is also observed across the northern Ionian Sea and Sicily and in the area between Sardinia and the northern coasts of Africa. Sn are efficiently transmitted across the Sicily Channel, and rather efficient Sn propagate beneath the Ligurian Sea. On the contrary, inefficient Sn transmission characterizes the uppermost mantle beneath the Apennines, the western margin of the Italian peninsula, and the southern Tyrrhenian Sea. Shear wave attenuation suggests the presence of asthenospheric material in the uppermost mantle, probably related to the present-day extension along the Apennine chain and in the Tyrrhenian basin. This interpretation is consistent with the presence of extensive Neogene and Quaternary volcanic activity in these areas and related high heat flow. Proposed lithospheric delamination processes beneath the Apennines and subduction beneath the Tyrrhenian Sea can reasonably explain the observed high-attenuation zones in the uppermost mantle. In contrast, a high-strength mantle lid is inferred to underlay the Po plain, the Adriatic Sea, and the northern Ionian Sea. The available waveforms also indicate that a continuous mantle lid is present beneath Sicily and the extensional domain of the Sicily Channel, as well as in the marine area south of Sardinia.
    Description: Published
    Description: 11,863-11,875
    Description: JCR Journal
    Description: open
    Keywords: Sn attenuation ; Italy ; 05. General::05.02. Data dissemination::05.02.02. Seismological data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: We investigate the role of frictional heating and thermal pressurization on earthquake ruptures by modeling the spontaneous propagation of a three-dimensional (3-D) crack on a planar fault governed by assigned constitutive laws and allowing the evolution of effective normal stress. We use both slip-weakening and rate- and state-dependent constitutive laws; in this latter case we employ the Linker and Dieterich evolution law for the state variable, and we couple the temporal variations of friction coefficient with those of effective normal stress. In the companion paper we investigate the effects of thermal pressurization on the dynamic traction evolution. We solve the 1-D heat conduction equation coupled with Darcy’s law for fluid flow in porous media. We obtain a relation that couples pore fluid pressure to the temperature evolution on the fault plane. We analytically solve the thermal pressurization problem by considering an appropriate heat source for a fault of finite thickness. Our modeling results show that thermal pressurization reduces the temperature increase caused by frictional heating. However, the effect of the slipping zone thickness on temperature changes is stronger than that of thermal pressurization, at least for a constant porosity model. Pore pressure and effective normal stress evolution affect the dynamic propagation of the earthquake rupture producing a shorter breakdown time and larger breakdown stress drop and rupture velocity. The evolution of the state variable in the framework of rate- and state-dependent friction laws is very different when thermal pressurization is active. In this case the evolution of the friction coefficient differs substantially from that inferred from a slip-weakening law. This implies that the traction evolution and the dynamic parameters are strongly affected by thermal pressurization.
    Description: Published
    Description: B05303
    Description: JCR Journal
    Description: reserved
    Keywords: thermal pressurization ; 04. Solid Earth::04.01. Earth Interior::04.01.05. Rheology ; 04. Solid Earth::04.02. Exploration geophysics::04.02.03. Heat flow ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Pn phases recorded by 40 stations of the Italian seismic network are analyzed using the spectral ratio technique to estimate the Q structure of the uppermost mantle beneath the Italian peninsula and nearby Adriatic Sea. A total of 344 digital waveforms are analyzed from 22 earthquakes that occurred within distances of 300 to 1600 km. The calculated apparent Q values are grouped into two categories: Q 〉 800 characterizes the Adriatic side of the Italian peninsula, indicating that the Adriatic lithosphere is very efficient in propagating Pn phases through the uppermost mantle; Q 〈 600 characterizes the uppermost mantle beneath the Apennines and western Italy, indicating less efficient wave propagation. The presence of asthenospheric mantle material at shallow depths beneath the Apennines can explain the observed Q.
    Description: Published
    Description: 709-712
    Description: JCR Journal
    Description: open
    Keywords: Seismic attenuation ; Apennines ; 05. General::05.02. Data dissemination::05.02.02. Seismological data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Agu
    In:  Froger, J.-L., O. Merle, and P. Briole (2001), Active spreading and regional extension at Mount Etna imaged by SAR interferometry, Earth Planet. Sci. Lett., 187, 245–258. Gvirtzman, Z., and A. Nur (1999), The formation of Mount Etna as the consequence of slab rollback, Nature, 401, 782–785. Leslie, S. C., G. F. Moore, J. K. Morgan, and D. J. Hills (2002), Seismic stratigraphy of the frontal Hawaiian moat: Implications for sedimentary processes at the leading edge of an oceanic hotspot trace, Mar. Geol., 184, 143–162. Lundgren, P., F. Casu, M. Manzo, A. Pepe, P. Berardino, E. Sansosti, and R. Lanari (2004), Gravity and magma induced spreading of Mount Etna volcano revealed by satellite radar interferometry, Geophys. Res. Lett., 31, L04602, doi:10.1029/2003GL018736. Maramai, A., L. Graziani, G. Alessio, P. Burrato, L. Colini, L. Cucci, R. Nappi, A. Nardi, and G.Vilardo (2005), Near- and far-field survey report of the 30 December 2002 Stromboli (Southern Italy) tsunami, Mar. Geol., 215, 93– 106. Moore, J. G., D. A. Clague, R. T. Holcomb, P. W. Lipman, W. R. Normak, and M. E. Torresan (1989), Prodigious submarine landslides on the Hawaiian ridge, J. Geophys. Res., 94, 17,465–17,484. Morgan, J. K., F. M. Moore, J. Hills, and S. Leslie (2000), Overthrusting and sediment accretion along Kilauea’s mobile south flank, Hawaii: Evidence for volcanic spreading from marine seismic reflection data, Geology, 28, 667–670. Monaco, C., P. Tapponier, L. Tortorici, and P. Y. Gillot (1997), Late quaternary slip-rates on the Acireale-Piedimonte normal fault and tectonic origin of Mt. Etna (Sicily), Earth Planet. Sci. Lett., 147, 125– 139. Nicolich, R., M. Laigle, A. Hirn, L. Cernobori, and J. Gallart (2000), Crustal structure of the Ionian margin of Sicily: Etna volcano in the frame of regional evolution, Tectonophysics, 329, 121– 139. Romano, R., and C. Sturiale (1982), The historical eruptions of Mt. Etna (volcanological data), in Mt. Etna Volcano, edited by R. Romano, Mem. Soc. Geol. It., 23, 75–97. von Huene, R., C. R. Ranero, and P. Watts (2004), Tsunamigenic slope failure along Middle America Trench in two tectonic settings, Mar. Geol., 203, 303– 317. Yilmaz, O. (1987), Seismic data processing, Invest. Geophys., vol. 2, Soc. of Explor. Geophys., 562 pp., Tulsa, Okla.
    Publication Date: 2017-04-04
    Description: High resolution seismic data, we collected in the Ionian sea, reveal large submarine landslide deposits offshore from Mt. Etna (Italy), spatially consistent with the eastern flank collapse of this volcano. A large debris-avalanche deposit, we relate to the Valle del Bove scar, displays long offshore run-outs (till 20 km) and a volume of a few tens of cubic kilometres (16–21 km3). Other landslide deposits are also imaged, in particular a striking unique record of the relative timing of multiple submarine large slump events.
    Description: Published
    Description: L13302
    Description: JCR Journal
    Description: reserved
    Keywords: submarine landslides ; Mt. Etna ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: Italy has a strong geothermal potential for power generation, although, at present, the only two geothermal fields being exploited are Larderello-Travale/Radicondoli and Mt. Amiata in the Tyrrhenian pre-Apennine volcanic district of Southern Tuscany. A new target for geothermal exploration and exploitation in Italy is represented by the Southern Tyrrhenian submarine volcanic district, a geologically young basin (Upper Pliocene-Pleistocene) characterised by tectonic extension where many seamounts have developed. Heat-flow data from that area show significant anomalies comparable to those of onshore geothermal fields. Fractured basaltic rocks facilitate seawater infiltration and circulation of hot water chemically altered by rock/water interactions, as shown by the widespread presence of hydrothermal deposits. The persistence of active hydrothermal activity is consistently shown by many different sources of evidence, including: heat-flow data, gravity and magnetic anomalies, widespread presence of hydrothermal-derived gases (CO2, CO, CH4), 3He/4He isotopic ratios, as well as broadband OBS/H seismological information, which demonstrates persistence of volcano-tectonic events and High Frequency Tremor (HFT). The Marsili and Tyrrhenian seamounts are thus an important—and likely long-lasting-renewable energy resource. This raises the possibility of future development of the world’s first offshore geothermal power plant.
    Description: Published
    Description: 4068-4086
    Description: 3A. Ambiente Marino
    Description: JCR Journal
    Description: open
    Keywords: Marsili seamount ; hydrothermal circulation ; geothermal resource ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...