ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Acoustic field  (10)
  • Wave propagation  (7)
  • Acoustical Society of America  (14)
  • Wiley  (3)
  • Cell Press
  • International Union of Crystallography (IUCr)
  • 1
    Publication Date: 2017-04-04
    Description: We present the first application of a time reverse location method in a volcanic setting, for a family of long-period (LP) events recorded on Mt Etna. Results are compared with locations determined using a full moment tensor grid search inversion and cross-correlation method. From 2008 June 18 to July 3, 50 broad-band seismic stations were deployed on Mt Etna, Italy, in close proximity to the summit. Two families of LP events were detected with dominant spectral peaks around 0.9 Hz. The large number of stations close to the summit allowed us to locate all events in both families using a time reversal location method. The method involves taking the seismic signal, reversing it in time, and using it as a seismic source in a numerical seismic wave simulator where the reversed signals propagate through the numerical model, interfere constructively and destructively, and focus on the original source location. The source location is the computational cell with the largest displacement magnitude at the time of maximum energy current density inside the grid. Before we located the two LP families we first applied the method to two synthetic data sets and found a good fit between the time reverse location and true synthetic location for a known velocity model. The time reverse location results of the two families show a shallow seismic region close to the summit in agreement with the locations using a moment tensor full waveform inversion method and a cross-correlation location method.
    Description: Published
    Description: 452-462
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Volcano seismology ; Computational seismology ; Wave propagation ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: We investigate in detail the crustal layering of the ‘Val di Chiana Basin’ (Northern Apennines, Tuscany, Italy) through receiver functions and seismic anisotropy with hexagonal symmetry. The teleseismic data set is recorded in correspondence of a typical foreland basin resulting by the progressive eastward retreat of a regional-scale subduction zone trapped between two continents. We study the azimuthal variations of the computed and binned receiver functions associated to a harmonic angular analysis to emphasize the presence of the dipping and the anisotropic structures. The resulting S-wave velocity model shows interesting and new results for this area that we discuss in a regional geodynamic contest contributing to the knowledge of the structure of the forearc of the subduction zone. A dipping interface (N192°E strike, 18° dip) has been revealed at about 1.5 km depth, that separates the basin sediments and flysch from the carbonates and evaporites. Moreover, we interpret the two upper-crust anisotropic layers (at about 6 and 17 km depth) as the Hercynian Phyllites and Micaschists, of the Metamorphic Tuscan Basement. At relatively shallow depths, the presence of these metamorphic rocks causes the seismic anisotropy in the upper crust. The presence of shallow anisotropic layers is a new and interesting feature, first revealed in the study area. Beneath the crust–mantle transition (Moho), located about 28 km depth, our analysis reveals a 7-km-thick anisotropic layer.
    Description: Published
    Description: 545-556
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: Seismic anisotopy ; Computational Seismology ; Wave propagation ; Subduction zone process ; Crustal structure ; Europe ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: We present the first application of a time reverse location method in a volcanic setting, for a family of long-period (LP) events recorded on Mt Etna. Results are compared with locations determined using a full moment tensor grid search inversion and cross-correlation method. From 2008 June 18 to July 3, 50 broad-band seismic stations were deployed on Mt Etna, Italy, in close proximity to the summit. Two families of LP events were detected with dominant spectral peaks around 0.9 Hz. The large number of stations close to the summit allowed us to locate all events in both families using a time reversal location method. The method involves taking the seismic signal, reversing it in time, and using it as a seismic source in a numerical seismic wave simulator where the reversed signals propagate through the numerical model, interfere constructively and destructively, and focus on the original source location. The source location is the computational cell with the largest displacement magnitude at the time of maximum energy current density inside the grid. Before we located the two LP families we first applied the method to two synthetic data sets and found a good fit between the time reverse location and true synthetic location for a known velocity model. The time reverse location results of the two families show a shallow seismic region close to the summit in agreement with the locations using a moment tensor full waveform inversion method and a cross-correlation location method.
    Description: In press
    Description: (11)
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Volcano seismology ; Computational seismology ; Wave propagation ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 1994. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 95 (1994): 60-70, doi:10.1121/1.408298.
    Description: A major problem in understanding seismic wave propagation in the seafloor is to distinguish between the loss of energy due to intrinsic attenuation and the loss of energy due to scattering from fine scale heterogeneities and bottom roughness. Energy lost to intrinsic attenuation (heat) disappears entirely from the system. Energy lost to scattering is conserved in the system and can appear in observations as incoherent noise (reverberation, time spread, angle spread) and/or mode converted waves. It has been shown by a number of investigators that the seafloor scattering problem can be addressed by finite difference solutions to the elastic wave equation in the time domain. However previous studies have not considered the role of intrinsic attenuation in the scattering process. In this paper, a formulation is presented which includes the effects of intrinsic attenuation in a two-dimensional finite difference formulation of the elastodynamic equations. The code is stable and yields valid attenuation results.
    Description: This work was carried out under Office of Naval Research Grant no. N00014-89-J-1012.
    Keywords: Sea bed ; Seismic waves ; Wave propagation ; Finite difference method ; Attenuation ; Anelasticity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 2006. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 119 (2006): 3717-3725, doi:10.1121/1.2200699.
    Description: Expressions governing coherence scales of sound passing through a moving packet of nonlinear internal waves in a continental shelf environment are presented. The expressions describe the temporal coherence scale at a point, and the horizontal coherence scale in a plane transverse to the acoustic path, respectively. Factors in the expressions are the wave packet propagation speed, wave packet propagation direction, the fractional distance from the packet to the source, and the spatial scale S of packet displacement required to cause acoustic field decorrelation. The scale S is determined by the details of coupled mode propagation within the packet and the waveguide. Here, S is evaluated as a function of frequency for one environment, providing numerical values for the coherence scales of this environment. Coherence scales derived from numerical simulation of coupled mode acoustic propagation through moving wave packets substantiate the expressions.
    Description: This work was funded by grants from the Ocean Acoustics Program of the U.S. Office of Naval Research.
    Keywords: Underwater sound ; Acoustic wave propagation ; Acoustic field ; Acoustic waveguides ; Acoustic wave scattering
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 2009. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 126 (2009): 1752-1765, doi:10.1121/1.3203268.
    Description: Horizontal ducting of sound between short-wavelength nonlinear internal gravity waves in coastal environments has been reported in many theoretical and experimental studies. Important consequences arising at the open end of an internal wave duct (the termination) are examined in this paper with three-dimensional normal mode theory and parabolic approximation modeling. For an acoustic source located in such a duct and sufficiently far from the termination, some of the propagating sound may exit the duct by penetrating the waves at high grazing angles, but a fair amount of the sound energy is still trapped in the duct and propagates toward the termination. Analysis here shows that the across-duct sound energy distribution at the termination is unique for each acoustic vertical mode, and as a result the sound radiating from the termination of the duct forms horizontal beams that are different for each mode. In addition to narrowband analysis, a broadband simulation is made for water depths of order 80 m and propagation distances of 24 km. Situations occur with one or more modes absent in the radiated field and with mode multipath in the impulse response. These are both consistent with field observations.
    Description: This work was supported under ONR Grant No. N00014-05-1-0482 and the ONR postdoctoral fellowship award, Grant No. N00014-08-1-0204.
    Keywords: Acoustic field ; Acoustic intensity ; Approximation theory ; Parabolic equations ; Underwater acoustic propagation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 2012. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 131 (2012): 4409-4427, doi:10.1121/1.4707431.
    Description: The results of mode-processing measurements of broadband acoustic wavefields made in the fall of 2004 as part of the Long-Range Ocean Acoustic Propagation Experiment (LOAPEX) in the eastern North Pacific Ocean are reported here. Transient wavefields in the 50–90 Hz band that were recorded on a 1400 -m long 40 element vertical array centered near the sound channel axis are analyzed. This array was designed to resolve low-order modes. The wavefields were excited by a ship-suspended source at seven ranges, between approximately 50 and 3200 km, from the receiving array. The range evolution of broadband modal arrival patterns corresponding to fixed mode numbers (“modal group arrivals”) is analyzed with an emphasis on the second (variance) and third (skewness) moments. A theory of modal group time spreads is described, emphasizing complexities associated with energy scattering among low-order modes. The temporal structure of measured modal group arrivals is compared to theoretical predictions and numerical simulations. Theory, simulations, and observations generally agree. In cases where disagreement is observed, the reasons for the disagreement are discussed in terms of the underlying physical processes and data limitations.
    Description: This work was supported by the Office of Naval Research, Code 322, Grant Nos. N00014-08-1-0195, N00014-06-1-0245, and N0014-11-1-0194.
    Keywords: Acoustic field ; Underwater acoustic propagation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 2011. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 130 (2011): 1173-1187, doi:10.1121/1.3605565.
    Description: A study of 400 Hz sound focusing and ducting effects in a packet of curved nonlinear internal waves in shallow water is presented. Sound propagation roughly along the crests of the waves is simulated with a three-dimensional parabolic equation computational code, and the results are compared to measured propagation along fixed 3 and 6 km source/receiver paths. The measurements were made on the shelf of the South China Sea northeast of Tung-Sha Island. Construction of the time-varying three-dimensional sound-speed fields used in the modeling simulations was guided by environmental data collected concurrently with the acoustic data. Computed three-dimensional propagation results compare well with field observations. The simulations allow identification of time-dependent sound forward scattering and ducting processes within the curved internal gravity waves. Strong acoustic intensity enhancement was observed during passage of high-amplitude nonlinear waves over the source/receiver paths, and is replicated in the model. The waves were typical of the region (35 m vertical displacement). Two types of ducting are found in the model, which occur asynchronously. One type is three-dimensional modal trapping in deep ducts within the wave crests (shallow thermocline zones). The second type is surface ducting within the wave troughs (deep thermocline zones).
    Description: Grants from the Office of Naval Research funded this work. Use of the vessels Ocean Researcher I and Ocean Researcher II in this experiment was funded by the Taiwan National Science Council.
    Keywords: Acoustic field ; Acoustic focusing ; Acoustic intensity ; Acoustic wave scattering ; Acoustic wave velocity ; Ocean waves ; Oceanographic regions ; Underwater acoustic propagation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 2013. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 134 (2013): EL251-EL257, doi:10.1121/1.4813852.
    Description: A higher-order square-root operator splitting algorithm is employed to derive a tangent linear solution for the three-dimensional parabolic wave equation due to small variations of the sound speed in the medium. The solution shown in this paper unifies other solutions obtained from less accurate approximations. Examples of three-dimensional acoustic ducts are presented to demonstrate the accuracy of the solution. Future work on the applications of associated adjoint models for acoustic inversions is proposed and discussed.
    Description: This work was sponsored by the Office of Naval Research under Grant No. N00014-13-1- 0026.
    Keywords: Acoustic field ; Acoustic wave propagation ; Acoustic wave velocity ; Ducts ; Mathematical operators ; Parabolic equations ; Wave equations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 2002. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 112 (2002): 728-739, doi:10.1121/1.1496079.
    Description: This paper presents a cross-sectional study testing whether dolphins that are born in aquarium pools where they hear trainers' whistles develop whistles that are less frequency modulated than those of wild dolphins. Ten pairs of captive and wild dolphins were matched for age and sex. Twenty whistles were sampled from each dolphin. Several traditional acoustic features (total duration, duration minus any silent periods, etc.) were measured for each whistle, in addition to newly defined flatness parameters: total flatness ratio (percentage of whistle scored as unmodulated), and contiguous flatness ratio (duration of longest flat segment divided by total duration). The durations of wild dolphin whistles were found to be significantly longer, and the captive dolphins had whistles that were less frequency modulated and more like the trainers' whistles. Using a standard t-test, the captive dolphin had a significantly higher total flatness ratio in 9/10 matched pairs, and in 8/10 pairs the captive dolphin had significantly higher contiguous flatness ratios. These results suggest that captive-born dolphins can incorporate features of artificial acoustic models made by humans into their signature whistles.
    Description: J.R.B. gratefully acknowledges the support of the National Science Foundation Ocean Sciences CAREER Award 9733391. P.L.T. acknowledges the support of the Office of Naval Research Grant N00014-87-K-0236 and NIH Grant 5 R29 NS25290 for supporting the collection of the data used in this study and NIH Grant R01 DC04191 for support in preparation of the manuscript.
    Keywords: Acoustic field ; Acoustic signal processing ; Biocommunications ; Speech ; Acoustic variables measurement
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 1995. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 98 (1995): 2270-2279, doi:10.1121/1.413341.
    Description: Numerically simulated acoustic transmission from a single source of known position (for example, suspended from a ship) to receivers of partially known position (for example, sonobuoys dropped from the air) are used for tomographic mapping of ocean sound speed. The maps are evaluated for accuracy and utility. Grids of 16 receivers are employed, with sizes of 150, 300, and 700 km square. Ordinary statistical measures are used to evaluate the pattern similarity and thus the mapping capability of the system. For an array of 300 km square, quantitative error in the maps grows with receiver position uncertainty. The large and small arrays show lesser mapping capability than the mid-size array. Mapping errors increase with receiver position uncertainty for uncertainties less than 1000-m rms, but uncertainties exceeding that have less systematic effect on the maps. Maps of rms error of the field do not provide a complete view of the utility of the acoustic network. Features of maps are surprisingly reproducible for different navigation error levels, and give comparable information about mesoscale structures despite great variations in those levels.
    Description: This work was supported by Office of Naval Research grants N00014-9l-J-1138 (Arctic Sciences )and N00014-92-I-1162 (Ocean Acoustics).
    Keywords: Accuracy ; Errors ; Mapping ; Oceanography ; Remote sensing ; Simulation ; Tomography ; Wave propagation ; Sound sources ; Sound velocity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 2009. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 126 (2009): 1026-1035, doi:10.1121/1.3158818.
    Description: In this paper Creamer's [(1996). J. Acoust. Soc. Am. 99, 2825–2838] transport equation for the mode amplitude coherence matrix resulting from coupled mode propagation through random fields of internal waves is examined in more detail. It is shown that the mode energy equations are approximately independent of the cross mode coherences, and that cross mode coherences and mode energy can evolve over very similar range scales. The decay of cross mode coherence depends on the relative mode phase randomization caused by coupling and adiabatic effects, each of which can be quantified by the theory. This behavior has a dramatic effect on the acoustic field second moments like mean intensity. Comparing estimates of the coherence matrix and mean intensity from Monte Carlo simulation, and the transport equations, good agreement is demonstrated for a 100-Hz deep-water example.
    Description: This work was supported by the Office of Naval Research and the Naval Undersea Warfare Center’s (NUWC) Under- Sea Warfare (USW) chair at the Naval Postgraduate School.
    Keywords: Acoustic field ; Acoustic intensity ; Matrix algebra ; Monte Carlo methods ; Underwater acoustic propagation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 2010. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 128 (2010): 1426-1434, doi:10.1121/1.3372643.
    Description: Arrays of up to six broadband suction cup hydrophones were placed on the forehead of two bottlenose dolphins to determine the location where the beam axis emerges and to examine how signals in the acoustic near-field relate to signals in the far-field. Four different array geometries were used; a linear one with hydrophones arranged along the midline of the forehead, and two around the front of the melon at 1.4 and 4.2 cm above the rostrum insertion, and one across the melon in certain locations not measured by other configurations. The beam axis was found to be close to the midline of the melon, approximately 5.4 cm above the rostrum insert for both animals. The signal path coincided with the low-density, low-velocity core of the melon; however, the data suggest that the signals are focused mainly by the air sacs. Slight asymmetry in the signals were found with higher amplitudes on the right side of the forehead. Although the signal waveform measured on the melon appeared distorted, when they are mathematically summed in the far-field, taking into account the relative time of arrival of the signals, the resultant waveform matched that measured by the hydrophone located at 1 m.
    Description: This work was supported by the U.S. Office of Naval Research.
    Keywords: Acoustic field ; Acoustic signal detection ; Bioacoustics ; Biocommunications ; Hydrophones ; Underwater sound ; Zoology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America , 2008. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 111 (2002): 1644-1654, doi:10.1121/1.1458939.
    Description: To establish the validity of the boundary-element method (BEM) for modeling scattering by swimbladder-bearing fish, the BEM is exercised in several ways. In a computation of backscattering by a 50-mm-diam spherical void in sea water at the four frequencies 38.1, 49.6, 68.4, and 120.4 kHz, agreement with the analytical solution is excellent. In computations of target strength as a function of tilt angle for each of 15 surface-adapted gadoids for which the swimbladders were earlier mapped, BEM results are in close agreement with Kirchhoff-approximation-model results at each of the same four frequencies. When averaged with respect to various tilt angle distributions and combined by regression analysis, the two models yield similar results. Comparisons with corresponding values derived from measured target strength functions of the same 15 gadoid specimens are fair, especially for the tilt angle distribution with the greatest standard deviation, namely 16°.
    Description: This work began with sponsorship by the European Commission through its RTD-program, Contract No. MAS3-CT95-0031 (BASS).
    Keywords: Underwater sound ; Ultrasonic scattering ; Backscatter ; Bioacoustics ; Boundary-elements methods ; Acoustic intensity measurement ; Acoustic field ; Seawater
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 2002. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 111 (2002): 1197-1210, doi:10.1121/1.1433813.
    Description: Scattering models that correctly incorporate organism size and shape are a critical component for the remote detection and classification of many marine organisms. In this work, an acoustic scattering model has been developed for fluid-like zooplankton that is based on the distorted wave Born approximation (DWBA) and that makes use of high-resolution three-dimensional measurements of the animal's outer boundary shape. High-resolution computerized tomography (CT) was used to determine the three-dimensional digitizations of animal shape. This study focuses on developing the methodology for incorporating high-resolution CT scans into a scattering model that is generally valid for any body with fluid-like material properties. The model predictions are compared to controlled laboratory measurements of the acoustic backscattering from live individual decapod shrimp. The frequency range used was 50 kHz to 1 MHz and the angular characteristics of the backscattering were investigated with up to a 1° angular resolution. The practical conditions under which it is necessary to make use of high-resolution digitizations of shape are assessed.
    Description: This work was supported in part by the Woods Hole Oceanographic Institution Education Office.
    Keywords: Acoustic wave scattering ; Computerised tomography ; Underwater sound ; Backscatter ; Acoustic tomography ; Acoustic field ; Microorganisms
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 1996. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 99 (1996): 822-830, doi:10.1121/1.414563.
    Description: In a recent paper, Lynch et al. used modal and ray based perturbation techniques to compare predicted variances of acoustic travel times due to internal waves to measured variances in the Barents Sea Polar Front experiment [Lynch et al., J. Acoust. Soc. Am. 99, 803–821 (1996)]. One of the interesting results of this work is that the modal and ray travel-time variances are substantially different for rays and modes with the same grazing angle. Specifically, the maximum modal travel-time variance shows a resonant effect in which the variance increases with increasing frequency. Unlike the modal solution, the ray travel-time variance has a geometrically constrained maximum, independent of frequency. In this paper, the linear first-order solutions for the ray and modal variances due to the internal waves are reviewed, and in an Appendix the effects of the linearizing assumptions are examined. The ray and mode solutions are then shown to be consistent by considering a truncated sum of modes that constructively interfere along a geometric ray path. By defining the travel-time perturbation due to a truncated sum of modes, the travel-time variance of the modal sum is derived. With increasing frequency the maximum value of this variance converges to a frequency-independent result with a similar magnitude to the ray maximum variance.
    Keywords: Internal waves ; Oceanography ; Sound waves ; Travelling waves ; Underwater ; Wave propagation ; Barents Sea ; Ray trajectories ; Shallow–water equations ; Travel time
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 1994. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 96 (1994): 1033-1046, doi:10.1121/1.410380.
    Description: Using deterministic ray-acoustic modeling of 1000-km propagation in the North Pacific, a depth-dependent parameter of ocean sound channels has been found to strongly influence geometrical ray propagation. This parameter is the sound speed times the second vertical derivative of sound speed divided by the square of the first derivative. Ray and wavefront timing and intensity can be influenced within realistic ocean sound channels by unpredictable wavefront triplications and caustics. These triplications are associated with large values of the parameter at ray turning points. The parameter, a relative curvature, behaves as a random variable because of ocean finestructure, causing the unpredictability. The relative curvature has a higher mean value near the sound-speed minimum for both an internal-wave model and actual data, so that this mechanism is a plausible explanation of poor multipath resolution and identifiability late in North Pacific pulse trains.
    Description: This work was supported by the Office of Naval Technology (N00014-90-C-0098) and the Office of Naval Research, Ocean Acoustics Program (N00014-92-J-1162).
    Keywords: Pacific Ocean ; Ray-tracing ; Sound waves ; Wave propagation ; Pulses ; Acoustics ; Sound velocity ; Depth profiles ; Wave front ; Fluctuations ; Underwater
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...