ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
  • Elsevier  (16)
  • AIQUA  (2)
  • MDPI Publishing
  • Nature Publishing Group
  • 1
    Publication Date: 2017-04-04
    Description: We re-evaluate the 1984 Abruzzo-Lazio Earthquake on the basis of original seismological data discussed in light of previous interpretations from other authors. This sequence, characterized by two distinct mainshocks (Ms=5.8 and Ms=5.2; NEIS) having low spatial and temporal separation, developed at the border between Central and Southern Apennines. The sequence originated in a narrow area, adjacent to the main NW–SE structures belonging to the Apenninic Chain, crossed by fault segments with different orientation. The spatiotemporal evolution of the seismicity, the focal mechanisms of some aftershocks, never obtained before, and waveform analysis suggest that the sequence developed in several stages. The beginning of the two main stages was marked by two events (Ms=5.8 and Ms=5.2), and the entire sequence was strongly controlled by the structural heterogeneity in the medium involved in the stress release process. The ruptures nucleated on a ENE–WSW striking fault segment belonging to the NNE-striking Ortona-Roccamonfina tectonic line and propagated towards ENE. The presence of the NW–SE structures belonging to the Apennine Chain and their geometry acted as a barrier to the spread of the aftershocks northeastward. As a consequence, a local concentration of static stress in the area enclosed between the northern edge of the rupture segment of the first mainshock and the NW-striking structures triggered the Ms=5.2 event on a W–E pre-existing fault segment. In turn, the static stress changes due to the second mainshock activated adjacent NE–SW and NW– SE fault segments. The NW-striking structures belonging to the Apennines acted as a structural barrier, halting the propagation of the ruptures nucleating on a fault segment that belongs to the NNE-striking Ortona- Roccamonfina tectonic line.
    Description: Published
    Description: 92-104
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: restricted
    Keywords: Seismic sequence ; Focal mechanisms ; Central–Southern Apennines ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: In this paper we introduce a simple procedure to identify clusters of multivariate waveforms based on a simultaneous assignation and alignment procedure. This approach is aimed at the identification of clusters of earthquakes,assuming that similarities between seismic events with respect to hypocentral parameters and focal mechanism correspond to similarities between waveforms of events. Therefore we define a distance measure between seismic curve, in order to interpret and better understand the main features of the generating seismic process.
    Description: Published
    Description: 60-69
    Description: 2.5. Laboratorio per lo sviluppo di sistemi di rilevamento sottomarini
    Description: JCR Journal
    Description: reserved
    Keywords: Waveforms clustering, multiplets, Ocean Bottom Seismometer ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: The MW 8.8 mega-thrust earthquake and tsunami that occurred on February 27, 2010, offshore Maule region, Chile, was not unexpected. A clearly identified seismic gap existed in an area where tectonic loading has been accumulating since the great 1835 earthquake experienced and described by Darwin during the voyage of the Beagle. Here we jointly invert tsunami and geodetic data (InSAR, GPS, land-level changes), to derive a robust model for the co-seismic slip distribution and induced co-seismic stress changes, and compare them to past earthquakes and the pre-seismic locking distribution. We aim to assess if the Maule earthquake has filled the Darwin gap, decreasing the probability of a future shock . We find that the main slip patch is located to the north of the gap, overlapping the rupture zone of the MW 8.0 1928 earthquake, and that a secondary concentration of slip occurred to the south; the Darwin gap was only partially filled and a zone of high pre-seismic locking remains unbroken. This observation is not consistent with the assumption that distributions of seismic rupture might be correlated with pre-seismic locking, potentially allowing the anticipation of slip distributions in seismic gaps. Moreover, increased stress on this unbroken patch might have increased the probability of another major to great earthquake there in the near future.
    Description: Published
    Description: 173-177
    Description: 3.1. Fisica dei terremoti
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: JCR Journal
    Description: restricted
    Keywords: Source process ; Chile ; Tsunami ; Joint Inversion ; Seismic Gap ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Following the paper by Fraser-Smith et al. (1990), many scientists have focused their research on the ULF geomagnetic field pulsations in the hope of finding possible anomalous signals caused by the seismic activity. Thereafter, many papers have reported ULF geomagnetic field polarization ratio increases which have been claimed to be related to the occurrence of moderate and strong earthquakes. Even if there is no firm evidence of correlation between the polarization ratio increase and seismic events, these publications maintain that these ‘‘anomalous’’ increases are without doubt precursors of pending earthquakes. Furthermore, several researchers suggest that these seismogenic signals may be considered a promising approach towards the possibility of developing short-term earthquake prediction capabilities based on electromagnetic precursory signatures. On the contrary, a part of the scientific community emphasizes the lack of validation of claimed seismogenic anomalies and doubt their association with the seismic activity. Since earthquake prediction is a very important topic of social importance, the authenticity of earthquake precursors needs to be carefully checked. The aim of this paper is to investigate the reliability of the ULF magnetic polarization ratio changes as an earthquakes’ precursor. Several polarization ratio increases of the geomagnetic field, which previous researchers have claimed to have a seismogenic origin, are put into question by a qualitative investigation. The analysis takes into account both the temporal evolution of the geomagnetic field polarization ratio reported in previous papers, and the global geomagnetic activity behaviour. Running averages of the geomagnetic index Kp are plotted onto the original figures from previous publications. Moreover, further quantitative analyses are also reported. Here, nine cases are investigated which include 17 earthquakes. In seven cases it is shown that the suggested association between the geomagnetic field polarization ratio increases and the earthquake preparation process seems to be rather doubtful. More precisely, the claimed seismogenic polarization ratio increases are actually closely related to decreases in the geomagnetic activity level. Furthermore, the last two investigated cases seem to be doubtful as well, although a close correspondence between polarization ratio and geomagnetic activity cannot be unambiguously demonstrated.
    Description: Published
    Description: 19-32
    Description: 2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attive
    Description: JCR Journal
    Description: restricted
    Keywords: Earthquake precursors ; Short-term earthquake prediction ; Geomagnetic field ; Seismology ; 04. Solid Earth::04.05. Geomagnetism::04.05.99. General or miscellaneous ; 04. Solid Earth::04.05. Geomagnetism::04.05.04. Magnetic anomalies ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: In this paper we present and discuss an improved picture of the seismicity distribution of the Umbria– Marche–Abruzzi Apennines as obtained through the integration of the national and the regional seismic networks operating from 2002 to 2006. During this period, both the Istituto Nazionale di Geofisica e Vulcanologia (INGV) National Seismic Network and the regional networks have been greatly improved. We compare the results of the integrated catalogue obtained in this study with the Catalogue of the Italian Seismicity between 1981 and 2001 [Castello, B., Selvaggi, G., Chiarabba, C., Amato, A., 2006. CSI Catalogo della sismicità italiana 1981–2002, versione 1.1. INGV-CNT, Roma.http://legacy.ingv.it/CSI )], confirming the basic known features of the seismic activity in the region, but also evidencing some original and interesting results. In particular, the new data set allows us to better define the geometry and kinematics of the crustal seismicity, which is confined to the upper 20 km and shows a clear general deepening from west to east. In the crust, we find additional evidence of extensional seismicity below the central portion of the belt and thrust/reverse faulting mechanisms at the outer fronts of the Apennines. Looking at the seismicity along the belt, it is also possible to observe aseismic regions, which could be due to either locked or creeping portions of the Apenninic fault system. At greater depth, the west-dipping seismicity distribution down to about 70 km confirms the hypothesis of a slab of Adriatic lithosphere subducted below the Apennines, but also suggests that there are strong lateral heterogeneities and possibly tears in the slab.
    Description: Published
    Description: 121-135
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: JCR Journal
    Description: reserved
    Keywords: Seismicity ; Seismic monitoring ; Focal mechanisms ; Subduction ; Apennines ; Italy ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: The MATHCAD 2000 professional code to perform the Multiple Lapse Time Analysis (MLTWA) has been revised and rewritten in MATHEMATICA 7. The new code contains two new procedures to find the minimum of the misfit function between observation and model and a new example of application to real data from Chamoli earthquake aftershock sequence
    Description: Published
    Description: 1388–1392
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: Seismic attenuation and scattering ; MLTWA ; MATHEMATICA7 ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementation
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-06-14
    Description: Viene dato ragguaglio sulle operazioni di rilievo macrosismico relative al terremoto aquilano del 6 Aprile 2009 (Mw=6.3; Io=IX MCS) condotte dal QUEST e del risultato conseguito in termini di distribuzione delle intensità per 316 località visitate. Il terremoto, che ha provocato la distruzione di numerosi centri della conca Aquilana ed oltre 300 vittime, mostra un’area mesosimica allungata in direzione NW-SE, con una coda di forti risentimenti verso SE nella conca subèquana. Questo è in accordo con la geometria, cinematica e dinamica della rottura della struttura sismogenetica, individuata anche grazie alle evidenze di fagliazione di superficie seguite per circa 20 km lungo il versante nordorientale della Valle dell’Aterno, tra Collebrincioni e San Demetrio ne’ Vestini (sistema di faglie di Paganica-San Demetrio). Tale struttura viene anche indicata responsabile del terremoto “gemello” del 1461, oltre che da eventi di più elevata energia, come analisi paleosismologiche e rilievi geologici in corso hanno confermato.
    Description: Published
    Description: 1.11. TTC - Osservazioni e monitoraggio macrosismico del territorio nazionale
    Description: N/A or not JCR
    Description: open
    Keywords: L'Aquila 2009 ; macroseismics ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: The 2001 eruption represents one of the most studied events both from volcanological and geophysical point of view on Mt. Etna. This eruption was a crucial event in the recent dynamics of the volcano, marking the passage from a period (March 1993–June 2001) of moderate stability with slow, continuous flank sliding and contemporaneous summit eruptions, to a period (July 2001 to present) of dramatically increased flank deformations and flank eruptions. We show new GPS data and high precision relocation of seismicity in order to demonstrate the role of the 2001 intrusive phase in this change of the dynamic regime of the volcano. GPS data consist of two kinematic surveys carried out on 12 July, a few hours before the beginning of the seismic swarm, and on 17 July, just after the onset of eruptive activity. A picture of the spatial distribution of the sin-eruptive seismicity has been obtained using the HypoDD relocation algorithm based on the double-difference (DD) technique. Modeling of GPS measurements reveals a southward motion of the upper southern part of the volcano, driven by a NNW–SSE structure showing mainly left-lateral kinematics. Precise hypocenter location evidences an aseismic zone at about sea level, where the magma upraise was characterized by a much higher velocity and an abrupt westward shift, revealing the existence of a weakened or ductile zone. These results reveal how an intrusion of a dike can severely modify the shallow stress field, triggering significant flank failure. In 2001, the intrusion was driven by a weakened surface, which might correspond to a decollement plane of the portion of the volcano affected by flank instability, inducing an additional stress testified by GPS measurements and seismic data, which led to an acceleration of the sliding flanks.
    Description: This work was funded by the Istituto Nazionale di Geofisica e Vulcanologia and by the Dipartimento per la Protezione Civile (Italy).
    Description: Published
    Description: 78–86
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: stress release ; dike ; volcano-tectonics ; flank instability ; Mt. Etna ; instrumental monitoring ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.02. Seismological data ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: The paper by Del Pezzo et al. (2006), hereafter named DPBZ, deals with the estimate of the seismic attenuation in the high frequency range for the volcanic area of Mt. Vesuvius. In particular DPBZ use a method based on the fit of the observed local earthquake coda envelopes to the radiative transfer classical equation (see Sato and Fehler, 1998 for a wide and exhaustive review on this argument) in terms of the intrinsic attenuation and the scattering attenuation coefficients. Ugalde and Carcolé in their comment (hereafter named UC) discuss two points of DPBZ that we summarize here in their essence: (a) Two approximations of the exact solution of the 3-D radiative transfer model have been calculated, that discussed by Zeng (1991) – hereafter Z91 – expressed by Formula (5) of UC, and that by Paasschens (1997) – hereafter P97 – expressed by Formula (6) of UC. UC show that P97 is more accurate than Z91, which is instead used in DPBZ. (b) DPBZ obtain the separated estimates of intrinsic- and scattering-attenuation coefficients, respectively !i and !s, first stacking the normalized energy envelopes (starting at 2Ts lapse time) and then fitting the experimental data with the normalized (in the same way) theoretical curve. UC disagree with this procedure. Their opinion is that DPBZ should have inverted the single energy envelopes and then have averaged the results obtained. In the following we reply to points (a) and (b) in two separate sections.
    Description: Published
    Description: 195–196
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: Seismic scattering ; Elastic attenuation ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-03
    Description: Microearthquake recordings of local events have been used to quantify the site effects in the vicinity of Bursa City, northwest Turkey. Since the city is located near the southwest branch of the western extension of the North Anatolian Fault (NAF) zone, the importance of the seismic hazard in the region becomes progressively more important. The accelerograms of 69 earthquakes that were recorded on different geologic units, massive limestone, slope deposit and Quaternary sediment were analyzed to estimate the response of the recording sites. Site amplification functions were obtained by using three different approaches (standard spectral ratio, SSR; horizontal to vertical, H/V ratio and generalized inversion method, GIM) and the differences between the methods were also evaluated. We found large discrepancies between the SSR and H/V ratio methods, specifically; the former yields almost three times higher amplitudes than those obtained in the latter approach. Station located within the Bursa Quaternary basin (SCKR) is characterized by the largest estimates of the amplification amplitudes (8.0, 4.5 and 4.0 for SSR, H/V ratio and GIM, respectively) in all the three methods. On the other hand, stations located on deep limestone geological unit (SIGD and SKAY) show the least amplification level, ranging between 1.0 and 1.6. Three methods are able to identify resonant frequencies of the sites, although the absolute amplitudes of the amplification function are obtained different from each method.
    Description: Published
    Description: 579-587
    Description: JCR Journal
    Description: reserved
    Keywords: site amplification, Bursa city, Turkey, ground motion ; Northwestern Anatolian Fault, seismic hazard ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2017-04-04
    Description: The 2001 eruption represents one of the most studied events both from volcanological and geophysical point of view on Mt. Etna. This eruption was a crucial event in the recent dynamic of the volcano, marking the passage from a period (March 1993 – June 2001) of moderate stability with slow, continuous flank sliding and contemporaneous summit eruptions, to a period (July 2001 to present) of dramatically increased flank deformations and flank eruptions. We show new GPS data and high precision relocation of seismicity in order to demonstrate the role of the 2001 intrusive phase in this change of the dynamic regime of the volcano. GPS data consist of two kinematic surveys carried out on 12 July, a few hours before the beginning of the seismic swarm, and on 17 July, just after the onset of eruptive activity. A picture of the spatial distribution of the sin-eruptive seismicity has been obtained using the HypoDD relocation algorithm based on the double-difference (DD) technique. Modeling of GPS measurements reveal a southward motion of the upper southern part of the volcano, driven by a NNW-SSE structure showing mainly left-lateral kinematics. Precise hypocenter location evidences an aseismic zone at about sea level, where the magma upraise was characterized by a much higher velocity and an abrupt westward shift, revealing the existence of a weakened or ductile zone. These results reveal how an intrusion of a dike can severely modify the shallow stress field, triggering significant flank failure. In 2001, the intrusion was driven by a weakened surface, which might correspond to a decollement plane of the portion of the volcano affected by flank instability, inducing an additional stress testified by GPS measurements and seismic data, which led to an acceleration of the sliding flanks.
    Description: In press
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: 4.2. TTC - Scenari e mappe di pericolosità sismica
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: 4.4. Scenari e mitigazione del rischio ambientale
    Description: JCR Journal
    Description: reserved
    Keywords: Stress release ; Dike ; Volcano-tectonics ; Flank instability ; Mount Etna ; Instrumental monitoring ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2017-04-04
    Description: Three different methodologies were used to measure Radon (222Rn) in soil, based on both passive and active detection system. The first technique consisted of Solid State Nuclear Track Detectors (SSNTD), CR-39 type, and allowed integrated measurements. The second one consisted of a portable device for short time measurements. The last consisted of a continuous measurement device for extended monitoring, placed in selected sites. Soil 222Rn activity was measured together with soil Thoron (220Rn) and soil carbon dioxide (CO2) efflux, and it was compared with the content of radionuclides in the rocks. Two different soil gas horizontal transects were investigated across the Pernicana fault system (NE flank of Mount Etna), from November 2006 to April 2007. The results obtained with the three methodologies are in a general agreement with each other and reflect the tectonic settings of the investigated study area. The lowest 222Rn values were recorded just on the fault plane, and relatively higher values were recorded a few tens of meters from the fault axis on both of its sides. This pattern could be explained as a dilution effect resulting from high rates of soil CO2 efflux. Time variations of 222Rn activity were mostly linked to atmospheric influences, whereas no significant correlation with the volcanic activity was observed. In order to further investigate regional radon distributions, spot measurements were made to identify sites having high Rn emissions that could subsequently be monitored for temporal radon variations.. SSNTD measurements allow for extended-duration monitoring of a relatively large number of sites, although with some loss of temporal resolution due to their long integration time. Continuous monitoring probes are optimal for detailed time monitoring, but because of their expense, they can best be used to complement the information acquired with SSNTD in a network of monitored sites.
    Description: In press
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 4.4. Scenari e mitigazione del rischio ambientale
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: reserved
    Keywords: Soil Radon and Thoron activity ; soil CO2 efflux ; Pernicana fault system ; Mount Etna ; volcano-tectonic monitoring ; 03. Hydrosphere::03.04. Chemical and biological::03.04.07. Radioactivity and isotopes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.08. Instruments and techniques ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.02. Exploration geophysics::04.02.05. Downhole, radioactivity, remote sensing, and other methods ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2017-04-04
    Description: Many moderate events reported by Italian earthquake catalogues (either historical or recent) are listed with an epicentral intensity derived from intensity-magnitude relationships or evaluated based on preliminary sources. Contradictions may arise among different catalogues when the effects of a given earthquake are not assessed through a specific macroseismic study as each catalogue uses its own criteria for evaluating the intensity. In this paper we present the case of the 19 June 1975 earthquake, a ML=5.1 (ING seismological bulletin) event that occurred in the Gargano area (southern Italy). The intensity reported by the ING catalogue is VIII MCS (estimated from magnitude), that reported by the NT4.1 catalogue is VI MCS, while the PFG catalogue does not report any intensity. The case of this event is well representative of a period during which macroseismic studies were not undertaken systematically in Italy. In this paper we reasses the macroseismic intensity of this event using procedures implemented and routinely used at ING.
    Description: Published
    Description: 489-493
    Description: 5.1. TTC - Banche dati e metodi macrosismici
    Description: JCR Journal
    Description: reserved
    Keywords: Gargano ; 19 June 1975 ; Intensity ; macroseismics ; earthquake catalog ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2017-04-04
    Description: We analyze the 1997–2006 seismicity of the transition zone between Southern and Central Apennines, which is one of the most active seismic areas of Italy. Our aim is to add information on the seismotectonic picture of this area. Seismic activity is characterized by single events with Mb3.0 and low magnitude (Mb4.0) seismic sequences (1997–98 and 2005) and swarms (1999, 2000 and 2001). Hypocenters are within the upper 15 km of the crust. The epicentral distribution of the relocated seismicity shows that single events prevalently align NW–SE along the Apennine chain axis. This seismicity is related to the main, NE–SW extension affecting the chain. Single events concentrate also: at the south of the seismogenetic source responsible for the 1915 earthquake, where the 2000 swarm occurred; between the faults of the 1984 and 1805 events, where the 2001 sequence developed; between the faults of the 1805 and 1688 events, where the 1997–1998 seismic sequence concentrated. The seismic swarms occurred in 1999, 2000 and 2005 are located inside the Ortona– Roccamonfina structural line, which strikes NNE–SSW and separates the Central Apennines from the Southern ones. The epicentral distribution of these swarms and focal mechanisms suggest the presence of active NE–SW faults moving in response to a NW–SE extension. The results of the strain analysis on 52 wellconstrained focal mechanisms evidence a prevailing NE–SW extension, corresponding to the large scale stress field acting in the Apennine Chain, and a second-order NW–SE extension. This last direction of extension was already observed in the 1997–98 and 2001 seismic sequences. The location of the NE–SW striking faults responsible for the seismic swarms suggest that some segments of the Ortona–Roccamonfina line are still active and move in response to both the NE–SW regional extension of Southern Apennines, and to a NW–SE striking longitudinal extension.
    Description: Published
    Description: 102-110
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: 3.1. Fisica dei terremoti
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: Apennines ; seismicity ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 05. General::05.02. Data dissemination::05.02.02. Seismological data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2017-04-04
    Description: The fruitful collaboration between Italian Research Institutions, particularly Istituto Nazionale di Fisica Nucleare (INFN) and Istituto Nazionale di Geofisica e Vulcanologia (INGV) together with Marine Engineering Companies, led to the development of NEMOSN- 1, the first European cabled seafloor multiparameter observatory. This observatory, deployed at 2060m w.d. about 12 miles off-shore the Eastern coasts of Sicily (Southern Italy), is in real-time acquisition since January 2005 and addressed to different set of measurements: geophysical and oceanographic. In particular the SN-1 seismological data are integrated in the INGV land-based national seismic network, and they arrive in real-time to the Operative Centre in Rome. In the European Commission (EC) European Seafloor Observatory NETwork (ESONET) project, in connection to the Global Monitoring for Environment and Security (GMES) action plan, the NEMO-SN-1 site has been proposed as an European key area, both for its intrinsic importance for geo-hazards and for the availability of infrastructure as a stepwise development in GMES program. Presently, NEMO-SN-1 is the only ESONET site operative. The paper gives a description of SN-1 observatory with examples of data.
    Description: Published
    Description: 462-467
    Description: JCR Journal
    Description: reserved
    Keywords: Seafloor Observatory in real-time communication; ; Geo-hazard mitigation ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2017-04-04
    Description: We computed receiver functions of teleseismic events that occurred within a distance of 35–90° and were recorded in central Italy by 15 temporary stations and 1 permanent station. In the receiver functions we identified the P-to-S phase converted at the Moho discontinuity beneath each station and estimated crustal thickness from the time delay of this phase with respect to the direct P arrival. For the temporary stations this relatively simple approach is justified given their limited recording period. To the permanent station we also applied the slant stacking technique to try to constrain the bulk crustal Vp/Vs and validate our estimate of crustal thickness. Our results show that, in central Italy, the Moho is shallow (∼22 km) beneath the Tyrrhenian margin of the peninsula and deepens toward the east. Beneath the central Apennines, Moho depth ranges from 39 to 47 km. The thickest crust matches the highest topography. At the Tremiti islands, in the Adriatic Sea, crustal thickness is 33 km. While our Moho depths beneath the Tyrrhenian side of the peninsula and the Adriatic Sea are in agreement with previous results, a new result of this study is the crustal thickening beneath the central Apennines. This leads to the conclusion that the central Apennine topography is supported by a significant crustal root.
    Description: Published
    Description: 425-435
    Description: JCR Journal
    Description: reserved
    Keywords: teleseismic receiver functions ; crustal thickness ; central Apennines ; Italy ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2017-04-04
    Description: Il 5 settembre 1950 alle ore 04.08 (GMT), un forte terremoto fu avvertito in tutta l’Italia centrale e arrecò gravi danni in diversi centri abitati delle province di Teramo, Pescara, L’Aquila e Rieti. Questo evento è considerato il massimo terremoto storico avvenuto nell’area del Gran Sasso d’Italia, zona che, secondo i cataloghi sismici italiani è caratterizzata da un’attività sismica relativamente modesta. Al contrario le zone circostanti sono sede di sismicità più frequente e di forti terremoti storici. Questo lavoro è uno studio di revisione del terremoto che colpì l'area del 5 settembre 1950 e del periodo sismico che ne seguì tra il 1950 e il 1951. Scopo della ricerca è quello di ampliare il quadro delle conoscenze su questo sisma e di inquadrarlo nel contesto sismotettonico dell'area. La ricerca ha condotto al reperimento di moltissimi documenti originali, sinora inediti, sia relativi alla scossa del 5 settembre 1950, che a quella dell’8 agosto 1951 che rappresenta l’evento più forte del periodo sismico successivo alla scossa principale. I risultati riguardano una maggiore completezza delle informazioni sul terremoto, anche relativamente al ruolo delle repliche nel quadro del danneggiamento. Il numero dei punti di intensità risulta triplicato rispetto a quanto finora conosciuto. Gli elementi di analisi contribuiscono al calcolo di nuovi parametri ipocentrali e a fornire una ipotesi interpretativa riguardo alla sorgente responsabile del terremoto. In base ai dati acquisiti sulla distribuzione del danno è possibile ipotizzare che il terremoto del 1950 sia stato causato da una sorgente con direzione circa E-O, al di sotto dell’edificio strutturale della Laga, tra Campotosto e Pietracamela.
    Description: Published
    Description: 195-214
    Description: reserved
    Keywords: Gran sasso d'Italia, ; terremoto del 1950 ; macrosismica ; sismotettonica ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 8708396 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2017-04-04
    Description: A scattering image of the Campi Flegrei caldera has been obtained using coda wave envelopes from local microearthquake data recorded at a portable 12-station digital network. This was operated during the paroxysmic phase of the ground uplift (bradyseism) that occurred in the years 1983–1984. The Nishigami technique has been used to obtain the 3D distribution of the strong scatterers in an earth volume with a horizontal extension of 20 km×20 km and a vertical thickness of 6 km. This earth volume was segmented in blocks of 2 km×2 km×2 km for the outer section, and in blocks of 1 km×1 km×1 km for the inner section. The inversion was performed using a hybrid jackknife-SVD method that has allowed qualitative control of the stability and robustness of the solution. The results show that the scatterers revealed by the coda envelopes, which were band-pass filtered at a center frequency of 18 Hz, match the inner border of the caldera rim, which is well outlined on land by geological observations. The scatterer position also delineates this border well beneath sea level. These results are in close agreement with recently obtained seismic velocity tomography. The scatterers imaged at the 6 and 12 Hz band-pass frequencies are located around the zone of maximum uplift, beneath Solfatara crater, where most of the present residual volcanic activity is concentrated.
    Description: Published
    Description: 269-280
    Description: reserved
    Keywords: Scattering tomography ; Campi Flegrei caldera ; Seismic attenuation ; Inversion techniques ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1232383 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2017-04-04
    Description: On October 31, 2002 a ML=5.4 earthquake occurred in southern Italy, at the margin between the Apenninic thrust belt (to the west) and the Adriatic plate (to the east). In this area, neither historical event nor seismogenic fault is reported in the literature. In spite of its moderate magnitude, the earthquake caused severe damage in cities close to the epicenter and 27 people, out of a total of 29 casualties, were killed by the collapse of a primary school in S. Giuliano di Puglia. By inverting broadband regional waveforms, we computed moment tensor solutions for 15 events, as small as ML=3.5 (Mw=3.7). The obtained focal mechanisms show pure strike-slip geometry, mainly with focal planes oriented to NS (sinistral) and EW (dextral). In several solutions focal planes are rotated counterclockwise, in particular for later events, occurring west of the mainshock. From the relocated aftershock distribution, we found that the mainshock ruptured along an EW plane, and the fault mechanisms of some aftershocks were not consistent with the mainshock fault plane. The observed stress field, resulting from the stress tensor inversion, shows a maximum principal stress axis with an east–west trend (N83°W), whereas the minimum stress direction is almost N–S. Considering both the aftershock distribution and moment tensor solutions, it appears that several pre-existing faults were activated rather than a single planar fault associated with the mainshock. The finite fault analysis shows a very simple slip distribution with a slow rupture velocity of 1.1 km/s, that could explain the occurrence of a second mainshock about 30 h after. Finally, we attempt to interpret how the Molise sequence is related to the normal faulting system to the west (along the Apennines) and the dextral strike-slip Mattinata fault to the east.
    Description: Published
    Description: 141-154
    Description: reserved
    Keywords: waveform modeling ; source parameters ; stress field ; southern Apennines ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 937391 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...