ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mt. Etna  (11)
  • AGU  (11)
  • Soc. Explorat. Geophys.
Collection
Years
  • 1
    Publication Date: 2021-05-25
    Description: The 1974 western flank eruption of Mount Etna produced a rare, nearly aphyric and plagioclase-free trachybasalt that could not be derived from the central volcano conduits and was more alkaline and more radiogenic than all previous historical lavas. New results for the petrochemistry and volatile content of its products, combined with contemporaneous seismic and volcanological observations, allow us to reinterpret the origin and significance of this event. We show that the eruption was most likely triggered by deep tectonic fracturing that allowed a dike-like intrusion to propagate in 9 days from 11 km depth up to the surface, bypassing the central conduits. Relatively fast, closed system decompression of the volatile-rich magma initially led to lava fountaining and the rapid growth of two pyroclastic cones (Mounts De Fiore), followed by Strombolian activity and the extrusion of viscous lava flows when gas-melt separation developed in the upper portion of the feeding fracture. The 1974 trachybasalt geochemistry indicates its derivation by mixing 25% of preexisting K-poor magma (best represented by 1763 La Montagnola eruption’s products) and 75% of a new K-rich feeding magma that was gradually invading Mount Etna’s plumbing system and became directly extruded during two violent flank eruptions in 2001–2003. We propose to classify 1974-type so-called ‘‘eccentric’’ eruptions on Etna as deep dike-fed (DDF) eruptions, as opposed to more common central conduit-fed flank eruptions, in order to highlight their actual origin rather than their topographic location. We ultimately discuss the possible precursors of such DDF eruptions.
    Description: Published
    Description: B07204
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: 1974 deep dike-fed eruption ; Mt. Etna ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Ground deformation data from GPS and differential synthetic aperture radar interferometry (DInSAR) techniques are analyzed to study the July–August 2001 Mount Etna eruption as well as the dynamics preceding and following this event. Five GPS surveys were carried out on the entire Mount Etna network or on its southeastern part, from July 2000 to October 2001. Five ERS-2 ascending passes and three descending ones are used to form five interferograms spanning periods from a month to 1 year, before and encompassing the eruption. Numerical and analytical inversions of the GPS and DInSAR data were performed to obtain analytical models for preeruptive, syneruptive and posteruptive periods. The deformation sources obtained were from the Mogi model: (1) pressure sources located beneath the upper western flank of the volcano, inflating before the eruption onset and deflating afterward; (2) tensile dislocations to model the intrusion of a N-S dike in the central part of the volcano; and (3) two sliding and two normal dislocations to model the eastern and southern flank dynamics. This study confirms that the lower vents of the eruption were fed by a magma stored at depth ranging from 9 to 4 km below sea level, as proposed from petrochemical and geophysical researches. The rising of the magma through the shallow crust started months before the eruption onset but accelerated on the last day; this study suggests that in the volcanic pile the path of the rising magma was driven by the volcano topography. The eastern sliding plane and the interaction between dike intrusion and flank instability have been better defined with respect to previous studies. The sliding motion abruptly accelerated with the dike intrusion, and this continued after the end of the eruption. The acceleration was accompanied by the propagation of the strain field toward the eastern periphery of the volcano.
    Description: We acknowledge the ‘‘Istituto Nazionale di Geofisica e Vulcanologia’’, the Italian ‘‘Dipartimento per la Protezione Civile’’ and the European Community (contract INGV-DPC UR V3_6/36 and VOLUME Project) for their economic contribution to this research. The SAR data are provided by ESA-ESRIN.
    Description: Published
    Description: B06405
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Ground deformation ; GPS ; InSAR ; Mt. Etna ; Modelling ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: No abstract
    Description: Published
    Description: L08312
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: landslide tsunami ; Mt. Etna ; paleo-tsunami deposits ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: An edited version of this paper was published by AGU. Copyright (2009) American Geophysical Union.
    Description: On multi-vents volcanoes changes in activity between different vents reflect a complex fluid-dynamics of the shallow feeding systems and are often explained numerically and experimentally in terms of conduit branches and bifurcations. We present new geophysical constraints on the shallow feeding system of Etna volcano derived from array analysis of infrasound radiated from two distinct sources, one located in the SE crater and one in the Voragine or NE crater (VNE). These two sources alternated in their behavior, with the VNE crater system radiating low amplitude background infrasound interrupted by episodes of increased infrasound radiation from the SE crater. This switching behavior suggested a branched shallow feeding system strongly controlled by the gas/magma-flux. Here, the VNE craters represented the preferential and most stable branch of degassing during stationary flux regime, while the SE crater branch activated in response to an increase in the magma/gas supply rate.
    Description: INGV-DPC V3 for the years 2005– 2007
    Description: Published
    Description: L19308
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: Infrasound ; Mt. Etna ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Assessment of the hazard from lava flow inundation at the active volcano of Mt. Etna (Italy) was performed by calculating the probability of lava flow inundation at each position on the volcano. A probability distribution for the formation of new vents was calculated using geological and volcanological data from past eruptions. The simulated lava flows from these vents were emplaced using a maximum expected flow length derived from geological data on previous lava flows. Simulations were run using DOWNFLOW, a DEM-based model designed to predict lava flow paths. Different eruptive scenarios were simulated by varying the elevation and probability distribution of eruptive points. Inundation maps show that the city of Catania and the coastal zone may only be impacted by flows erupted from low-altitude vents (〈 1500 m elevation), and that flank eruptions at elevations 〉 2000 m preferentially inundate the northeast and southern sectors of the volcano as well as the Valle del Bove. Eruptions occurring in the summit area (〉 3000 m elevation) pose no threat to the local population. Discrepancies between the results of simple, hydrological models and those of the DOWNFLOW model show that hydrological approaches are inappropriate when dealing with Etnean lava flows. Because hydrological approaches are not designed to reproduce the full complexity of lava flow spreading, they underestimate the catchment basins when the fluid has a complex rheology.
    Description: In press
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: open
    Keywords: lava flows ; DOWNFLOW ; hazard ; Mt. Etna ; Sicily ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: A fundamental goal of volcano seismology is to understand the dynamics of active magmatic systems in order to assess eruptive behavior and the associated hazard. Imaging of magma conduits, quantification of magma transport and investigation of long-period seismic sources, together with their temporal variations, are crucial for the comprehension of eruption-triggering mechanisms. At Mt. Etna volcano, several intense episodes of tremor activity were recorded during 2007, in association with strombolian activity and/or intense fire fountaining episodes occurring from the South East Crater (SEC). The locations of the tremor sources and of the long-period seismic events are used here to constrain both the area and the depth range of magma degassing, highlighting the geometry of the shallow conduits feeding SEC. The imaged conduits consist of two connected resonating dike-like bodies, NNW-SSE and NW-SE oriented, extending from sea level to the surface. In addition, we show how tremor, long-period (LP) and very-long-period (VLP) event locations and signatures reflect pressure fluctuations in the plumbing system associated with the ascent/discharge of gas-rich magma linked to the lava fountains. The evidence here reported, also corroborated by ground deformation variations, can help develop a better prediction and early-warning system for those eruptions (effusive or explosive) that apparently manifest no clear precursors.
    Description: Supported by grants from the European Union VOLUME FP6-2004-Global-3
    Description: Published
    Description: Q12021
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: open
    Keywords: volcano plumbing system ; volcanic tremor ; LP and VLP events ; Mt. Etna ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: Ground deformation occurring on Mount Etna from 1994 to 1995 is analyzed in this paper. This period was characterized by intense volcanic activity at the four summit craters, with frequent strombolian activity, fire fountains, and emplacement of several new lava flows. Four GPS surveys were carried out during this time, two as routinely planned each year and an additional two in 1995 to acquire more data to follow the activity at the NE Crater. The comparisons between GPS surveys are reported in terms of horizontal and vertical displacements of each station and in terms of areal dilatation and principal strain axes. During the period considered in this work, a trend of increasing areal dilatation of the volcano (at a rate of about 5 mstrain/yr) was recognized; it was briefly interrupted by a small contraction (about 2 mstrain), in the autumn of 1995, when volcanic activity at the summit craters began. In detail, the strain distribution of the network is analyzed; it allows the detection of areas showing anomalous behavior, such as the summit zone or the Pernicana fault. Inversions of the ground displacement vectors have been performed by appropriately combining numerical and analytical approaches. Results of the inversions suggest structures defining an eastward and southward sliding of the eastern and southeastern sectors of Mount Etna.
    Description: CNR-GNV "Empedocle" ESA-ESRIN project
    Description: Published
    Description: 2153
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: GPS ; Ground deformation ; modeling ; Flank instability ; Mt. Etna ; Volcano dynamics ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.08. Theory and Models ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: In the text
    Description: Published
    Description: 1545-1548
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: anisotropy ; eruptive fracture ; Mt. Etna ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: A record of soil CO2 flux data on the lower flanks of Mt. Etna, measured from 1989 to 2008, is discussed in the framework of multidisciplinary observations, including seismicity, ground deformations, and flank instability. A huge increase in soil CO2 fluxes appears to be related to the dynamics of magma ascent in the upper portions of the volcano (0–3 km) and the intrusion of dykes along the southern rift, as mainly observed before the 1991–93 eruption. Even after the 1991–93 eruption, the recharge of the shallow/central reservoir was accompanied by a long‐term increase in soil CO2 degassing mainly in the southwestern area. The 2001 eruption marked dramatic changes in the areal distribution of seismicity, the deformation pattern, and the soil CO2 degassing. Indeed, while the soil CO2 degassing showed background values in the southwestern area, it progressively increased in the eastern sector and along the Pernicana fault. This has been related to the marked sliding of the eastern flank since the 2002–03 eruption and the associated seismicity. This study provides evidence that the extent of soil CO2 degassing on the lower flanks of Mt. Etna is controlled by (1) the volume of involved magma, (2) the intrusion of dykes in the upper parts of the volcano, and (3) fault movement and seismicity. This implies that different degassing structures must be monitored simultaneously when attempting to understand the behavior of the volcano as a whole.
    Description: Published
    Description: Q10002
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: CO2 degassing ; Mt. Etna ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-08-07
    Description: For thousands of years man has marvelled at the gigantic structure that makes up Mt. Etna, the largest active volcano in Europe, and has lived side by side with the mountain, which despite its intense eruptive activity has always been considered a "friendly giant." After the Second World War, with its frequent but non life-threatening eruptions, Mt. Etna represented an ideal location for volcanological research for the national and international scientific community. Numerous scientists from Belgium, Germany, France, the United Kingdom, and the United States of America have taken part in volcanological research aimed at understanding the volcano.
    Description: Published
    Description: 1-27
    Description: 1V. Storia eruttiva
    Description: 5V. Dinamica dei processi eruttivi e post-eruttivi
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Keywords: Volcano ; Mt. Etna ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...