ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics  (23)
  • 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
  • AGU  (26)
  • Wiley  (4)
  • Institute of Physics (IOP)
Collection
Years
  • 1
    Publication Date: 2021-02-17
    Description: An edited version of this paper was published by AGU. Copyright (2010) American Geophysical Union.
    Description: We study how heterogeneous rupture propagation affects the coherence of shear– and Rayleigh–Mach wave fronts radiated by supershear earthquakes. We address this question using numerical simulations of ruptures on a planar, vertical strike–slip fault embedded in a three–dimensional, homogeneous, linear elastic half–space. Ruptures propagate spontaneously in accordance with a linear slip–weakening friction law through both homogeneous and heterogeneous initial shear stress fields. In the 3–D homogeneous case, rupture fronts are curved due to interactions with the free surface and the finite fault width; however, this curvature does not greatly diminish the coherence of Mach fronts relative to cases in which the rupture front is constrained to be straight, as studied by Dunham and Bhat (2008). Introducing heterogeneity in the initial shear stress distribution causes ruptures to propagate at speeds that locally fluctuate above and below the shear–wave speed. Calculations of the Fourier amplitude spectra (FAS) of ground velocity time histories corroborate the kinematic results of Bizzarri and Spudich (2008): 1) The ground motion of a supershear rupture is richer in high frequency with respect to a subshear one. 2) When a Mach pulse is present, its high frequency content overwhelms that arising from stress heterogeneity. Present numerical experiments indicate that a Mach pulse causes approximately an –1.7 high frequency falloff in the FAS of ground displacement. Moreover, within the context of the employed representation of heterogeneities and over the range of parameter space that is accessible with current computational resources, our simulations suggest that while heterogeneities reduce peak ground velocity and diminish the coherence of the Mach fronts, ground motion at stations experiencing Mach pulses should be richer in high frequencies compared to stations without Mach pulses. In contrast to the foregoing theoretical results, we find no average elevation of 5%–damped absolute response spectral accelerations (SA) in the period band 0.05–0.4 s observed at stations that presumably experienced Mach pulses during the 1979 Imperial Valley, 1999 Kocaeli, and 2002 Denali Fault earthquakes compared to SA observed at non–Mach pulse stations in the same earthquakes. A 20% amplification of short period SA is seen only at a few of the Imperial Valley stations closest to the fault. This lack of elevated SA suggests that either Mach pulses in real earthquakes are even more incoherent that in our simulations, or that Mach pulses are vulnerable to attenuation through nonlinear soil response. In any case, this result might imply that current engineering models of high frequency earthquake ground motions do not need to be modified by more than 20% close to the fault to account for Mach pulses, provided that the existing data are adequately representative of ground motions from supershear earthquakes.
    Description: Published
    Description: B08301
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: Numerical modeling ; Supershear ruptures ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-05-11
    Description: An empirical Green’s function (EGF) technique has been developed to detect the rupture velocity history of a small earthquake. The assumed source model is a circular crack that is characterized by a single and unipolar moment rate function (MRF). The deconvolution is treated as an inverse problem in the time domain, which involves an assumed form of the moment rate function (MRF). The source parameters of the MRF are determined by adopting a global nonlinear inversion scheme. A thorough synthetic study on both synthetic and real seismograms allowed us to evaluate the degree of reliability of the retrieved model parameters. The technique was applied to four small events that occurred in the Umbria-Marche region (Italy) in 1997. To test the hypothesis of a single rupture process, the inversion results were compared with those arising from another EGF technique, which assumes a multiple rupture process. For each event, the best fit model was selected using the corrected Akaike Information Criterion. For all the considered events the most interesting result is that the selected best fit model favors the hypothesis of a single faulting process with a clear variability of the rupture velocity during the process. For the studied events, the maximum rupture speed can even approach the P-wave velocity at the source, as theoretically foreseen in studies of the physics of the rupture and recently observed for high-magnitude earthquakes.
    Description: Published
    Description: B10314
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: EGF technique ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-02-03
    Description: We explore the relationships between the fracture energy density (E_G) and the key parameters characterizing earthquake sources, such as the rupture velocity (v_r), the total fault slip (u_tot), and the dynamic stress drop (Dt_d). We perform several numerical experiments of three‐dimensional, spontaneous, fully dynamic ruptures developing on planar faults of finite width, obeying different governing laws and accounting for both homogeneous and heterogeneous friction. Our results indicate that E_G behaves differently, depending on the adopted governing law and mainly on the rupture mode (pulselike or cracklike, sub‐ or supershear regime). Subshear, homogeneous ruptures show a general agreement with the theoretical prediction of E_G *proportional to* (1 - (v_r/v_S)^2)^(1/2), but for ruptures that accelerate up to supershear speeds it is difficult to infer a clear dependence of fracture energy density on rupture speed, especially in heterogeneous configurations. We see that slip pulses noticeably agree with the theoretical prediction of E_G *proportional to* u_tot^2 , contrarily to cracklike solutions, both sub‐ and supershear and both homogeneous and heterogeneous, which is in agreement with seismological inferences, showing a scaling exponent roughly equal to 1. We also found that the proportionality between E_G and Dt_d^2, expected from theoretical predictions, is somehow verified only in the case of subshear, homogeneous ruptures with RD law. Our spontaneous rupture models confirm that the total fracture energy (the integral of EG over the whole fault surface) has a power law dependence on the seismic moment, with an exponent nearly equal to 1.13, in general agreement with kinematic inferences of previous studies. Overall, our results support the idea that E_G should not be regarded as an intrinsic material property.
    Description: Published
    Description: B10307
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: JCR Journal
    Description: reserved
    Keywords: Fracture energy ; Dynamic models ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: We modeled Pnl phases from several moderate magnitude earthquakes in the eastern Mediterranean to test methods and develop path calibrations for determining source parameters. The study region, which extends from the eastern part of the Hellenic arc to the eastern Anatolian fault, is dominated by moderate earthquakes that can produce significant damage. Our results are useful for analyzing regional seismicity as well as seismic hazard, because very few broadband seismic stations are available in the selected area. For the whole region we have obtained a single velocity model characterized by a 30 km thick crust, low upper mantle velocities and a very thin lid overlaying a distinct low velocity layer. Our preferred model proved quite reliable for determining focal mechanism and seismic moment across the entire range of selected paths. The source depth is also well constrained, especially for moderate earthquakes.
    Description: Published
    Description: N/A or not JCR
    Description: reserved
    Keywords: Body wave propagation ; earthquake parameters ; lithosphere ; upper-mantle ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 690519 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: We present a two-stage nonlinear technique to invert strong motions records and geodetic data to retrieve the rupture history of an earthquake on a finite fault. To account for the actual rupture complexity, the fault parameters are spatially variable peak slip velocity, slip direction, rupture time and risetime. The unknown parameters are given at the nodes of the subfaults, whereas the parameters within a subfault are allowed to vary through a bilinear interpolation of the nodal values. The forward modeling is performed with a discrete wave number technique, whose Green’s functions include the complete response of the vertically varying Earth structure. During the first stage, an algorithm based on the heat-bath simulated annealing generates an ensemble of models that efficiently sample the good data-fitting regions of parameter space. In the second stage (appraisal), the algorithm performs a statistical analysis of the model ensemble and computes a weighted mean model and its standard deviation. This technique, rather than simply looking at the best model, extracts the most stable features of the earthquake rupture that are consistent with the data and gives an estimate of the variability of each model parameter. We present some synthetic tests to show the effectiveness of the method and its robustness to uncertainty of the adopted crustal model. Finally, we apply this inverse technique to the well recorded 2000 western Tottori, Japan, earthquake (Mw 6.6); we confirm that the rupture process is characterized by large slip (3-4 m) at very shallow depths but, differently from previous studies, we imaged a new slip patch (2-2.5 m) located deeper, between 14 and 18 km depth.
    Description: Published
    Description: B07314
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: partially_open
    Keywords: earthquake ; kinematic ; finite fault ; inversion ; source mechanics ; waveform ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Frictional melt is implied in a variety of processes such as seismic slip, ice skating,and meteorite combustion. A steady state can be reached when melt is continuously produced and extruded from the sliding interface, as shown recently in a number of laboratory rock friction experiments. A thin, low-viscosity, high-temperature melt layer is formed resulting in low shear resistance. A theoretical solution describing the coupling of shear heating, thermal diffusion, and extrusion is obtained, without imposing a priori the melt thickness. The steady state shear traction can be approximated at high slip rates by the theoretical form : tau=sn^[1/4] (A/sqrt[R]) sqrt[ log[2 V/W] / (V/W) ] under a normal stress sn, slip rate V, radius of contact area R (A is a dimensional normalizing factor and W is a characteristic rate). Although the model offers a rather simplified view of a complex process, the predictions are compatible with experimental observations. In particular, we consider laboratory simulations of seismic slip on earthquake faults. A series of highvelocity rotary shear experiments on rocks, performed for sn in the range 1–20 MPa and slip rates in the range 0.5–2 m/s, is confronted to the theoretical model. The behavior is reasonably well reproduced, though the effect of radiation loss taking place in the experiment somewhat alters the data. The scaling of friction with sn, R, and V in the presence of melt suggests that extrapolation of laboratory measures to real Earth is a highly nonlinear, nontrivial exercise.
    Description: Published
    Description: B01308
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: friction ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: On April 6, 2009, 01:32:39 GMT, the city of L’Aquila was struck by a Mw 6.3 earthquake that killed 307 people, causing severe destruction and ground cracks in a wide area around the epicenter. Four days before the main shock we augmented the existing permanent GPS network with five GPS stations of the Central Apennine Geodetic Network (CaGeoNet) bordering the L’Aquila basin. The maximum horizontal and vertical coseismic surface displacements detected at these stations was 10.39 ± 0.45 cm and 15.64 ± 1.55 cm, respectively. Fixing the strike direction according to focal mechanism estimates, we estimated the source geometry with a non linear inversion of the geodetic data.Our best fitting fault model is a 13 15.7 km2 rectangular fault,SW-dipping at 55.3 ± 1.8 , consistent with the position of observed surface ruptures. The estimated slip (495 ± 29 mm) corresponds to a 6.3 moment magnitude, in excellent agreement with seismological data.
    Description: Published
    Description: L17307
    Description: 1.9. Rete GPS nazionale
    Description: JCR Journal
    Description: reserved
    Keywords: L'Aquila Earthquake ; GPS ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: To recognize possible signals of intrusive processes leading to the last 2002–2003 flank eruption at Mt. Etna, we analyzed the spatial pattern of microseismicity between August 2001 and October 2002 and calculated 23 fault plane solutions (FPSs) for shocks with magnitude greater than 2.5. By applying the double-difference approach of Waldhauser and Ellsworth [2000] on 3D locations, we found that most of the scattered epicentral locations further collapse in roughly linear features. High-precision locations evidenced a distribution of earthquakes along two main alignments, oriented NE-SW to ENE-WSW and NW-SE, matching well both with the known tectonic and volcanic lineaments of Etna and FPSs results. Moreover, microseismicity and swarms located along the NNW-SSE volcano-genetic trend suggest, together with geodetic data and volcanological evidence that progressive magma refilling has occurred since February 2002.
    Description: Published
    Description: 1-4
    Description: partially_open
    Keywords: Seismology: Earthquake dynamics and mechanics ; Seismology: Earthquake parameters ; Seismology: Volcano seismology ; Volcanology: Eruption monitoring ; Volcanology: Magma migration. ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 490 bytes
    Format: 1909477 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: Changes in the Earth’s gravity fi eld are caused by the redistribution of mass within the Earth and on or above its surface.While previous studies [Tapley, 2004; Wahr, 2004] showed that the Gravity Recovery and Climate Experiment (GRACE) satellite mission, executed by NASA,had successfully determined oceanic mass redistribution, the relative motions between two GRACE satellites caused by the 2004 Sumatra tsunami is still uncertain. This present study combines a numerical model of the tsunami and GRACE orbit data to estimate the realistic effect of oceanic mass redistribution on the inter-satellite range-rate change between two GRACE satellites.The GRACE mission is designed to map out the Earth’s gravity field to high accuracy. Instead of measuring the Earth gravity field or mass variations directly, GRACE estimates a set of spherical harmonic coefficients denoting the Earth gravity fi eld each month by measuring range changes between two spacecrafts [Chambers et al., 2004]. The aftermath of this study has shown that the sea surface height anomaly due to the 2004 Sumatra tsunami can cause GRACE inter-satellite range-rate change (i.e., the small relative motions between twin GRACE satellites).When the GRACE trajectories are near the tsunami regions, the range-rate variations are large enough to be observed by GRACE. On 26 December 2004, the fourth strongest earthquake over the past century occurred in the Indian Ocean off the western coast of northern Sumatra, Indonesia. Measuring 9.0 in magnitude, the earthquake generated a massive tsunami that struck the Indian Ocean countries and Somalia.The sudden and violent vertical displacement of the seafl oor caused a disturbance to the overlying water column that propagated rapidly across the whole Indian Ocean.As the tsunami reached shallow water, the height of the wave drastically increased and produced huge inundations and runup heights of up to a few tens of meters.
    Description: Published
    Description: 353-356
    Description: 3.1. Fisica dei terremoti
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: reserved
    Keywords: Sumatra ; tsunami ; propagation ; gravity ; satellite ; 04. Solid Earth::04.03. Geodesy::04.03.04. Gravity anomalies ; 04. Solid Earth::04.03. Geodesy::04.03.05. Gravity variations ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-03
    Description: Two layers of fine sand of marine origin occur in a sequence of organic rich colluvia in an archaeological excavation at Torre degli Inglesi, on Capo Peloro, northeast Sicily. Stratigraphic and micropaleontologic analyses support the hypothesis that these layers are related to deposition due to paleotsunami waves. Their ages are constrained both with radiocarbon and archaeological datings. The age of the oldest layer is coincident with the 17 A.D. earthquake that hit Reggio Calabria but for which no tsunami was previously reported. The age of the youngest layer can be only constrained in the range 3rd– 19th century and is tentatively associated to the 6 Feb. 1783 event.
    Description: Italian Civil Protection Department in the frame of the 2004 – 2006 agreement with Istituto Nazionale di Geofisica e Vulcanologia – INGV (Seismological Project S2) and E.C. project TRANSFER (contract 037058)
    Description: Published
    Description: L05311
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: partially_open
    Keywords: 1783 earthquake ; AD 17 earthquake ; paleoseismology ; tsunami inundation hazard ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2017-04-04
    Description: On October 31, 2002, a moderate size earthquake (Mw = 5.8) occurred in Molise region, southern Italy, causing loss of young human lives in a school collapse and destructions in several villages. The day after, a slightly smaller earthquake happened a few kilometers westward from the first one, without making strong damage. We use a complete set of seismological data (global, regional and local, including both body and surface waves) to better understand the source process of these two events. We show that the two earthquakes are similar, in terms of hypocentral depth, focal mechanism, and source kinematics. Moreover, the imaged slip zones are almost contiguous which makes the time delay between the two shocks (29 hours) an open question. The identified updip rupture propagation has amplified the radiation usually created by such Mw = 5.8 earthquakes at 15–20 km depth. We model a maximum acceleration zone in agreement with location of damaged villages.
    Description: Published
    Description: reserved
    Keywords: source kinematics ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 252911 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2017-04-04
    Description: We investigate controls on tsunami generation and propagation in the near-field of great megathrust earthquakes using a series of numerical simulations of subduction and tsunamigenesis on the Sumatran forearc. The Sunda megathrust here is advanced in its seismic cycle and may be ready for another great earthquake. We calculate the seafloor displacements and tsunami wave heights for about 100 complex earthquake ruptures whose synthesis was informed by reference to geodetic and stress accumulation studies. Remarkably, results show that, for any near-field location: (1) the timing of tsunami inundation is independent of slipdistribution on the earthquake or even of its magnitude, and (2) the maximum wave height is directly proportional to the vertical coseismic displacement experienced at that location. Both observations are explained by the dominance of long wavelength crustal flexure in near-field tsunamigenesis. The results show, for the first time, that a single estimate of vertical coseismic displacement might provide a reliable short-term forecast of the maximum height of tsunami waves.
    Description: Published
    Description: L14316
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: partially_open
    Keywords: Sumatra ; earthquake ; tsunami ; megathrust ; hazard ; forecasting ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2017-04-03
    Description: The Southern Apennines chain is related to the west-dipping subduction of the Apulian lithosphere. The strongest seismic events mostly occurred in correspondence of the chain axis along normal NW–SE striking faults parallel to the chain axis. These structures are related to mantle wedge upwelling beneath the chain. In the foreland, faulting develops along E–W strike-slip to oblique-slip faults related to the roll-back of the foreland. Similarly to other historical events in Southern Apennines, the I0 = XI (MCS intensity scale) 23 July 1930 earthquake occurred between the chain axis and the thrust front without surface faulting. This event produced more than 1400 casualties and extensive damage elongated approximately E-W. The analysis of the historical waveforms provides the chance to study the fault geometry of this ‘‘anomalous’’ event and allow us to clarify its geodynamic significance. Our results indicate that the MS = 6.6 1930 event nucleated at 14.6 ± 3.06 km depth and ruptured a north dipping, N100 E striking plane with an oblique motion. The fault propagated along the fault strike 32 km to the east at about 2 km/s. The eastern fault tip is located in proximity of the Vulture volcano. The 1930 hypocenter, similarly to the 1990 (MW = 5.8) Southern Apennines event, is within the Mesozoic carbonates of the Apulian foredeep and the rupture developed along a ‘‘blind’’ fault. The 1930 fault kinematics significantly differs from that typical of large Southern Apennines earthquakes, which occur in a distinct seismotectonic domain on late Pleistocene to Holocene outcropping faults. These results stress the role played by pre-existing, ‘‘blind’’ faults in the Apennines subduction setting
    Description: Published
    Description: B05303
    Description: 3.2. Tettonica attiva
    Description: 3.10. Sismologia storica e archeosismologia
    Description: 5.2. TTC - Banche dati di sismologia strumentale
    Description: JCR Journal
    Description: reserved
    Keywords: southern apennines ; historical earthquakes ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2017-04-04
    Description: At the westernmost part of the Corinth Rift (Greece), an area of rapid extension and active normal faulting, geomorphological observations reveal the existence and geometry of an active NW-SE trending coastal fault system, which includes the Aigion fault. We recognize a similar fault pattern on both the coastal range front to the NW of Aigion town and the Holocene fan deltas in front of it. We interpret this as a result of recent migration of faulting to the hanging wall of the fault system. Differences in the geomorphic expression of the constituent faults provide hints on the possible evolution of the fault pattern during this recent migration. A trench excavated across one of the identified coastal fault scarps (on a Holocene fan delta) provides information on the seismic history of the fault system, which includes at least four (possibly six) earthquakes in the past 4000 years. A minimum estimate for the slip rate of the trenched fault is 1.9–2.7 mm/yr. The trench exposed sediments of an uplifted paleolagoon (approximate age 2000 years B.P.), inside which the last two earthquakes formed an underwater monoclinal scarp. Oscillating coastal vertical movements are suggested by the fact that the lagoonal deposits are also uplifted on the trenched fault hanging wall (uplift by offshore faults) and by the abrupt transition from fluvial to lagoonal deposits (subsidence by more landward faults, assuming that extensive coastal sediment failure has not taken place in the specific part of the fan delta, within the time interval of interest). These movements suggest that the proposed migration of activity from the range front faults to those on the fan deltas is probably still ongoing, with activity on both sets of faults.
    Description: Published
    Description: B09302
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: tectonic geomorphology ; paleoseismology ; normal fault evolution ; coastal uplift ; Aigion fault ; western Corinth Gulf ; Greece ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2017-04-04
    Description: We studied 1951-1992 elevation changes recorded by a first order leveling line that intercepts the surface projection of the 26 Sep. 1997, Mw 6.0, Umbria-Marche earthquake causative fault. The line documents 1951-1992 localized subsidence along a 12 km section above the fault. We calculated the expected 1997 coseismic elevation changes along the line using standard dislocation modeling and found that their trend has an amplitude three times larger than the trend of the observed pre-1997 signal but with a similar shape. We suggest that this signal is the result of 10 cm of pre-1992 slip along the northernmost 5 km of the 1997 earthquake fault, where coseismic slip was found to be less than the average estimated for the entire fault. This result implies unusually fast slip along this section of the fault and may suggest slip acceleration in preparation for the impending failure.
    Description: Published
    Description: 1953-1956
    Description: 3.2. Tettonica attiva
    Description: N/A or not JCR
    Description: reserved
    Keywords: pre-seismic slip ; leveling ; 1997 Umbria-Marche earthquake ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2017-04-04
    Description: Most empirical studies on the decay of the rate of aftershock with time after a main shock assume the simple power law described by the modified Omori model (MOM). A couple of alternative models, also including an exponential decay at long times, have been proposed in the last decades: the modified stretched exponential (MSE) model and the band-limited power law (LPL). The first aim of this work is to discuss the functional properties of such models and the relations existing on their parameters. In particular, we derive, in term of common transcendental functions, the analytical integrals of the LPL and MSE rate functions, which are useful to simplify and speed up computations. We also define, as a function of the parameters of the LPL, two characteristic times tb and ta, which correspond approximately to the delay time c of the MOM and the exponential decay relaxation time t0 of the MSE, respectively. Hence, the MOM, the MSE, and the LPL models can be compared among each other in terms of the same set of four general parameters: (1) the power law exponent, (2) the initial delay time, (3) the exponential relaxation time (1 for the MOM), and (4) a normalization parameter, which can be related in some cases to the total number of potential aftershocks. A second aim of this paper is to test the ability of maximum likelihood methods to detecting the most appropriate decay model among alternatives. By the analysis of sequences simulated according to a MSE or a LPL we show that if the assumed exponential decay relaxation time is shorter than the time window over which the sequence is observed, the Akaike and Bayesian information criteria select correctly the true model (MSE or LPL). Conversely, when the relaxation time is definitely longer than the observing window, the information criteria usually prefer the MOM, but the maximum likelihood of the true model is higher, and if the data set of shocks is sufficiently large, the order of magnitude of the simulated characteristic time of the exponential decay can be estimated quite consistently. Hence, when analyzing real sequences, the possible emergence of the exponential decay might be hidden by the short duration of the time window if the standard information criteria are considered. Moreover, when the relaxation time is short, the estimated power law exponent p for the MOM results definitely higher than that assumed in the simulation. This indicates that high values of p (〉1.5–2.0), sometimes observed in real sequences, might be due to the (not modeled) early startup of the negative exponential decay. Our analysis cannot decide which model is the most appropriate in describing the temporal behavior of aftershock rate after a main shock but suggests that the assumption of a model also including the exponential decay is generally preferable as it allows capture of all of the features of sequence decay.
    Description: Published
    Description: B01305
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: aftershock ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2017-04-04
    Description: We present a duration-amplitude procedure for rapid determination of a moment magnitude, Mwpd, for large earthquakes using P-wave recordings at teleseismic distances. Mwpd can be obtained within 20 minutes or less after the event origin time as the required data is currently available in near-real time. The procedure determines apparent source durations, T0, from high-frequency, P-wave records, and estimates moments through integration of broadband displacement waveforms over the interval tP to tP+T0, where tP is the P arrival time. We apply the duration-amplitude methodology to 79 recent, large earthquakes (Global Centroid- Moment Tensor magnitude, MwCMT, 6.6 to 9.3) with diverse source types. The results show that a scaling of the moment estimates for interplate thrust and possibly tsunami earthquakes is necessary to best match MwCMT. With this scaling, Mwpd matches MwCMT typically within ±0.2 magnitude units, with a standard deviation of σ=0.11, equaling or outperforming other approaches to rapid magnitude determination. Furthermore, Mwpd does not exhibit saturation; that is, for the largest events, Mwpd does not systematically underestimate MwCMT. The obtained durations and duration-amplitude moments allow rapid estimation of an energy-to-moment parameter Θ* used for identification of tsunami earthquakes. Our results show that Θ* ≤ -5.7 is an appropriate cutoff for this identification, but also show that neither Θ* nor Mw is a good indicator for tsunamigenic events in general. For these events we find that a reliable indicator is simply that the duration T0 is greater than about 50 sec. The explicit use of the source duration for integration of displacement seismograms, the moment scaling, and other characteristics of the duration-amplitude methodology make it an extension of the widely used, Mwp, rapid-magnitude procedure. The need for a moment scaling for interplate thrust and possibly tsunami earthquakes may have important implications for the source physics of these events.
    Description: DPC-INGV (2007-2009) S3 Project
    Description: Published
    Description: 200-214
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: open
    Keywords: earthquakes, Richter magnitude, seismic moment, seismograms, tsunami,  earthquake­source mechanism ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2012-02-03
    Description: An edited version of this paper was published by AGU. Copyright (2010) American Geophysical Union.
    Description: Healing of faults is an important process in earthquake source physics since it accounts for a rapid restrengthening of the fault traction and for a consequent short slip duration, as indicated by slip inversions of seismic data. In this paper we show that a laboratory‐derived constitutive model, with an explicit dependence on the temperature developed by frictional heat, can provide a suitable explanation for the generation of self‐healing slip pulses. The model requires neither special modifications at low or high speeds nor the introduction of heterogeneities in the material properties, as previously proposed. We also demonstrate through numerical experiments of 3‐D ruptures that the temperature evolution can discriminate between crack‐like and slip pulses mode of propagation. In particular, we find that for a moderate level of strain localization (slipping zone width larger than 20 mm) ruptures behave as classical enlarging cracks.
    Description: Published
    Description: L18307
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: Temperature ; Numerical models ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2017-04-04
    Description: In this paper we attempt to reconcile a theoretical understanding of the earthquake energy balance with current geologic understanding of fault zones, with seismological estimates of fracture energy on faults, and with geological measurements of surface energy in fault gouges. In particular, we discuss the mechanical work absorbed on the fault plane during the propagation of a dynamic earthquake rupture. We show that, for realistic fault zone models, all the mechanical work is converted in frictional work defined as the irreversible work against frictional stresses. We note that the eff γ of Kostrov and Das (1988) is zero for cracks lacking stress singularities, and thus does not contribute to the work done on real faults. Fault shear tractions and slip velocities inferred seismologically are phenomenological variables at the macroscopic scale. We define the macroscopic frictional work and we discuss how it is partitioned into surface energy and heat (the latter includes real heat as well as plastic deformation and the radiation damping of Kostrov and Das). Tinti et al. (2005) defined and measured breakdown work for recent earthquakes, which is the excess of work over some minimum stress level associated with the dynamic fault weakening. The comparison between geologic measurements of surface energy and breakdown work revealed that 1-10% of breakdown work went into the creation of fresh fracture surfaces (surface energy) in large earthquakes, and the remainder went into heat. We also point out that in a realistic fault zone model the transition between heat and surface energy can lie anywhere below the slip weakening curve.
    Description: Submitted
    Description: 237-261
    Description: open
    Keywords: earthquake ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Format: 835154 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2017-04-04
    Description: We present seismological evidence for the existence of an actively slipping low angle normal fault (15¡ã dip) located in the Northern Apennines of Italy. During a temporary seismic experiment, we recorded ~2000 earthquakes with ML ¡Ý 3.1. The micro-seismicity defines a 500 to 1000 m thick fault zone that cross-cuts the upper crust from 4 km down to 16 km depth. The fault coincides with the geometry and location of the Alto Tiberina Fault (ATF) as derived from geological observations and interpretation of depth-converted seismic reflection profiles. In the ATF hangingwall the seismicity distributions highlight minor synthetic and antithetic normal faults (4-5 km long) that sole into the detachment. The ATF related seismicity shows a nearly constant rate of earthquake production, ~ 3 events per day (ML ¡Ü 2.3), and a higher b-value (1.06) with respect to the fault hanging-wall (0.85) which is characterized by a higher rate of seismicity. In the ATF-zone we also observe the presence of clusters of earthquakes occurring with relatively short time delays and rupturing the same fault patch. To explain movements on the ATF, oriented at high angles (~75¡ã) to the maximum vertical principal stress, we suggest an interpretative model in which crustal extension along the fault is mostly accommodated by aseismic slip in velocity strengthening areas whilst micro-earthquakes occur in velocity weakening patches. We propose that these short-lived frictional instabilities are triggered by fluid overpressures related to the build-up of CO2¨Crich fluids as documented by boreholes in the footwall of the ATF.
    Description: Published
    Description: B10310
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: Low angle normal faults ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2017-04-04
    Description: The 12 November 1999 Mw 7.1 earthquake ruptured the Du¨zce segment of the North Anatolian Fault Zone and produced a 40-km-long surface rupture. To improve knowledge about earthquake recurrence on this fault, we undertook paleoseismological trench investigations. We found evidence for repeated surface faulting paleoearthquakes predating the 1999 event during the past millennium. Dating was based on radiocarbon, 210Pb analyses, and archaeological considerations. In addition to the 1999 earthquake, prior surface faulting earthquakes are dated as follows: A.D. 1685–1900 (possibly end of 19th century), A.D. 1495–1700, and A.D. 685–1020 (possibly A.D. 890–1020). The A.D. 967 and A.D. 1878 historical earthquakes are good candidates to have ruptured the Du¨zce fault correlating with the oldest and penultimate paleoearthquakes. No obvious correlation for the third paleoearthquake (A.D. 1495–1700) exists. These results shows that the Du¨zce fault considerably participates, along with the parallel Mudurnu fault sections, in the seismogenic deformation taking place along this part of the North Anatolian Fault. Four events since A.D. 685–1020 (possibly A.D. 890–1020) would yield an average recurrence time for the Du¨zce fault of 330–430 years (possibly 330– 370 years). The three most recent earthquakes, including 1999, occurred within 500 years. Merging results from other paleoseismological studies along the Du¨zce fault show a consistency of results and yields average recurrence times for the past 2000 years of 320– 390 years. Assuming that the 1999 slip (2.7 m average, 5 m maximum) is representative of the behavior of this fault, the above recurrence times yield a reference figure of fault slip rate in the range 6.9–15.6 mm/a
    Description: EU project RELIEF (EVG1-CT-2002-00069)
    Description: Published
    Description: B01309
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: paleoseismicity ; strike-slip faults ; north anatolian fault ; 1999 earthquake ; 210Pb dating ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2017-04-04
    Description: We present paleoseismological trenching results for the active Skinos Fault, which ruptured the surface on the Alkyonides Gulf basin margin in the 1981 Gulf of Corinth earthquake sequence. Three trenches expose evidence of up to six previous events which are comparable to the 1981 deformation in terms of size and geometry. Vertical displacement produced by the 1981 earthquake ranged from 0.45 to 1.3 m at the Bambakies Fan trench sites, decreasing towards the eastern fault tip east of the trenches. Trench 1 reveals two previous events with vertical displacements between 0.5 and 1.2 m since 390 A.D. Trench 2 reveals five or six previous events, but these are not dated. Trench 3 reveals four previous events since 670 A.D. Vertical displacements associated with interpreted paleoearthquakes at the trench sites are ≤1.2 m. The recurrence interval on the Skinos Fault is estimated to average 330 years. However, significant variation in recurrence interval is allowed by the available radiometric dates. Average vertical displacement rates derived from the trenches are in the range 0.7-2.5 mm/yr. A similar long-term average vertical displacement rate of 1.2-2.3 mm/yr is estimated for the lifespan of the basin-bounding fault. This equates to a horizontal seismic strain contribution of ≤2.5 mm/yr from the Skinos Fault. This local seismic strain rate overlaps, within error, with geodetically determined velocities across the Alkyonides Gulf assumed to represent uniform deep-crustal strain. Thus seismic deformation on the basin-bounding fault system may take up the major part of extension across the basin, and aseismic strain is not necessitated by the data. If correct, this would imply that geodetically determined strain rates may be used as a proxy for potential seismic moment release in seismic hazard analyses for this region.
    Description: Published
    Description: 30,001-30,019
    Description: 3.2. Tettonica attiva
    Description: N/A or not JCR
    Description: reserved
    Keywords: palaeoseismology ; 1981 Corinth earthquake ; extensional strain ; Greece ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2017-04-04
    Description: Under the hypotheses that the high-frequency part of the seismic spectrum is controlled by source duration and by peak slip velocity, we applied a recent coda envelope methodology to obtain stable relative source estimates between selected mainshocks and their aftershocks. We computed stable mainshock/aftershock S-wave spectral ratios and used a simple source model in order to quantify the scaling of the seismic sources of the San Giuliano sequence (Southern Italy). From the analysis of the ratios obtained between the main shock of 10/31/2002, and 11 aftershocks, and of those computed between the other main event of the sequence, of 11/01/2002, and 10 aftershocks, we observe that the scaling relationships: holds, with . Despite the strong discrepancy between the moment magnitude and the high-frequency ground motion excited by the main shocks (ML was much lower than Mw), that would indicate low-stress drop sources, we compute anomalously high stress parameters for both events. By comparison, the same analysis was carried out on seismic data of the Hector Mine seismic sequence (the main event of October 16, 1999, , and six of its aftershocks). We found: , with .
    Description: Published
    Description: L12302
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: Source mechanics ; Radiated Energy ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2017-04-04
    Description: Rapid extension and active normal faulting in the western extremity of the Corinth Gulf are accompanied by fast coastal uplift.We investigate Pleistocene uplift west of Aigion, by attempting to date remains of marine terraces and sedimentary sequences by calcareous nannoplankton and U-series analyses. Net uplift initiated recently, due to abandonment of an older rift-bounding fault zone and increase in activity on the presently active, coastal fault zone. This change apparently coincides with an abrupt slow down (or, termination) of secondary fault block tilting within the broader hangingwall block of the older zone, indicated by an angular unconformity that dates in the early part ofMIS10 ( 390–350 ka BP, preferably, in the earlier part of this period). Net uplift driven by the coastal zone resulted in the formation of MIS9c (330 ka) and younger terraces. The formation of the unconformity and the initiation of net uplift coincide temporally with a 300–400 ka unconformity recognized by recent studies in a wide area offshore Aigion i.e. they could be part of an evolutionary event that affected the entirewestern part of the Corinth Rift or, a large area therein. Uplift rate estimates at four locations are discussed with reference to the morphotectonic context of differential uplift of secondary fault blocks, and the context of possible increase in uplift ratewith time. Themost reliable and most useful estimate for uplift rate at the longitude of the studied transect is 1.74–1.85mm/year (time-averaged estimate for the last 240 ka, based on calcareous nannoplankton and sequence-stratigraphic interpretation)
    Description: ‘3HAZ Corinth’ E.U. research project 004043 (GOCE)-3HAZ-Corinth
    Description: Published
    Description: 78 - 104
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: partially_open
    Keywords: coastal uplift ; marine terraces ; marine sequences ; deformation rate ; Pleistocene ; Corinth Gulf Reef ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2017-04-04
    Description: An edited version of this paper was published by AGU. Copyright (2010) American Geophysical Union
    Description: We explore the hypothesis that the relative size distribution of earthquakes, or b‐value, systematically depends on the style‐of‐faulting of seismotectonic zones. Because the b‐value has been shown to be inversely proportional to stress, we expect to find b(thrust) 〈 b (strike‐slip) 〈 b(normal). We test this expectation for the case of Italy. We first of all build a seismotectonic zonation model, consisting of 10 distinct tectonic zones. The faulting style of each zone is then characterized by the summed moment tensor of first‐motion and full‐waveform based focal mechanism. We calculate the b‐value for each zone: the lowest values are obtained for reverse zones (0.75– 0.81), highest for the normal (1.09), followed by the strikeslips (0.9–0.92). Our results suggest that b‐values, which are a critical parameter in all seismic hazard assessments, should be set according to the local faulting regimes. In addition, seismotectonic zonation models should take b‐value variations as one input.
    Description: Published
    Description: L10305
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: b-value ; stress regime ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2017-04-04
    Description: We present a physical model that describes the behavior of spontaneous earthquake ruptures dynamically propagating on a fault zone and that accounts for the presence of frictional melt produced by the sliding surfaces. First, we analytically derive the solution for the temperature evolution inside the melt layer, which generalizes previous approximations. Then we incorporate such a solution into a numerical code for the solution of the elastodynamic problem. When a melt layer is formed, the linear slip‐weakening law (initially governing the fault and relying on the Coulomb friction) is no longer valid. Therefore we introduce on the fault a linearly viscous rheology, with a temperature‐dependent dynamic viscosity. We explore through numerical simulations the resulting behavior of the traction evolution in the cohesive zone before and after the transition from Coulomb friction and viscous rheology. The predictions of our model are in general agreement with the data from exhumed faults.We also find that the fault, after undergoing the breakdown stress drop controlled by the slip‐weakening constitutive equation, experiences a second traction drop controlled by the exponential weakening of fault resistance due to the viscous rheology. This further drop enhances the instability of the fault, increasing the rupture speeds, the peaks in fault slip velocity, and the fracture energy density.
    Description: Published
    Description: B02310
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: Melting ; theoretical seismology ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2017-04-04
    Description: We reply to a comment by Messina et al., who strongly criticized our paper on the San Pio Fault, by showing that in areas of complex geology such as the central Apennines, where the current tectonic setting results from the superposition of different tectonic regimes, the equation: “most visible active fault = major seismogenic fault” can be misleading.
    Description: Published
    Description: 421-423
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Seismotectonics ; morphotectonics ; active fault ; San Pio basin ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2020-02-24
    Description: The dynamic strength (tau_f) of faults during coseismic slip is a major unknown in earthquake mechanics, though it has crucial influence on rupture properties, dynamic stress drop, radiated energy and heat produced during slip. In order to provide constraints on tau_f, High-Velocity Rock Friction Experiments (HVRFE) are conducted on natural rocks with rotary shear apparatuses, reproducing slip (several meters) and slip rate (0.1-3 m/s) typical of large earthquakes. Among the various weakening mechanisms possibly activated during seismic slip, we focus on melt lubrication. Solidified, friction-induced melts (pseudotachylytes) decorate some exhumed seismic faults, showing that melt can occur on natural faults, though its frequency is still a matter of debate. In the presence of melt, tau_f undergoes an initial strengthening stage, followed by a dramatic weakening stage (thermal runaway). Field estimates based on pseudotachylyte thickness and experimental measures of tau_f suggest large stress drops once thermal runaway is achieved. These estimates of tau_f are compatible with large dynamic stress drops and high radiation efficiency, as observed for some earthquakes. Moreover, the threshold for the onset of thermal runaway might explain differences between the mechanics of small (M 〈 4) and large earthquakes. A simple mathematical model coupling melting, extrusion and thermal diffusion reproduces some observed experimental features such as the duration of the weakening stage and the convergence to a steady-state.
    Description: Published
    Description: 121-134
    Description: 3.1. Fisica dei terremoti
    Description: reserved
    Keywords: friction, pseudotachylite, exhumed faults, laboratory experiments, High velocity friction ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2017-04-04
    Description: Accepted for publication in Journal of Geophysical Research. Copyright (2010) American Geophysical Union
    Description: We present a physical model which describes the behavior of spontaneous earthquake ruptures dynamically propagating on a fault zone and which accounts for the presence of frictional melt produced by the sliding surfaces. First, we analytically derive the solution for the temperature evolution inside the melt layer, which generalizes previous approximations. Then we incorporate such a solution in a numerical code for the solution of the elasto–dynamic problem. When a melt layer is formed, the linear slip–weakening law (initially governing the fault and relying on the Coulomb friction) is no longer valid. Therefore we introduce on the fault a linearly viscous rheology, with a temperature–dependent dynamic viscosity. We explore through numerical simulations the resulting behavior of the traction evolution in the cohesive zone before and after the transition from Coulomb friction and viscous rheology. The predictions of our model are in general agreement with data field from exhumed faults. We also find that the fault, after undergoing the breakdown stress drop controlled by the slip–weakening constitutive equation, experiences a second traction drop controlled by the exponential weakening of fault resistance due to the viscous rheology. This further drop enhances the instability of fault, increasing the rupture speeds, the peaks in fault slip velocity and the fracture energy density.
    Description: In press
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: open
    Keywords: Melting ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2017-04-04
    Description: The elevation of the Capo Vaticano coastal terraces (Tyrrhenian coast, central Calabria) is the combination of regional uplift and repeated coseismic displacement. We subtract the regional uplift from the total uplift (maximum average uplift rates 0.81-0.97 mm/yr since ~0.7 Ma) and obtain a residual fault-related displacement. Then, we model the residual displacement to provide constraints to the location and geometry of the seismogenic source of the 1905 M7 earthquake, the strongest – and still poorly understood – earthquake of the instrumental era in this area. We test four different potential sources for the dislocation modelling and find that 1) three sources are not compatible with the displacement observed along the terraces, and 2) the only source consistent with the local deformation is the 100°-striking Coccorino Fault. We calculate average long-term vertical slip rates of 0.2-0.3 mm/yr on the Coccorino Fault and estimate an average recurrence time of ~one millennium for a 1905-type earthquake
    Description: Published
    Description: 378-389
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: marine terrace ; fault ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...